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Abstract 

Clustering is a data analysis technique, particularly useful when there are many dimensions and little prior 

information about the data. Partitional clustering algorithms are efficient, but suffer from sensitivity to the 

initial partition and noise. We propose here k-Attractors, a partitional clustering algorithm tailored to 

numeric data analysis. As a pre-processing (initialization) step, it employs maximal frequent itemset 

discovery and partitioning to define the number of clusters k and the initial cluster “attractors”. During its 

main phase the algorithm utilizes a distance measure, which is adapted with high precision to the way 

initial attractors are determined. We applied k-Attractors as well as k-Means, EM and FarthestFirst 

clustering algorithms to several datasets and compared results. Comparison favored k-Attractors in terms 

of convergence speed and cluster formation quality in most cases, as it outperforms these 3 algorithms 

except from cases of datasets with very small cardinality containing only a few frequent itemsets. On the 

downside, its initialization phase adds an overhead that can be deemed acceptable only when it 

contributes significantly to the algorithm’s accuracy. 

 

1. Introduction 

 

Clustering is a descriptive data mining task that aims to identify homogeneous groups of objects, based on 

the values of their attributes. It is particularly useful in problems where there is little prior information 

available about the data, and a minimum number of assumptions are required. Clustering is appropriate 

for the exploration of interrelationships among the data points when assessing their structure (Jain et al., 

1999). 



Clusters can be broadly created by employing either hierarchical or partitional algorithms. The former 

organize data into a hierarchical structure based on a proximity matrix, the latter identify the partition that 

optimizes, usually locally, a clustering criterion. 

k-Means is a classic partitional clustering algorithm (Hartigan 1975). It represents each cluster with the 

mean value of its objects. As a result, inter-cluster similarity is measured based on the distance between 

the object and the mean value of the input data in a cluster. It is an iterative algorithm in which objects are 

moved among clusters until a desired set is reached. Its main problems are that the users have to define 

the number of clusters k, and that it is sensitive to the initial partitioning. That is, different initial 

partitions, indicated by user input, lead to different results (Han, Kamber, 2001). 

This paper presents a further elaborated version of k-Attractors, a partitional clustering algorithm 

introduced in (Kanellopoulos et al. 2007), which has the following characteristics: 

•  It locates the initial attractors of cluster centers with high precision. 

• The final number of the derived clusters is defined without user intervention, by using the 

maximal frequent itemset discovery. 

•  It measures distance based on a composite metric that combines the Hamming distance and the 

inner product of transactions and clusters’ attractors. 

The k-Attractors algorithm can be employed for numeric data analysis and is based on the assumption that 

such data demonstrate identifiable patterns. The most prevalent of these patterns, that is the initial centers 

and the number of clusters, can form the basis for cluster analysis. For this reason we employ the frequent 

itemsets discovery technique, which has the ability to extract such patterns from large datasets (Agarwal 

and Srikant, 1994). 

WEKA’s implementations of k-Means, EM and FarthestFirst algorithms (Witten, Frank, 2005) were used 

in order to compare our algorithm in terms of performance (i.e. convergence speed) and accuracy (i.e. 

quality clusters formation). The results are promising, as k-Attractors in its main phase, was faster and 



formed more accurate (i.e. better quality) clusters than the above mentioned algorithms, in most cases. 

The algorithm did not perform well in cases where the data did not exhibit a sufficient number of patterns 

that could be captured. Also, the experiments showed that the initialization phase of k-Attractors adds an 

overhead which can be acceptable only in the cases that it contributes significantly to algorithm’s 

accuracy. 

The remaining of the paper is organized as follows: section 2 presents a review of existing clustering 

algorithms, section 3 discusses the background on clustering, association rules and related problems, 

section 4 introduces our approach, section 5 details k-Attractors, section 6 presents experimental results 

and section 7 concludes with directions for future work. 

