
k-Attractors: A Partitional Clustering Algorithm for Numeric

Data Analysis

Y. Kanellopoulos*, P. Antonellis**, C. Tjortjis***, C. Makris**, N. Tsirakis**

*Software Improvement Group, 1070 NC

**Computer Engineering & Informatics Dept.University of Patras, 26500 Greece

***Dept. of Computer Science, University of Ioannina & Dept. Engineering Informatics and Telecommunications,

University of Western Macedonia, 50100 Greece

y.kanellopoulos@sig.nl

{adonel, makri, tsirakis}@ceid.upatras.gr

Christos.Tjortjis@manchester.ac.uk

k-Attractors: A novel clustering algorithm

Yiannis Kanellopoulos

Software Improvement Group

A.J. Ernststraat 595-H

Amsterdam, The Netherlands

1082 LD

Abstract

Clustering is a data analysis technique, particularly useful when there are many dimensions and little prior

information about the data. Partitional clustering algorithms are efficient, but suffer from sensitivity to the

initial partition and noise. We propose here k-Attractors, a partitional clustering algorithm tailored to

numeric data analysis. As a pre-processing (initialization) step, it employs maximal frequent itemset

discovery and partitioning to define the number of clusters k and the initial cluster “attractors”. During its

main phase the algorithm utilizes a distance measure, which is adapted with high precision to the way

initial attractors are determined. We applied k-Attractors as well as k-Means, EM and FarthestFirst

clustering algorithms to several datasets and compared results. Comparison favored k-Attractors in terms

of convergence speed and cluster formation quality in most cases, as it outperforms these 3 algorithms

except from cases of datasets with very small cardinality containing only a few frequent itemsets. On the

downside, its initialization phase adds an overhead that can be deemed acceptable only when it

contributes significantly to the algorithm’s accuracy.

1. Introduction

Clustering is a descriptive data mining task that aims to identify homogeneous groups of objects, based on

the values of their attributes. It is particularly useful in problems where there is little prior information

available about the data, and a minimum number of assumptions are required. Clustering is appropriate

for the exploration of interrelationships among the data points when assessing their structure (Jain et al.,

1999).

Clusters can be broadly created by employing either hierarchical or partitional algorithms. The former

organize data into a hierarchical structure based on a proximity matrix, the latter identify the partition that

optimizes, usually locally, a clustering criterion.

k-Means is a classic partitional clustering algorithm (Hartigan 1975). It represents each cluster with the

mean value of its objects. As a result, inter-cluster similarity is measured based on the distance between

the object and the mean value of the input data in a cluster. It is an iterative algorithm in which objects are

moved among clusters until a desired set is reached. Its main problems are that the users have to define

the number of clusters k, and that it is sensitive to the initial partitioning. That is, different initial

partitions, indicated by user input, lead to different results (Han, Kamber, 2001).

This paper presents a further elaborated version of k-Attractors, a partitional clustering algorithm

introduced in (Kanellopoulos et al. 2007), which has the following characteristics:

• It locates the initial attractors of cluster centers with high precision.

• The final number of the derived clusters is defined without user intervention, by using the

maximal frequent itemset discovery.

• It measures distance based on a composite metric that combines the Hamming distance and the

inner product of transactions and clusters’ attractors.

The k-Attractors algorithm can be employed for numeric data analysis and is based on the assumption that

such data demonstrate identifiable patterns. The most prevalent of these patterns, that is the initial centers

and the number of clusters, can form the basis for cluster analysis. For this reason we employ the frequent

itemsets discovery technique, which has the ability to extract such patterns from large datasets (Agarwal

and Srikant, 1994).

WEKA’s implementations of k-Means, EM and FarthestFirst algorithms (Witten, Frank, 2005) were used

in order to compare our algorithm in terms of performance (i.e. convergence speed) and accuracy (i.e.

quality clusters formation). The results are promising, as k-Attractors in its main phase, was faster and

formed more accurate (i.e. better quality) clusters than the above mentioned algorithms, in most cases.

The algorithm did not perform well in cases where the data did not exhibit a sufficient number of patterns

that could be captured. Also, the experiments showed that the initialization phase of k-Attractors adds an

overhead which can be acceptable only in the cases that it contributes significantly to algorithm’s

accuracy.

The remaining of the paper is organized as follows: section 2 presents a review of existing clustering

algorithms, section 3 discusses the background on clustering, association rules and related problems,

section 4 introduces our approach, section 5 details k-Attractors, section 6 presents experimental results

and section 7 concludes with directions for future work.

2. Clustering Algorithms Review

Various research works have been reported to deal with clustering algorithms. Zhuang and Dai H. present

a Maximal Frequent Itemset Approach for clustering web documents. Based on maximal frequent itemset

discovery, they propose an efficient way to precisely locate the initial points for the k-Means algorithm

(Hartigan 1975). Fung et al. (Fung, Wang, Ester, 2003) propose the Frequent Itemset-based Hierarchical

Clustering (FIHC) for document clustering. The intuition of this algorithm is that there are some frequent

itemsets for each cluster (topic) in the document set, and different clusters share few frequent itemsets.

