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Paper overview

• We study a refinement of an opinion for-
mation model proposed by Friedkin and
Johnsen (1990), where each participant has
an internal belief, but expresses a public
opinion which might be affected by her so-
cial acquaintances
• We follow the recent game-theoretic ap-

proach of Bindel, Kleinberg, and Oren (2015)
and focus on a co-evolutionary setting pro-
posed by Bhawalkar, Gollapudi, and Muna-
gala (2013), in which both the social acquain-
tances and the opinions co-evolve
• Specifically, we introduce a new cost func-

tion that better models the behavior of par-
ticipants that aim to compromise, formu-
late corresponding strategic games, which
we call k-COF (standing for “compromising
opinion formation”) games, and present re-
sults on the existence, complexity, and qual-
ity of their equilibria

k-COF games

• n players
• Vector s = (s1, s2, . . . , sn) ∈ Rn of player be-

liefs, such that si ≤ si+1 for each i ∈ [n− 1]

• Vector z = (z1, z2, . . . , zn) ∈ Rn of opinions
expressed by the players; these opinions de-
fine a state of the game
• Neighborhood Ni(z, s) of player i is the set

of k players whose opinions are the closest
to the belief of player i
• The cost of player i is

costi(z, s) = max
j∈Ni(z,s)

{
|zi − si|, |zj − zi|

}
• An opinion vector z is a pure Nash equilibrium

if no player i has any incentive to unilater-
ally deviate to a deterministic opinion z′i in
order to decrease her cost, i.e.,

costi(z, s) ≤ costi((z
′
i, z−i), s)

Structural properties

• For player i, define Ii(z, s) as the shortest in-
terval of the real line that includes the belief
si, the opinion zi, and the opinion zj for each
player j ∈ Ni(z, s)

• Also, define `i(z, s) and ri(z, s) as the play-
ers with the leftmost and rightmost point in
Ii(z, s), respectively. For example, `i(z, s)
can be equal to either player i or some player
j ∈ Ni(z, s), depending on whether the left-
most point of Ii(z, s) is si, zi, or zj

Lemma 1. In any pure Nash equilibrium z of a k-
COF game with belief vector s,

a. zi lies in the middle of interval Ii(z, s), for
each player i;

b. zi ≤ zi+1, for any i ∈ [n− 1];

c. Ni(z, s) = {j, ..., j + k} \ {i} with i − k ≤
j ≤ i;

d. s`i(z,s) ≤ zi ≤ sri(z,s), for each player i.

Non-existence of pure equilibria

Theorem 1. There exist 1-COF games with no
pure equilibria.

In the examples below, squares are beliefs,
points and arrows are opinions, and [y] denotes
y players with identical beliefs.
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Let’s assume, w.l.o.g., that the middle player
plays opinion x ≤ 1. Then, by structural prop-
erties of pure equilibria, the other players have
the middle player as neighbor and play at x/2
and 1 + x/2, respectively.

0 1 2x/2 x 1 + x/2

If x < 1, the opinion that is closest to the be-
lief of the middle player is that of the rightmost
player and the middle player would have an
incentive to deviate to the middle point 1+x/4
of the interval between her belief and the opin-
ion of the rightmost player.

Now, let’s assume that x = 1. Then, clearly, the
middle player does not play in the middle of
the interval between her belief and her neigh-
bor’s opinion.

Quantifying inefficiency: definitions

• Given belief vector s, the social cost of opin-
ion vector z is

SC(z, s) =
∑
i

costi(z, s)

• Given k ≥ 1, the price of anarchy (PoA) is
the worst-case ratio, over all belief vectors s,
between the maximum social cost at equilib-
rium and the optimal social cost:

PoA = sup
s∈Rn

sup
z∈PNE(s)

SC(z, s)

SC(z∗(s), s)
,

where z∗(s) is an optimal opinion vector and
PNE(s) denotes the set of pure Nash equilib-
ria

• Similarly, the price of stability (PoS) is de-
fined as:

PoS = sup
s∈Rn

inf
z∈PNE(s)

SC(z, s)

SC(z∗(s), s)

PoA/PoS bounds
Theorem 2. The price of anarchy of
• 1-COF games over pure equilibria is exactly 3;

• k-COF games over pure equilibria is at most
4(k + 1) for any k ≥ 2, at least 18/5 for k = 2,
and at least k + 1 for k ≥ 3;

• k-COF games over mixed equilibria is at least 6
for k = 1, at least 24/5 for k = 2, and at least
k + 2 for k ≥ 3.

Theorem 3. The price of stability of k-COF games
is at least 17/15.

PoA lower bound for 1-COF games

Consider the following 6-player 1-COF game:
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A pure equilibrium with social cost 12. The
two leftmost (resp., rightmost) players have
each other as neighbor. The middle-left (resp.,
middle-right) player has a leftmost (resp.,
rightmost) player as neighbor.

−15 −3 3 15−9 9

The optimal state with social cost 4. Now, the
two middle players have each other as neigh-
bor.

−15 −3 3 15−1 1

The price of anarchy is at least 12/4 = 3.

Computing equilibria

Theorem 4. Deciding whether a 1-COF game has
a pure equilibrium can be done in polynomial time.
Furthermore, computing an equilibrium of highest
or lowest social cost can be done in polynomial time
as well.

The algorithm: main ideas

The main idea is to decompose an equilibrium
into legit segments. Consider, for example,
four players with indices from 1 to 4 and be-
lief vector (0, 9, 12, 21). Here is how the legit
segment C(1, 2, 4) looks like:

0 9 12 215 10 11 16

I.e., the first two players play to their right and
the other ones play to their left. The next fig-
ure depicts the legit segments C(1, 1, 2) and
C(3, 3, 4):

0 9 12 213 6 15 18

It can be seen that there are no other legit seg-
ments that have to be considered.

Now, the algorithm builds a directed graph
showing how segments can be connected.
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Source-sink paths correspond to equilibria.
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