2. Clustering Algorithms Review 

 

Various research works have been reported to deal with clustering algorithms. Zhuang and Dai H. present 

a Maximal Frequent Itemset Approach for clustering web documents. Based on maximal frequent itemset 

discovery, they propose an efficient way to precisely locate the initial points for the k-Means algorithm 

(Hartigan 1975). Fung et al. (Fung, Wang, Ester, 2003) propose the Frequent Itemset-based Hierarchical 

Clustering (FIHC) for document clustering. The intuition of this algorithm is that there are some frequent 

itemsets for each cluster (topic) in the document set, and different clusters share few frequent itemsets. 

Wang et al. (Wang, Xu, Liu, 1999) propose a similarity measure for a cluster of transactions based on the 

notion of large items. Han et al. (Han et al., 1997) introduced Association Rules Hypergraph Partitioning 

(ARHP) algorithm. It constructs a weighted hypergraph to represent the relationships among discovered 

frequent itemsets. It aims to find k partitions such that the vertices in each partition are highly related. 

Kosters et al. (Kosters et al., 1999) propose a method that employs association rules having high 

confidence to construct a hierarchical sequence of clusters. The work of Li et al. (Li et al., 2007) discusses 



an efficient method based on spectra analysis in order to effectively estimate the number of clusters in a 

given data set. 

The work of Jing et al. (Jing, Ng and Zhexue, 2007) provides a new clustering algorithm called EWKM 

which is a k-means type subspace clustering algorithm for high-dimensional sparse data. Patrikainen and 

Meila present a framework for comparing subspace clusterings (Patrikainen and Meila 2006), while 

Cheng et al. introduce a new algorithm called dual clustering on two domains, the optimization and the 

constraint domain (Lin et. al., 2005). This algorithm combines the information in both domains and 

iteratively uses a clustering algorithm on the optimization domain and also a classification algorithm on 

the constraint domain to reach the target clustering effectively. 

Except from the algorithms described above, three of the most important clustering algorithms are k-

Means, EM and Farthest First (Jain et al., 1999), (Witten, Frank, 2005). They are characteristic, 

commonly used clustering algorithms. Moreover, they are implemented in Weka 3 (Weka), an open 

source data mining tool frequently used in the literature, thus facilitating experimental replication. Those 

algorithms are extensively described in (Witten, Frank, 2005). 

k-means is a classic iterative-based clustering algorithm. The user firstly specifies in advance how many 

clusters are being sought: this is the parameter k. Then k points are chosen at random as clusters centers. 

All instances are assigned to their closest cluster center according to the ordinary Euclidean distance 

metric. Next the centroid, or mean, of the instances in each cluster is calculated. These centroids are taken 

to be new center values for their respective clusters. Finally, the whole process is repeated with the new 

cluster centers. Iteration continues until no more points change clusters, at which stage the cluster centers 

are stable (Witten, Frank, 2005). 

The EM (Expectation Maximization) clustering algorithm is based on a statistical model called finite 

mixtures. A mixture is a set of k probability distributions, representing k clusters, that govern the attribute 

values for members of that cluster. In other words, each distribution gives the probability that a particular 



instance would have a certain set of attribute values if it was known to be a member of that cluster. Each 

cluster has a different distribution. Finally, the clusters are not equally likely: there is some probability 

distribution that reflects their relative populations. The problem is that we know neither the distribution 

that each training instance came from, nor the parameters of the mixture model. For that reason, the EM 

adopts the same procedure used for the k-means clustering algorithm and iterates. It starts with some 

initial guesses for the parameters of the mixture model; it uses them to calculate the cluster probabilities 

for each instance, and finally uses these probabilities to re-estimate the parameters and repeats (Witten, 

Frank, 2005). 

The FarthestFirst algorithm performs a farthest-first traversal over the dataset. Starting with an arbitrary 

chosen point and adding it to the set, the algorithm picks that point in the dataset which is farthest away 

from the current centroids and adds to X in each iteration. 