Wang et al. (Wang, Xu, Liu, 1999) propose a similarity measure for a cluster of transactions based on the

notion of large items. Han et al. (Han et al., 1997) introduced Association Rules Hypergraph Partitioning

(ARHP) algorithm. It constructs a weighted hypergraph to represent the relationships among discovered

frequent itemsets. It aims to find k partitions such that the vertices in each partition are highly related.

Kosters et al. (Kosters et al., 1999) propose a method that employs association rules having high

confidence to construct a hierarchical sequence of clusters. The work of Li et al. (Li et al., 2007) discusses

an efficient method based on spectra analysis in order to effectively estimate the number of clusters in a

given data set.

The work of Jing et al. (Jing, Ng and Zhexue, 2007) provides a new clustering algorithm called EWKM

which is a k-means type subspace clustering algorithm for high-dimensional sparse data. Patrikainen and

Meila present a framework for comparing subspace clusterings (Patrikainen and Meila 2006), while

Cheng et al. introduce a new algorithm called dual clustering on two domains, the optimization and the

constraint domain (Lin et. al., 2005). This algorithm combines the information in both domains and

iteratively uses a clustering algorithm on the optimization domain and also a classification algorithm on

the constraint domain to reach the target clustering effectively.

Except from the algorithms described above, three of the most important clustering algorithms are k-

Means, EM and Farthest First (Jain et al., 1999), (Witten, Frank, 2005). They are characteristic,

commonly used clustering algorithms. Moreover, they are implemented in Weka 3 (Weka), an open

source data mining tool frequently used in the literature, thus facilitating experimental replication. Those

algorithms are extensively described in (Witten, Frank, 2005).

k-means is a classic iterative-based clustering algorithm. The user firstly specifies in advance how many

clusters are being sought: this is the parameter k. Then k points are chosen at random as clusters centers.

All instances are assigned to their closest cluster center according to the ordinary Euclidean distance

metric. Next the centroid, or mean, of the instances in each cluster is calculated. These centroids are taken

to be new center values for their respective clusters. Finally, the whole process is repeated with the new

cluster centers. Iteration continues until no more points change clusters, at which stage the cluster centers

are stable (Witten, Frank, 2005).

The EM (Expectation Maximization) clustering algorithm is based on a statistical model called finite

mixtures. A mixture is a set of k probability distributions, representing k clusters, that govern the attribute

values for members of that cluster. In other words, each distribution gives the probability that a particular

instance would have a certain set of attribute values if it was known to be a member of that cluster. Each

cluster has a different distribution. Finally, the clusters are not equally likely: there is some probability

distribution that reflects their relative populations. The problem is that we know neither the distribution

that each training instance came from, nor the parameters of the mixture model. For that reason, the EM

adopts the same procedure used for the k-means clustering algorithm and iterates. It starts with some

initial guesses for the parameters of the mixture model; it uses them to calculate the cluster probabilities

for each instance, and finally uses these probabilities to re-estimate the parameters and repeats (Witten,

Frank, 2005).

The FarthestFirst algorithm performs a farthest-first traversal over the dataset. Starting with an arbitrary

chosen point and adding it to the set, the algorithm picks that point in the dataset which is farthest away

from the current centroids and adds to X in each iteration.

At the end of k iterations, each point in X acts as a center for a stratum and the result of the algorithm is a

disjoint partitioning, obtained by assigning each point in the dataset to its nearest point in X (Witten,

Frank, 2005).

In section 6 we base our experiments on comparing k-Attractors with the three algorithms described

above. This facilitates repeatability of the experiments as Weka is an open source data mining suite.

3. Preliminaries

This section presents the main concepts that form the basis for k-Attractors. More specifically, we present

the concepts of the frequent itemsets discovery and their subsequent graph construction and partitioning.

These two techniques help creating the initial attractors and defining the maximum number k of the

derived clusters.

k-Attractors Algorithm

/*Input Parameters*/

Support: s

Hamming distance power: h

Inner product power: i

Given a set of m data items
1 2
, , ,

m
t t tK

/*Initialization Phase*/

(1) Generate frequent itemsets using the APriori Algorithm;

(2) Construct the itemset graph and partition it using the confidence similarity criteria related to the

support of these itemsets;

(3) Use the number of partitions as the final k;

(4) Select the maximal frequent itemset of every cluster in order to form a set of k initial attractors;

/*Main Phase*/

Repeat

(6) Assign each data item to the cluster that has the minimum ()
i j

Score C t! ;

(7) When all data items have been assigned, recalculate the new attractors;

 Until
i
t don’t_move

(8) Search all clusters to find outliers and group them in a new cluster

Figure 1 - k-Attractors overview

3.1 Frequent Itemsets Discovery– Apriori Algorithm

A frequent itemset is a set of items that appear together in more than a minimum fraction of the whole

dataset.

More specifically let J be a set of quantitative data. Any subset I of J is called an itemset. Let T =

<t1,...,tn> be a sequence of itemsets called a transaction database. Its elements t ϵ T will be called itemsets

or transactions.

