Truthful mechanisms for ownership transfer with expert advice

Ioannis Caragiannis, Aris Filos-Ratsikas, Swaprava Nath, and Alexandros A. Voudouris

The setting	Bch-IC characterization	Expert-independent mechanisms
 One item for sale Two potential buyers A and B with monetary values w_A and w_B for the item One expert with vNM values v(·) for the two buyers and the aptice O of path calling. 	Lemma 2. A mechanism is ECh-IC iff the function $f(\Pi_E)$ is non-decreasing in x and $g(x, \cdot) = g(0, \cdot) - xf(x, \cdot) + \int_0^x f(t, \cdot) dt,$	 Base the decision solely on the bids of the buyers Profiles in buyers' view The function <i>c</i> depends only on <i>y</i>; <i>d</i> = 1 - <i>c</i>
 buyers and the option ⊘ of not selling Objectives incentivize the buyers and the expert to 	Overview of results We consider several classes of truthful mech-	 and e = 0 Trivially truthful for the expert Lemma 5. An expert-independent mechanism has

• We consider several classes of truthful mech-

tion they use

anisms, depending on the level of informa-

- truthfully report their preferences, and
- choose an option $o \in \{A, B, \emptyset\}$ to maximize the social welfare

$$SW(o) = \begin{cases} v(o) + \frac{w_o}{\max\{w_A, w_B\}}, & o \in \{A, B\} \\ v(\emptyset), & \text{otherwise} \end{cases}$$

Mechanism design

- with money for the buyers
- without money for the expert

Applications

- Privatization of government assets
- Sports tournaments hosting

Profile representations

• Two different views of a preference profile Π , depending on whether we sort the values in terms of the expert or the buyers

 $\Pi_E = \left(\begin{array}{ccc} 1 & x & 0 \\ h & \ell & z \end{array}\right)$

Expert's view: a mechanism is a lottery assigning probabilities $g(\Pi_E)$, $f(\Pi_E)$ and $\eta(\Pi_E)$ to the expert's first, second and third favorite option

• For each such class, we identify the best possible mechanism in terms of its approximation ratio with respect to the optimal social welfare

class of mechanisms	apx. ratio
ordinal	1.5
bid-independent	1.377
expert-independent	1.343
randomized template	1.25
deterministic template	1.618
all deterministic	≥ 1.618
all mechanisms	≥ 1.14

Ordinal mechanisms

- Base the decision only on the relative order of the values reported by the expert or the buyers
- Mechanism **EOM**: select the expert's favorite option with probability 2/3 and the expert's

 $\frac{1-1/\rho}{1-1/\rho} \leqslant c(y) \leqslant \frac{2(1-1/\rho)}{\rho}.$

approximation ratio at most ρ iff

Lemma 6. A BCh-IC expert-independent mechanism is truthful if and only if $d(1) \ge c(1)$.

Template \mathcal{T}

• Profiles in buyers' view with $\ell \ge h$ belong to category T1; all others belong to T2

 $\Pi_b = \left| \begin{array}{ccc} h & \ell & n \\ 1 & y & 0 \end{array} \right|$

Buyers' view: a mechanism is a lottery assigning probabilities $d(\Pi_b)$, $c(\Pi_b)$ and $e(\Pi_b)$ to the high-bidder, low-bidder and the option \oslash

Truthfulness conditions

A mechanism is **truthful** if it is

- Ech-IC: the expert has no incentive to attempt any level change in the reported valuation which would change her second highest valuation;
- **ESw-IC**: the expert has no incentive to attempt a *reported valuation swap* which would change the order of her valuations for the op-

second favorite option with probability 1/3

• Mechanism **BOM**: select the high-bidder with probability 2/3 and the low-bidder with probability 1/3

Bid-independent mechanisms

- Base the decision solely on the valuations of the expert
- Profiles in expert's view
- The functions g, f and η depend only on x
- Trivially truthful for the buyers

Lemma 3. A bid-independent mechanism has approximation ratio at most ρ iff

> $2g(x) + xf(x) \ge 2/\rho$ $g(x) + (1+x)f(x) \ge (1+x)/\rho.$

Lemma 4. An ECh-IC bid-independent mechanism is truthful iff $g(x) \ge f(x')$ and $f(x) \ge \eta(x')$ for every pair $x, x' \in (0, 1)$.

• For every profile in T1, select the low-bidder with probability c(y, T1); for every profile in T2, select the high-bidder with probability 1.

Lemma 7. Any \mathcal{T} mechanism is truthful and has approximation ratio at most ρ iff

$$\frac{1}{\rho} - \frac{1 - 1/\rho}{y} \leqslant c(y, T1) \leqslant \frac{1 - 1/\rho}{1 - y}.$$

tions;

- **Bch-IC:** the buyers have no incentive to attempt level changes in their reported bids which would change their bids;
- **BSw-IC**: the buyers have no incentive to attempt *bid swaps* which would change the order of the bids

Bch-IC characterization

Lemma 1 (Myerson, 1981). A mechanism is BCh-IC iff the functions $d(\Pi_b)$ and $c(\Pi_b)$ are nonincreasing and non-decreasing in terms of y, respectively.

Deterministic mechanism **D**