At the end of k iterations, each point in X acts as a center for a stratum and the result of the algorithm is a 

disjoint partitioning, obtained by assigning each point in the dataset to its nearest point in X (Witten, 

Frank, 2005). 

In section 6 we base our experiments on comparing k-Attractors with the three algorithms described 

above. This facilitates repeatability of the experiments as Weka is an open source data mining suite. 

3. Preliminaries 

 

This section presents the main concepts that form the basis for k-Attractors. More specifically, we present 

the concepts of the frequent itemsets discovery and their subsequent graph construction and partitioning. 

These two techniques help creating the initial attractors and defining the maximum number k of the 

derived clusters. 

 



k-Attractors Algorithm 

/*Input Parameters*/ 

Support: s 

Hamming distance power: h 

Inner product power: i 

Given a set of m  data items 
1 2
, , ,

m
t t tK  

 

/*Initialization Phase*/ 

(1) Generate frequent itemsets using the APriori Algorithm; 

(2) Construct the itemset graph and partition it using the confidence similarity criteria related to the 

support of these itemsets; 

(3) Use the number of partitions as the final k; 

(4) Select the maximal frequent itemset of every cluster in order to form a set of k initial attractors; 

 

/*Main Phase*/ 

Repeat 

(6) Assign each data item to the cluster that has the minimum ( )
i j

Score C t! ; 

(7) When all data items have been assigned, recalculate the new attractors; 

               Until 
i
t  don’t_move 

(8)        Search all clusters to find outliers and group them in a new cluster 

Figure 1 - k-Attractors overview 



 
 

3.1 Frequent Itemsets Discovery– Apriori Algorithm 

 

A frequent itemset is a set of items that appear together in more than a minimum fraction of the whole 

dataset.  

More specifically let J be a set of quantitative data. Any subset I of J is called an itemset. Let T = 

<t1,...,tn> be a sequence of itemsets called a transaction database. Its elements t ϵ T will be called itemsets 

or transactions. 

An itemset can be frequent if its support is greater than a minimum support threshold, denoted as 

min_sup. The support of an item X in T denoted as min_sup T(X) is the number of transactions in T that 

contain X. The term frequent item refers to an item that belongs to a frequent itemset. If now, an item X is 

frequent and no superset of X is frequent, then X is a maximally frequent itemset; and we denote the set 

of all maximally frequent itemsets by MFI. From these definitions it is easy to see that the following 

relationship holds MFI  FI, where FI is the set of the most frequent itemsets. Apriori, the well known 

association rule mining algorithm, was used in order to discover frequent itemsets (Agarwal and Srikant, 

1994). According to (Bodon, 2005) the Apriori’s moderate traversal of a data search space is the most 

suitable when mining very large databases. Apriori scans the transaction dataset several times. After the 

first scan, the frequent items are found, and in general after the lth scan, the frequent item sequences of 

size l (we call them l-sequences) are extracted. The method does not determine the support of every 

possible sequence. In an attempt to narrow the domain to be searched, before every pass it generates 

candidate sequences. A sequence becomes a candidate if every subsequence of it is frequent. Obviously 

every frequent sequence is a candidate too; hence it is enough to calculate the support of candidates. 

Frequent l-sequences generate the candidate (l + 1)-sequences after the lth scan. Candidates are generated 



in two steps. First, pairs of l-sequences are found, where the elements of the pairs have the same prefix of 

size l−1. Here we denote the elements of such a pair with <i1, i2,..., il−1, il> and <i1, i2,..., il−1, i’l>. 

Depending on items il and i’l we generate one or two potential candidates. If il <> il’ then they are <i1, 

i2,..., il−1, il, i‘l> and <i1, i2,..., il−1, i‘l, il>, otherwise it is <i1, i2,..., il−1, il, il> (Manilla et. al. 1995). In 

the second step the l-subsequences of the potential candidate are checked. If all subsequences are 

frequent, it becomes a candidate. As soon as the candidate (l + 1)-sequences have been generated, a new 

scan of the transactions is started and the precise support of the candidates is determined. This is done by 

reading the transactions one-by-one. For each transaction t the algorithm decides which candidates are 

contained by t. After the last transaction is processed, the candidates with support below the support 

threshold are thrown away. The algorithm ends when no new candidates are generated. 