An itemset can be frequent if its support is greater than a minimum support threshold, denoted as

min_sup. The support of an item X in T denoted as min_sup T(X) is the number of transactions in T that

contain X. The term frequent item refers to an item that belongs to a frequent itemset. If now, an item X is

frequent and no superset of X is frequent, then X is a maximally frequent itemset; and we denote the set

of all maximally frequent itemsets by MFI. From these definitions it is easy to see that the following

relationship holds MFI FI, where FI is the set of the most frequent itemsets. Apriori, the well known

association rule mining algorithm, was used in order to discover frequent itemsets (Agarwal and Srikant,

1994). According to (Bodon, 2005) the Apriori’s moderate traversal of a data search space is the most

suitable when mining very large databases. Apriori scans the transaction dataset several times. After the

first scan, the frequent items are found, and in general after the lth scan, the frequent item sequences of

size l (we call them l-sequences) are extracted. The method does not determine the support of every

possible sequence. In an attempt to narrow the domain to be searched, before every pass it generates

candidate sequences. A sequence becomes a candidate if every subsequence of it is frequent. Obviously

every frequent sequence is a candidate too; hence it is enough to calculate the support of candidates.

Frequent l-sequences generate the candidate (l + 1)-sequences after the lth scan. Candidates are generated

in two steps. First, pairs of l-sequences are found, where the elements of the pairs have the same prefix of

size l−1. Here we denote the elements of such a pair with <i1, i2,..., il−1, il> and <i1, i2,..., il−1, i’l>.

Depending on items il and i’l we generate one or two potential candidates. If il <> il’ then they are <i1,

i2,..., il−1, il, i‘l> and <i1, i2,..., il−1, i‘l, il>, otherwise it is <i1, i2,..., il−1, il, il> (Manilla et. al. 1995). In

the second step the l-subsequences of the potential candidate are checked. If all subsequences are

frequent, it becomes a candidate. As soon as the candidate (l + 1)-sequences have been generated, a new

scan of the transactions is started and the precise support of the candidates is determined. This is done by

reading the transactions one-by-one. For each transaction t the algorithm decides which candidates are

contained by t. After the last transaction is processed, the candidates with support below the support

threshold are thrown away. The algorithm ends when no new candidates are generated.

3.2 Frequent Itemsets Graph Partitioning – kMetis Algorithm

The discovered frequent itemsets often reveal hidden relationships and correlations among data items. By

constructing and partitioning a weighted hypergraph from those itemsets, using similarity (i.e. based on

hyperdges’ weights) criteria related to the confidence of their association rules, we can reduce their size

by eliminating those that are not similar.

A hypergraph H = (V, E) consists of a set of vertices (V) and a set of hyperedges (E). A hypergraph is an

extension of a graph in the sense that each hyperedge can connect more than two vertices. In this work,

the vertex set corresponds to the distinct items in the database and the hyperedges correspond to the

frequent itemsets. For example, if {A B C} is a frequent item-set, then the hypergraph contains a

hyperedge that connects A, B, and C. The weight of a hyperedge is determined by a function of the

confidences for all the association rules involving all the items of the hyperedge.

The kMetis algorithm (Karypis and Kumar, 1998) has a very simple structure. The graph G = (V, E) is

first coarsened down to a small number of vertices, a k-way partitioning of this much smaller graph is

computed, and then this partitioning is projected back, towards the original graph (finer graph) by

successively refining the partitioning at each intermediate level.

4. Our approach

In this research work we propose a partitional algorithm that utilizes a preprocessing method for its initial

partitioning and incorporates a distance measure adapted to the way initial attractors are determined by

this method.

More specifically, k-Attractors employs the maximal frequent itemset discovery and partitioning,

similarly to (Zhuang, Dai, 2004), (Han et al., 1997). However, k-Attractors is different as it is not used in

the context of document clustering. It is applied to numeric data that are expected to demonstrate patterns

that can be identified by the maximal frequent itemsets discovery technique. The discovered frequent

itemsets often reveal hidden relationships and correlations among data items. By constructing and

partitioning a weighted hypergraph from those itemsets, using similarity criteria (based on the weights of

hyperedges) related to the confidence of their association rules, their size can be reduced by eliminating

those that are not interesting (i.e. their support is below a certain threshold). The final set of rules will be

used in order to define the final number of clusters and the initial attractors of their centers. The intuition

in k-Attractors is that a frequent itemset is a set of measurements that occur together in a minimum part of

a dataset. Transactions with similar measurements are expected to be in the same cluster. The term

attractor is used instead of centroid, as it is not determined randomly, but is determined by its frequency

in the whole population of a given dataset.

An important characteristic of k-Attractors is that it proposes a distance measure which is adapted to the

way the initial attractors are determined by the preprocessing method. Hence, it is primarily based on the

comparison of frequent itemsets. More specifically, a composite metric based on the Hamming distance

and the dot (inner) product between each transaction and the attractors of each cluster is utilized.

The Hamming distance is given by the number of positions that a pair of strings differ from each other.

Put another way, it measures the number of substitutions required to transform the one string to the other.

In this work we consider a string as a set of data items, and more specifically as a vector of numeric data.

Furthermore, the dot product of two vectors is a measure of the angle and the orthogonality of two

vectors. It is used in order to compensate for the position of both vectors in the Euclidean space (Kosters

et al., 1999).

5. Algorithm Description

This section details the basic steps of k-Attractors along with some examples.