3.2 Frequent Itemsets Graph Partitioning – kMetis Algorithm 

 

The discovered frequent itemsets often reveal hidden relationships and correlations among data items. By 

constructing and partitioning a weighted hypergraph from those itemsets, using similarity (i.e. based on 

hyperdges’ weights) criteria related to the confidence of their association rules, we can reduce their size 

by eliminating those that are not similar. 

A hypergraph H = (V, E) consists of a set of vertices (V) and a set of hyperedges (E). A hypergraph is an 

extension of a graph in the sense that each hyperedge can connect more than two vertices. In this work, 

the vertex set corresponds to the distinct items in the database and the hyperedges correspond to the 

frequent itemsets. For example, if {A B C} is a frequent item-set, then the hypergraph contains a 

hyperedge that connects A, B, and C. The weight of a hyperedge is determined by a function of the 

confidences for all the association rules involving all the items of the hyperedge. 

The kMetis algorithm (Karypis and Kumar, 1998) has a very simple structure. The graph G = (V, E) is 

first coarsened down to a small number of vertices, a k-way partitioning of this much smaller graph is 



computed, and then this partitioning is projected back, towards the original graph (finer graph) by 

successively refining the partitioning at each intermediate level. 

4. Our approach 

 

In this research work we propose a partitional algorithm that utilizes a preprocessing method for its initial 

partitioning and incorporates a distance measure adapted to the way initial attractors are determined by 

this method. 

More specifically, k-Attractors employs the maximal frequent itemset discovery and partitioning, 

similarly to (Zhuang, Dai, 2004), (Han et al., 1997). However, k-Attractors is different as it is not used in 

the context of document clustering. It is applied to numeric data that are expected to demonstrate patterns 

that can be identified by the maximal frequent itemsets discovery technique. The discovered frequent 

itemsets often reveal hidden relationships and correlations among data items. By constructing and 

partitioning a weighted hypergraph from those itemsets, using similarity criteria (based on the weights of 

hyperedges) related to the confidence of their association rules, their size can be reduced by eliminating 

those that are not interesting (i.e. their support is below a certain threshold). The final set of rules will be 

used in order to define the final number of clusters and the initial attractors of their centers. The intuition 

in k-Attractors is that a frequent itemset is a set of measurements that occur together in a minimum part of 

a dataset. Transactions with similar measurements are expected to be in the same cluster. The term 

attractor is used instead of centroid, as it is not determined randomly, but is determined by its frequency 

in the whole population of a given dataset. 

An important characteristic of k-Attractors is that it proposes a distance measure which is adapted to the 

way the initial attractors are determined by the preprocessing method. Hence, it is primarily based on the 

comparison of frequent itemsets. More specifically, a composite metric based on the Hamming distance 

and the dot (inner) product between each transaction and the attractors of each cluster is utilized. 



The Hamming distance is given by the number of positions that a pair of strings differ from each other. 

Put another way, it measures the number of substitutions required to transform the one string to the other. 

In this work we consider a string as a set of data items, and more specifically as a vector of numeric data. 

Furthermore, the dot product of two vectors is a measure of the angle and the orthogonality of two 

vectors. It is used in order to compensate for the position of both vectors in the Euclidean space (Kosters 

et al., 1999). 

5. Algorithm Description 

 

This section details the basic steps of k-Attractors along with some examples. 

5.1 Overview 

 

The two basic phases of k-Attractors are: 

•  Initialization phase: 

o The first step of this phase generates frequent itemsets using the APriori algorithm. The 

derived frequent itemsets are used to construct the itemset graph, and kMetis, a graph 

partitioning algorithm, is used to find the maximum number of the desired clusters and to 

assign each frequent itemset to the appropriate cluster. 

o As soon as the maximum number of the desired clusters k is determined, we select the 

maximal frequent itemsets from every cluster, forming a set of k frequent itemsets as the 

initial attractors. 

•  Main phase: 

o As soon as the attractors are found, we assign each transaction to the cluster that has the 

minimum distance against its attractor. 



o When all transactions have been assigned to clusters we recalculate the attractors for each 

cluster, in the same way as in the initialization phase. 

Figure 1 illustrates an overview of k-Attractors. We detail its two phases next. 

5.2 Initialization Phase 

 

The goal of the initialization phase is two-fold: firstly to identify the most frequent itemsets of the input 

data and secondly to determine the number of clusters. 

In order for the most frequent itemsets to be discovered, we apply the APriori algorithm against the input 

data file. The APriori algorithm takes as input the absolute support s of the required itemsets and returns 

all the one-dimensional and multi-dimensional itemsets with support greater than or equal to s . The value 

of s is defined empirically by an expert user, based on the statistical characteristics of the dataset under 

consideration. 

Once the most frequent itemsets have been discovered, we form the itemset graph. Given the set of the 

most frequent itemsets 1 2{ , , }mFI fi fi fi= K , the itemset graph is a graph ( , )G V E , where { }iV fi FI= !  

and { }ij i jE e fi fi= ! "#
. The intuition behind this graph is that if two itemsets have at least one 

common item, then they should possibly belong to the same cluster and thus we connect them with an 

edge in the itemset graph. For more accuracy, we could have weighted each edge with the number of 

common items between the two corresponding itemsets/vertices, but in order to keep the initialization 

phase as simple and fast as possible we decided not to weigh the edges.  

Figure 2 demonstrates an example of the itemset graph’s construction. 

In the next step we apply a graph partitioning algorithm to the itemset graph. In our case, we utilized the 

kMetis algorithm in order to partition the itemset graph (Han et al., 1997). kMetis partitions the itemset 



graph into a number of distinct partitions and assigns each vertex of the graph (i.e. each itemset) to a 

single partition. 

The final number of the derived partitions is the number of clusters that we use in the main phase of the k-

Attractors algorithm. 

 

Itemsets

1.   (13, 21, 2, 56)

2.   (7, 21, 31, 12)

3.   (9, 34, 2, 12)

4.   (9, 22, 5, 54)

Itemset graph

1

2 3

4

 

Figure 2. Itemset graph example 

 

The final step of the initialization phase is the attractors’ discovery. During this step, every previously 

determined graph partition is examined. In (Kanellopoulos et al. 2007) the procedure for discovering the 

initial attractors is summarised. For each partition we find the maximal frequent itemset MI belonging to 

this partition, and check the cardinality of its dimensions. If the number of dimensions is equal to the 

input data items’ number of dimensions n, then we assign the corresponding itemset as the attractor of the 

corresponding partition. However, in most cases, the cardinality of the maximal itemset is less than n. In 

such cases, we search for the next maximal frequent itemset NI in the corresponding partition and merge 

it with the previous itemset MI. Merging occurs only in dimensions that are absent from the first maximal 

itemset MI. We repeat this procedure until we have formed an itemset with cardinality equal to n, and 

assign the formed itemset as attractor of the corresponding partition. 



Find maximal frequent 

itemset MI

Cardinality (MI) == n

Set attractor = MI

Find next maximal 

frequent itemset NI

No
Merge MI with 

NI

Yes

 

Figure 3 Attractors discovery 

 

In order to provide more flexibility, k-Attractors performs a post-processing step against the previously 

determined attractors. The algorithm defines a threshold, called attractor similarity ratio, r. This threshold 

defines the maximum allowed similarity between two different attractors. After several experiments for 

calibrating k-Attractors we use 0.8 as the default value for r. The similarity between two attractors 1 2
,a a  

is defined as follows: 

 

1 2
1 2

#( )
( , )

a a
sim a a

n

!
=

      
(1) 



 

In other words, the similarity between two attractors is the ratio of the number of common items divided 

by the number of total dimensions. 