5.1 Overview

The two basic phases of k-Attractors are:

• Initialization phase:

o The first step of this phase generates frequent itemsets using the APriori algorithm. The

derived frequent itemsets are used to construct the itemset graph, and kMetis, a graph

partitioning algorithm, is used to find the maximum number of the desired clusters and to

assign each frequent itemset to the appropriate cluster.

o As soon as the maximum number of the desired clusters k is determined, we select the

maximal frequent itemsets from every cluster, forming a set of k frequent itemsets as the

initial attractors.

• Main phase:

o As soon as the attractors are found, we assign each transaction to the cluster that has the

minimum distance against its attractor.

o When all transactions have been assigned to clusters we recalculate the attractors for each

cluster, in the same way as in the initialization phase.

Figure 1 illustrates an overview of k-Attractors. We detail its two phases next.

5.2 Initialization Phase

The goal of the initialization phase is two-fold: firstly to identify the most frequent itemsets of the input

data and secondly to determine the number of clusters.

In order for the most frequent itemsets to be discovered, we apply the APriori algorithm against the input

data file. The APriori algorithm takes as input the absolute support s of the required itemsets and returns

all the one-dimensional and multi-dimensional itemsets with support greater than or equal to s . The value

of s is defined empirically by an expert user, based on the statistical characteristics of the dataset under

consideration.

Once the most frequent itemsets have been discovered, we form the itemset graph. Given the set of the

most frequent itemsets 1 2{ , , }mFI fi fi fi= K , the itemset graph is a graph (,)G V E , where { }iV fi FI= !

and { }ij i jE e fi fi= ! "#
. The intuition behind this graph is that if two itemsets have at least one

common item, then they should possibly belong to the same cluster and thus we connect them with an

edge in the itemset graph. For more accuracy, we could have weighted each edge with the number of

common items between the two corresponding itemsets/vertices, but in order to keep the initialization

phase as simple and fast as possible we decided not to weigh the edges.

Figure 2 demonstrates an example of the itemset graph’s construction.

In the next step we apply a graph partitioning algorithm to the itemset graph. In our case, we utilized the

kMetis algorithm in order to partition the itemset graph (Han et al., 1997). kMetis partitions the itemset

graph into a number of distinct partitions and assigns each vertex of the graph (i.e. each itemset) to a

single partition.

The final number of the derived partitions is the number of clusters that we use in the main phase of the k-

Attractors algorithm.

Itemsets

1. (13, 21, 2, 56)

2. (7, 21, 31, 12)

3. (9, 34, 2, 12)

4. (9, 22, 5, 54)

Itemset graph

1

2 3

4

Figure 2. Itemset graph example

The final step of the initialization phase is the attractors’ discovery. During this step, every previously

determined graph partition is examined. In (Kanellopoulos et al. 2007) the procedure for discovering the

initial attractors is summarised. For each partition we find the maximal frequent itemset MI belonging to

this partition, and check the cardinality of its dimensions. If the number of dimensions is equal to the

input data items’ number of dimensions n, then we assign the corresponding itemset as the attractor of the

corresponding partition. However, in most cases, the cardinality of the maximal itemset is less than n. In

such cases, we search for the next maximal frequent itemset NI in the corresponding partition and merge

it with the previous itemset MI. Merging occurs only in dimensions that are absent from the first maximal

itemset MI. We repeat this procedure until we have formed an itemset with cardinality equal to n, and

assign the formed itemset as attractor of the corresponding partition.

Find maximal frequent

itemset MI

Cardinality (MI) == n

Set attractor = MI

Find next maximal

frequent itemset NI

No
Merge MI with

NI

Yes

Figure 3 Attractors discovery

In order to provide more flexibility, k-Attractors performs a post-processing step against the previously

determined attractors. The algorithm defines a threshold, called attractor similarity ratio, r. This threshold

defines the maximum allowed similarity between two different attractors. After several experiments for

calibrating k-Attractors we use 0.8 as the default value for r. The similarity between two attractors 1 2
,a a

is defined as follows:

1 2
1 2

#()
(,)

a a
sim a a

n

!
=

(1)

In other words, the similarity between two attractors is the ratio of the number of common items divided

by the number of total dimensions.

If the similarity of two attractors is more than r, then we randomly discard one of the two attractors; thus

the number of total partitions is decreased by one.

It has to be noted that the initialization phase adds a significant overhead to the overall algorithm’s

performance. The reason for this is the combination of the APriori and kMetis algorithms for the

extraction of frequent itemsets and their partitioning, respectively. As long as it contributes significantly

to the algorithm’s accuracy comparing to other algorithms this overhead is not considered a disadvantage.

5.3 Main Phase

The goal of k-Attractor’s main phase is to assign each input data item to a cluster, using a partitional

approach.

At first, we form a set of k empty clusters, where k is the number of distinct graph partitions discovered

during the initialization phase. Every formed cluster is then assigned to the corresponding attractor

calculated in the previous phase.

Once the clusters have been formed, the main phase of k-Attractors begins. This phase resembles a

partitional algorithm, where every data item is assigned to a cluster according to a predefined distance

metric and in every step the centers of every cluster are re-calculated until the algorithm converges to a

stable state where the clusters’ centers do not change.

The k-Attractors algorithm utilizes a hybrid distance metric based on vector representation of both the

data items and the cluster’s attractors. The distance of these vectors is measured employing the following

composite distance metric:

() () ()1 1
* , *i j i j n nScore C t h H a t i a t a t! = + +K (2)

In this formula, the first term is the Hamming distance between the attractor
i
a and the data item

j
t . It is

given by the number of positions that a pair of strings is different and is defined as follows:

() (), #
i j i j

H a t n a t= ! "
 (3)

As our algorithm is primarily based on itemset similarity, we want to measure the number of substitutions

required to change one itemset into another. The second term is the dot (inner) product between this data

item and the attractor i
a . It is used in order to compensate for the position of both vectors in the

Euclidean space (Kosters et al., 1999).

The multipliers ,h i in equation (2) define the metric’s sensitivity to Hamming distance and inner product

respectively. For example, 0i = would indicate that the composite metric is insensitive to the inner

product between the data item and the cluster’s centroid. Both h and i are taken as input parameters in our

algorithm during its execution. Thus, k-Attractors provides the flexibility of changing the sensitivity of

the composite distance metric to both Hamming distance and inner product.

Utilizing this distance metric, k-Attractors assigns every data item to a single cluster and recalculates the

attractors for every cluster. Recalculation includes finding the data item in a cluster that minimizes the

total sum of distances between the other data items belonging to that cluster. The above procedure is

repeated until the attractors of all clusters do not change any further.

The final step of the k-Attractors’ main phase involves outlier handling. During this step, every cluster is

checked for outliers, according to a threshold d. Specifically, a data item t , belonging to cluster i, is

considered an outlier if:

() ()(), ,
i i i j

Score a t d avg Score a t>= ! (4)

where ()(),
i i j

avg Score a t is the average distance between the data items of cluster i and the attractor
i
a .

Dataset # Items # Classes

Iris 150 3

Wisconsin Breast Cancer 699 2

Vehicle 946 4

Haberman Surgery 306 2

Software Measurement Data 50 4

Table 1: Characteristics of the employed datasets

The discovered outliers of all clusters are grouped into a new cluster, called outliers cluster, thus the total

number of formed clusters is k+1.

6. Experimental Results

6.1 Datasets used

The evaluation of the proposed clustering algorithm involved two main experiments that were performed

in a Pentium M 2.0 GHz machine with 1GByte RAM. The scope of those experiments was the

comparison of k-Attractors with the set of clustering algorithms contained in WEKA 3 (Weka), the Java

open source data mining tool. In particular, we compared k-Attractors with the clustering algorithms

described in Section 2: k-Means, EM and FarthestFirst.

The datasets used in our experiments were the Iris dataset (Orange), the Wisconsin Breast Cancer dataset

(Orange), the Vehicle dataset (Orange), the Haberman Surgery dataset (Machine Learning Datasets) and

an industrial software measurement dataset derived from parsing a fragment of System2, a large logistics

system implemented in Java (6782 classes). This last dataset consisted of a set of 10 calculated software

metrics for 50 java classes of the parsed system.

The main characteristics of the employed datasets are summarized in Table 1.

6.2 k-Attractors evaluation

The purpose of our experiments was to evaluate k-Attractors against the clustering algorithms contained

in WEKA 3: k-Means, EM and FarthestFirst. For that reason, we used 5 datasets for which there is

previous knowledge of data item classification.

For our experiments, we used the recall, precision and F-measure external metrics in order to evaluate the

accuracy (quality) of the clusters formed by k-Attractors, k-Means, EM and FarthestFirst for every

utilized dataset. Precision, recall and F-measure are external cluster quality metrics based on the

comparison of the formed clusters to previously known external classes (e.g. different domains). Given a

class j
Z of data items with a number j

n of items and a cluster i
C , formed by a clustering algorithm,

with i
n items, let

j

i
n be the number of items in belonging to . Then, the precision, recall and F-

measure are defined as follows:

i
precision(C ,)

j
i

j
i

n
Z

n
=

 (5)

i
recall(C ,)

j
i

j
j

n
Z

n
=

 (6)

i i
i

i i

precision(C ,) recall(C ,)
F-measure(C ,)

precision(C ,) recall(C ,)
j j

j
j j

Z Z
Z

Z Z

!
=

+ (7)

k-Attractors k-Means
Cluster Popul.

Precision Recall F-measure Precision Recall F-measure
1 458 0,98 0,97 0,98 0,96 0,92 0,94
2 241 0,95 0,97 0,96 0,96 0,98 0,97
 Weighted F-measure 0,97 Weighted F-measure 0,95
 Iterations 4 Iterations 5

Table 2. Breast cancer experimental results (k-Attractors and k-Means)

EM FarthestFirst
Cluster Popul.

Precision Recall F-measure Precision Recall F-measure
1 458 1,00 0,92 0,96 0,96 0,93 0,94
2 241 0,87 1,00 0,93 0,96 0,98 0,97
 Weighted F-measure 0,92 Weighted F-measure 0,95

Table 3. Breast cancer experimental (EM and FarthestFirst)

k-Attractors k-Means
Cluster Popul.