If the similarity of two attractors is more than r, then we randomly discard one of the two attractors; thus 

the number of total partitions is decreased by one. 

It has to be noted that the initialization phase adds a significant overhead to the overall algorithm’s 

performance. The reason for this is the combination of the APriori and kMetis algorithms for the 

extraction of frequent itemsets and their partitioning, respectively. As long as it contributes significantly 

to the algorithm’s accuracy comparing to other algorithms this overhead is not considered a disadvantage. 

5.3 Main Phase 

 

The goal of k-Attractor’s main phase is to assign each input data item to a cluster, using a partitional 

approach. 

At first, we form a set of k empty clusters, where k is the number of distinct graph partitions discovered 

during the initialization phase. Every formed cluster is then assigned to the corresponding attractor 

calculated in the previous phase. 

Once the clusters have been formed, the main phase of k-Attractors begins. This phase resembles a 

partitional algorithm, where every data item is assigned to a cluster according to a predefined distance 

metric and in every step the centers of every cluster are re-calculated until the algorithm converges to a 

stable state where the clusters’ centers do not change. 

The k-Attractors algorithm utilizes a hybrid distance metric based on vector representation of both the 

data items and the cluster’s attractors. The distance of these vectors is measured employing the following 

composite distance metric: 

 



( ) ( ) ( )1 1
* , *i j i j n nScore C t h H a t i a t a t! = + +K  (2) 

 

In this formula, the first term is the Hamming distance between the attractor 
i
a and the data item

j
t . It is 

given by the number of positions that a pair of strings is different and is defined as follows: 

 

( ) ( ), #
i j i j

H a t n a t= ! "
 (3) 

 

As our algorithm is primarily based on itemset similarity, we want to measure the number of substitutions 

required to change one itemset into another. The second term is the dot (inner) product between this data 

item and the attractor i
a . It is used in order to compensate for the position of both vectors in the 

Euclidean space (Kosters et al., 1999). 

The multipliers ,h i  in equation (2) define the metric’s sensitivity to Hamming distance and inner product 

respectively. For example, 0i =  would indicate that the composite metric is insensitive to the inner 

product between the data item and the cluster’s centroid. Both h and i are taken as input parameters in our 

algorithm during its execution. Thus, k-Attractors provides the flexibility of changing the sensitivity of 

the composite distance metric to both Hamming distance and inner product. 

Utilizing this distance metric, k-Attractors assigns every data item to a single cluster and recalculates the 

attractors for every cluster. Recalculation includes finding the data item in a cluster that minimizes the 

total sum of distances between the other data items belonging to that cluster. The above procedure is 

repeated until the attractors of all clusters do not change any further. 



The final step of the k-Attractors’ main phase involves outlier handling. During this step, every cluster is 

checked for outliers, according to a threshold d. Specifically, a data item t , belonging to cluster i, is 

considered an outlier if: 

 

( ) ( )( ), ,
i i i j

Score a t d avg Score a t>= !  (4) 

where ( )( ),
i i j

avg Score a t  is the average distance between the data items of cluster i and the attractor 
i
a . 

 

Dataset # Items # Classes 

Iris 150 3 

Wisconsin Breast Cancer 699 2 

Vehicle 946 4 

Haberman Surgery 306 2 

Software Measurement Data 50 4 

Table 1: Characteristics of the employed datasets 

 

The discovered outliers of all clusters are grouped into a new cluster, called outliers cluster, thus the total 

number of formed clusters is k+1. 

6. Experimental Results 

6.1 Datasets used 

 

The evaluation of the proposed clustering algorithm involved two main experiments that were performed 

in a Pentium M 2.0 GHz machine with 1GByte RAM. The scope of those experiments was the 



comparison of k-Attractors with the set of clustering algorithms contained in WEKA 3 (Weka), the Java 

open source data mining tool. In particular, we compared k-Attractors with the clustering algorithms 

described in Section 2: k-Means, EM and FarthestFirst. 