Precision Recall F-measure Precision Recall F-measure
1 50 0.98 1.00 0.99 0,77 0.94 0.85
2 50 0.92 0.68 0.78 1.00 1.00 1.00
3 50 0.76 0.94 0.84 0.92 0.72 0.81
 Average F-measure 0.87 Average F-measure 0.89
 Iterations 20 Iterations 4

Table 4. Iris experimental results (k-Attractors and k-Means)

 20

EM FarthestFirst
Cluster Popul.

Precision Recall F-measure Precision Recall F-measure
1 50 0,78 0,90 0,88 0,85 0,70 0,77
2 50 1,0 1,0 1,0 1,0 1,0 1,0
3 50 1,0 0,72 0,84 0,75 0,88 0,81
 Weighted F-measure 0,90 Weighted F-measure 0,86

Table 5. Iris experimental results (EM and FarthestFirst)

k-Attractors k-Means
Cluster Popul.

Precision Recall F-measure Precision Recall F-measure
1 240 0.43 0.35 0.38 0.41 0.47 0.44
2 240 0.59 0.52 0.55 0.42 0.33 0.37
3 240 0.37 0.38 0.38 0.23 0.21 0.22
4 226 0.36 0.45 0.40 0.42 0.49 0.45
 Weighted F-measure 0,43 Weighted F-measure 0,37
 Iterations 2 Iterations 8

Table 6. Vehicle experimental results (k-Attractors and k-Means)

EM FarthestFirst
Cluster Popul.

Precision Recall F-measure Precision Recall F-measure
1 240 0,41 0,47 0,44 0,27 0,77 0,39
2 240 0,42 0,33 0,33 0,49 0,21 0,29
3 240 0,23 0,21 0,21 0,33 0,01 0,02
4 226 0,42 0,49 0,49 0,35 0,21 0,26
 Weighted F-measure 0,37 Weighted F-measure 0,24

Table 7. Vehicle experimental results (EM and FarthestFirst)

k-Attractors k-Means
Cluster Popul.

Precision Recall F-measure Precision Recall F-measure
1 225 0,56 0,77 0,65 0,28 0,57 0,37
2 81 0,91 0,78 0,84 0,75 0,47 0,58
 Weighted F-measure 0,69 Weighted F-measure 0,43
 Iterations 2 Iterations 6

Table 8. Haberman Surgery experimental results (k-Attractors and k-Means)

 21

EM FarthestFirst
Cluster Popul.

Precision Recall F-measure Precision Recall F-measure
1 225 0,42 0,67 0,51 0,74 0,98 0,84
2 81 0,85 0,67 0,75 0,33 0,02 0,05
 Weighted F-measure 0,57 Weighted F-measure 0,63

Table 9. Haberman Surgery experimental results (EM and FarthestFirst)

k-Attractors k-Means
Cluster Popul.

Precision Recall F-measure Precision Recall F-measure
1 35 0.88 0.97 0.92 0.80 0.65 0.72
2 9 0.88 0.80 0.84 0.15 0.50 0.23
3 4 0.66 0.66 0.66 1.00 0.70 0.82
4 2 0.50 0.25 0.33 0.00 0.00 0.00
 Weighted F-measure 0,85 Average F-measure 0,60

Table 10. Software measurement data experimental results

In order to properly measure the total quality of the formed clusters by every clustering algorithm, we

calculated the weighted F-measure for the clusters formed by every clustering algorithm in each dataset

and compared the resulted weighted F-measures. The weighted F-measure of a clustering algorithm in a

dataset is defined as follows:

1
()

k

i ii
n F

WF
n

=
!

=
"

 (8)

where i
F denotes the F-measure for the i-th cluster and i

n denotes the number of items in the i-th cluster.

Additionally, for every dataset used, we measure the number of iterations required by k-Attractors’s main

phase and k-Means in order for the clusters to converge into a stable state. As every iteration in k-

Attractors’s main phase and k-Means has a complexity of O(n) we can compare the performance of the

two algorithms by comparing the number of iterations performed. The more the required iterations, the

 22

longer the clustering process lasts. However, because EM and FarthestFirst are not partitional clustering

algorithms, we did not compare k-Attractors with them in terms of performance (i.e. converge speed).

Table 2 and Table 3 present the experimental results for the Breast Cancer dataset. As it can easily be

seen, k-Attractors in its main phase performs slightly better than k-Means and FarthestFirst (weighted F-

measure 0.97 regarding the weighted F-measure 0.95 of k-Means and FarthestFirst) and much better than

EM. Additionally, it requires one less iteration (4 iterations regarding the 5 iterations of k-Means). Thus,

regarding the Breast Cancer dataset, k-Attractors is better compared to the other 3 clustering algorithms in

terms of both accuracy and performance.

Table 4 and Table 5 present the experimental results for the Iris dataset. It can be seen that k-Attractors in

its main phase performs slightly worse than k-Means and EM (weighted F-measure 0.87 regarding the

weighted F-measure 0.89 of k-Means and 0.90 of EM) and slightly better than FarthestFirst. In addition,

the main phase of k-Attractors requires 20 iterations regarding the 4 iterations required by k-Means until

it converges. This is due to the fact that the Iris dataset contains only a few frequent itemsets, with very

small cardinality. Hence, k-Attractors cannot utilize those frequent itemsets in order to form the initial

attractors for the clustering process. k-Attractors utilizes the statistical mean to approximate the value of

each attribute in the initial attractors instead. This approach leads to the fact that the initial attractors are

very similar to each other, because most of their attributes have the same value and as a result the

performance of k-Attractors is relatively poor.