The datasets used in our experiments were the Iris dataset (Orange), the Wisconsin Breast Cancer dataset 

(Orange), the Vehicle dataset (Orange), the Haberman Surgery dataset (Machine Learning Datasets) and 

an industrial software measurement dataset derived from parsing a fragment of System2, a large logistics 

system implemented in Java (6782 classes). This last dataset consisted of a set of 10 calculated software 

metrics for 50 java classes of the parsed system. 

The main characteristics of the employed datasets are summarized in Table 1. 

6.2 k-Attractors evaluation 

 

The purpose of our experiments was to evaluate k-Attractors against the clustering algorithms contained 

in WEKA 3: k-Means, EM and FarthestFirst. For that reason, we used 5 datasets for which there is 

previous knowledge of data item classification. 

For our experiments, we used the recall, precision and F-measure external metrics in order to evaluate the 

accuracy (quality) of the clusters formed by k-Attractors, k-Means, EM and FarthestFirst for every 

utilized dataset. Precision, recall and F-measure are external cluster quality metrics based on the 

comparison of the formed clusters to previously known external classes (e.g. different domains). Given a 

class j
Z  of data items with a number j

n  of items and a cluster i
C , formed by a clustering algorithm, 

with i
n  items, let 

j

i
n   be the number of items in  belonging to . Then, the precision, recall and F-

measure are defined as follows: 

i
precision(C , )

j
i

j
i

n
Z

n
=

 (5) 



i
recall(C , )

j
i

j
j

n
Z

n
=

 (6) 
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i
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precision(C , ) recall(C , )
F-measure(C , )

precision(C , ) recall(C , )
j j

j
j j

Z Z
Z

Z Z

!
=

+  (7) 

 

k-Attractors k-Means 
Cluster Popul. 

Precision Recall F-measure Precision Recall F-measure 
1 458 0,98 0,97 0,98 0,96 0,92 0,94 
2 241 0,95 0,97 0,96 0,96 0,98 0,97 
  Weighted F-measure 0,97 Weighted F-measure 0,95 
  Iterations 4 Iterations 5 

Table 2. Breast cancer experimental results (k-Attractors and k-Means) 

 

EM FarthestFirst 
Cluster Popul. 

Precision Recall F-measure Precision Recall F-measure 
1 458 1,00 0,92 0,96 0,96 0,93 0,94 
2 241 0,87 1,00 0,93 0,96 0,98 0,97 
  Weighted F-measure 0,92 Weighted F-measure 0,95 

Table 3. Breast cancer experimental (EM and FarthestFirst) 

 

k-Attractors k-Means 
Cluster Popul. 

Precision Recall F-measure Precision Recall F-measure 
1 50 0.98 1.00 0.99 0,77 0.94 0.85 
2 50 0.92 0.68 0.78 1.00 1.00 1.00 
3 50 0.76 0.94 0.84 0.92 0.72 0.81 
  Average F-measure 0.87 Average F-measure 0.89 
  Iterations 20 Iterations 4 

Table 4. Iris experimental results (k-Attractors and k-Means) 

 



 20 

EM FarthestFirst 
Cluster Popul. 

Precision Recall F-measure Precision Recall F-measure 
1 50 0,78 0,90 0,88 0,85 0,70 0,77 
2 50 1,0 1,0 1,0 1,0 1,0 1,0 
3 50 1,0 0,72 0,84 0,75 0,88 0,81 
  Weighted F-measure 0,90 Weighted F-measure 0,86 

Table 5. Iris experimental results (EM and FarthestFirst) 

 

k-Attractors k-Means 
Cluster Popul. 