Table 6 and Table 7 present the experimental results for the Vehicle dataset. As it can easily be seen, k-

Attractors in its main phase performs better than the other clustering algorithms (weighted F-measure

0.43 regarding the weighted F-measure 0.37 of k-Means, 0.37 of EM and 0.24 of FarthestFirst).

Additionally, k-Attractors requires only 2 iterations compared to the 8 iterations required by k-Means.

This is due to the fact, that the Vehicle dataset contains enough frequent itemsets in order for the initial

attractors to be calculated right, thus k-Attractors in its main phase performs better than the other

clustering algorithms both in accuracy and time performance.

 23

Table 8 and Table 9 present the experimental results for the Haberman surgery dataset. As it can be seen,

k-Attractors in its main phase performs better than the other 3 algorithms and requires only 2 iterations

while k-Means requires 6 iterations. This performance boost comes from the fact that the range of

attribute values in this dataset is relatively small (varies between 1 and 5), thus there exist a lot of frequent

itemsets in order to efficiently calculate the initial attractors for the k-Attractors algorithm.

Table 10 shows that k-Attractors’ clusters are closer to the domain expert’s clusters. k-Attractors achieves

a weighted 0.85 F-measure, while k-Means achieves a weighted 0.60 F-measure. Especially, regarding the

two largest clusters (cluster 1 and cluster 2), the corresponding calculated F-measure is very high and

better than the two corresponding k-Means clusters. Considering now, the smallest cluster in k-Attractors

(cluster 4) and k-Means (cluster 4), these clusters correspond to the domain expert’s outlier cluster. It is

obvious that k-Attractors approximates the domain expert’s cluster because of the application of the

outlier handling phase. k-Means lacks such a phase, thus the recall, precision and f-measure of the

corresponding cluster are both 0.

Hence, the experimental results show that k-Attractors forms more accurate (better quality) clusters, in

terms of higher F-Measure, than k-Means, approximating the domain expert’s manually created clusters.

This can be explained by the fact that software measurement data are expected to demonstrate specific

behavior and not random patterns or trends as in software development projects programmers follow

certain specifications, design guidelines and code-styles. Thus, this type of data usually contains frequent

common itemsets which can be captured during k-Attractors’s initial phase leading to more accurate

results (Kanellopoulos et al. 2007).

6.3 Discussion

We conducted a series of experiments in order to compare k-Attractors with kMeans, EM and

FarthestFirst clustering algorithms. The results are promising as in most cases k-Attractors, in its main

 24

phase, performs better than the other clustering algorithms both in performance (converge-speed) and in

accuracy (quality of the formed clusters). This efficiency of k-Attractors is a result of the calculation of

the approximate initial attractors for each formed cluster during the initialization phase. However, this

phase adds a significant overhead to the overall algorithm’s performance but as long as it contributes

significantly to its accuracy this overhead is considered justifiable.

K-Attractors performed worse on the Iris dataset compared to k-Means, EM and FarthestFirst in terms of

performance and accuracy. This result was due to the fact that the Iris dataset contains only a few frequent

itemsets with very small cardinality. Hence, k-Attractors could not utilize those frequent itemsets in order

to form the initial attractors for the clustering process and was outperformed by the other clustering

algorithms. As mentioned in section 5.2, in case of few discovered frequent itemsets, k-Attractors utilises

the statistical mean of every dimension in order to calculate the attractors. Thus the formed attractors are

very similar to each other resulting in poor performance. It would be interesting to utilise a more

sophisticated statistical measurement in order to approximate the missing dimensions and test whether

this improves the performance of k-Attractors.

7. Conclusions and Future Work

The aim of this work was the development of a new partitional clustering algorithm, k-Attractors, tailored

to numeric data analysis, overcoming the weaknesses of other partitional algorithms.

The initialization phase of the proposed algorithm involves a preprocessing step which calculates the

initial partitions for k-Attractors. During this phase, the exact number of k-Attractors clusters was

calculated in addition with the initial attractors of each cluster. Thus the problems of defining the number

of clusters and initializing the centroids of each cluster are resolved. In addition, the constructed initial

attractors approximate the real clusters’ attractors, improving that way the convergence speed of the

proposed algorithm.

 25

The main phase of k-Attractors forms clusters employing a composite distance metric which utilises the

Hamming distance and the inner product of data item vector representations. Thus, the employed metric is

adapted to the way the initial attractors are determined by the preprocessing step.

The last step deals with outliers and is based on the distance between a data item and its cluster’s

attractor. The discovered outliers are grouped into a separate cluster.

The results from the conducted experiments are promising, as k-Attractors’ main phase outperformed in

performance and accuracy the other algorithms in most of the cases. This is attributed to its initialization

phase which however adds an overhead which is deemed acceptable when it contributes significantly to

algorithm’s accuracy.

For this reason we plan on improving the way the initial attractors are derived in order to minimize the

cost of the initialization phase. We could also attempt to customise the proposed distance metric in order

to adapt it to categorical semantics thus making it applicable to categorical datasets.

Acknowledgements

This research work has been partially supported by the Greek General Secretariat for Research and

Technology (GSRT) and Dynacomp S.A. within the program “P.E.P. of Western Greece Act 3.4”. We

would also like to thank Rob van der Leek, Patrick Duin and Harro Stokman from the Software

Improvement Group for their valuable comments and feedback concerning our clustering results.

References

[1] (Agarwal and Srikant, 1994) Agarwal R, and Srikant R. 1994. Fast Algorithms for Mining

Association Rules in Large Databases, In Proceedings of 20th International Conference VLDB pp.

487-499.

[2] (Bodon, 2005) Bodon F. 2005. A Trie-based APRIORI Implementation for Mining Frequent Item

sequences, OSDM.

 26

[3] (Fung, Wang, Ester, 2003) Fung B.C.M., Wang K., Ester M. 2003. Hierarchical Document

Clustering Using Frequent Itemsets, In Proceedings of the 3rd SIAM International Conference on

Data Mining.

[4] (Han, Kamber, 2001) Han J. and Kamber M., 2001, Data Mining: Concepts and Techniques,

Academic Press.

[5] (Han et al., 1997) Han E.H, Karypis G., Kumar V., Mobasher B. 1997, Clustering Based on

Association Rule Hypergraphs, In Research Issues on Data Mining and Knowledge Discovery.

[6] (Hartigan 1975) Hartigan J. A. 1975, Clustering Algorithms. John Wiley & Sons, New York, NY.

[7] (Jain et al., 1999) Jain A.K., Murty M.N., and Flynn P.J., 1999, Data Clustering: A Review, ACM

Computing Surveys, ACM, Vol. 31, No 3, September 1999, pp. 264-323.

[8] (Jing, Ng and Zhexue, 2007) Jing L., Ng M.K., Zhexue J, 2007. An Entropy Weighting k-Means

Algorithm for Subspace Clustering of High-Dimensional Sparse Data, IEEE Transactions on

Knowledge and Data Engineering, Vol. 19, No. 8, pp. 1026-1041.

[9] (Kanellopoulos et al. 2007) Kanellopoulos Y., Antonellis P., Tjortjis C., Makris C., 2007, k-

Attractors, A Clustering Algorithm for Software Measurement Data Analysis, In Proceedings of

IEEE 19th International Conference on Tools for Artificial Intelligence (ICTAI 2007), IEEE

Computer Society Press.

[10] (Karypis and Kumar, 1998) Karypis G. and Kumar V., 1998, Multilevel k-way partitioning scheme

for irregular graphs. Journal of Parallel and Distributed Computing, Vol. 48, No. 1, pp. 96–129.

[11] (Kosters et al., 1999) Kosters W.A., Marchiori E. and. Oerlemans A.A.J. 1999. Mining Clusters

with Association Rules, The Third Symposium on in Intelligent Data Analysis (IDA99), pp: 39-50,

Lecture Notes in Computer Science 1642, Springer.

[12] (Li et al., 2007) Li W., Ng W.-K, Liu Y. and Ong K.-L., 2007, Enhancing the Effectiveness of

Clustering with Spectra Analysis, IEEE Transactions on Knowledge and Data Engineering. Vol.

17, No. 7, pp. 887-902.

 27

[13] (Lin et. al., 2005) Lin C.-R., Liu K.-H., Chen M.-S. 2005. Dual Clustering: Integrating Data

Clustering over Optimization and Constraint Domains. IEEE Transactions on Knowledge and Data

Engineering. Vol. 17, no.5, pp. 628-637.

[14] (Manilla et. al. 1995) Manilla H., Toivonen H., and Verkamo A.I., 1995, Discovering frequent

episodes in sequences, In Proceedings of the First International Conference on Knowledge

Discovery and Data Mining, pages 210-215, AAAI Press.

[15] (Patrikainen and Meila 2006) Patrikainen A., Meila M. 2006. Comparing Subspace Clusterings,

IEEE Transactions on Knowledge and Data Engineering, Vol.18, no.7, pp. 902-916.

[16] (Wang, Xu, Liu, 1999) Wang K., Xu C., Liu B., 1999, Clustering Transactions Using Large Items,

In Proceedings of the 8th ACM International Conference on Information and Knowledge

Management, pp.483-490.

[17] (Witten, Frank, 2005) Witten I.H., Frank E. 2005 Data Mining: Practical Machine Learning Tools

and Techniques (Second Edition). San Francisco: Morgan Kaufmann.

[18] (Zhuang, Dai, 2004) Zhuang L., Dai H. 2004. A Maximal Frequent Itemset Approach for Web

Document Clustering, In Proceedings of the 4th IEEE International Conference on Computer and

Information Technology (IEEE CIT’04).

[19] (Orange) Orange, http://www.ailab.si/orange/datasets.asp

[20] (Weka) Weka, http://www.cs.waikato.ac.nz/ml/weka/

[21] (Machine Learning Datasets) Machine Learning Datasets, http://mlearn.ics.uci.edu/