Precision Recall F-measure Precision Recall F-measure 
1 240 0.43 0.35 0.38 0.41 0.47 0.44 
2 240 0.59 0.52 0.55 0.42 0.33 0.37 
3 240 0.37 0.38 0.38 0.23 0.21 0.22 
4 226 0.36 0.45 0.40 0.42 0.49 0.45 
  Weighted F-measure 0,43 Weighted F-measure 0,37 
  Iterations 2 Iterations 8 

Table 6. Vehicle experimental results (k-Attractors and k-Means) 

 

EM FarthestFirst 
Cluster Popul. 

Precision Recall F-measure Precision Recall F-measure 
1 240 0,41 0,47 0,44 0,27 0,77 0,39 
2 240 0,42 0,33 0,33 0,49 0,21 0,29 
3 240 0,23 0,21 0,21 0,33 0,01 0,02 
4 226 0,42 0,49 0,49 0,35 0,21 0,26 
  Weighted F-measure 0,37 Weighted F-measure 0,24 

Table 7. Vehicle experimental results (EM and FarthestFirst) 

 

k-Attractors k-Means 
Cluster Popul. 

Precision Recall F-measure Precision Recall F-measure 
1 225 0,56 0,77 0,65 0,28 0,57 0,37 
2 81 0,91 0,78 0,84 0,75 0,47 0,58 
  Weighted F-measure 0,69 Weighted F-measure 0,43 
  Iterations 2 Iterations 6 

Table 8. Haberman Surgery experimental results (k-Attractors and k-Means) 



 21 

 

EM FarthestFirst 
Cluster Popul. 

Precision Recall F-measure Precision Recall F-measure 
1 225 0,42 0,67 0,51 0,74 0,98 0,84 
2 81 0,85 0,67 0,75 0,33 0,02 0,05 
  Weighted F-measure 0,57 Weighted F-measure 0,63 

Table 9. Haberman Surgery experimental results (EM and FarthestFirst) 

 

k-Attractors k-Means 
Cluster Popul. 

Precision Recall F-measure Precision Recall F-measure 
1 35 0.88 0.97 0.92 0.80 0.65 0.72 
2 9 0.88 0.80 0.84 0.15 0.50 0.23 
3 4 0.66 0.66 0.66 1.00 0.70 0.82 
4 2 0.50 0.25 0.33 0.00 0.00 0.00 
  Weighted F-measure 0,85 Average F-measure 0,60 

Table 10. Software measurement data experimental results 

 

In order to properly measure the total quality of the formed clusters by every clustering algorithm, we 

calculated the weighted F-measure for the clusters formed by every clustering algorithm in each dataset 

and compared the resulted weighted F-measures. The weighted F-measure of a clustering algorithm in a 

dataset is defined as follows: 
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where i
F  denotes the F-measure for the i-th cluster and i

n  denotes the number of items in the i-th cluster. 

Additionally, for every dataset used, we measure the number of iterations required by k-Attractors’s main 

phase and k-Means in order for the clusters to converge into a stable state. As every iteration in k-

Attractors’s main phase and k-Means has a complexity of O(n) we can compare the performance of the 

two algorithms by comparing the number of iterations performed. The more the required iterations, the 
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longer the clustering process lasts. However, because EM and FarthestFirst are not partitional clustering 

algorithms, we did not compare k-Attractors with them in terms of performance (i.e. converge speed). 

Table 2 and Table 3 present the experimental results for the Breast Cancer dataset. As it can easily be 

seen, k-Attractors in its main phase performs slightly better than k-Means and FarthestFirst (weighted F-

measure 0.97 regarding the weighted F-measure 0.95 of k-Means and FarthestFirst) and much better than 

EM. Additionally, it requires one less iteration (4 iterations regarding the 5 iterations of k-Means). Thus, 

regarding the Breast Cancer dataset, k-Attractors is better compared to the other 3 clustering algorithms in 

terms of both accuracy and performance. 

Table 4 and Table 5 present the experimental results for the Iris dataset. It can be seen that k-Attractors in 

its main phase performs slightly worse than k-Means and EM (weighted F-measure 0.87 regarding the 

weighted F-measure 0.89 of k-Means and 0.90 of EM) and slightly better than FarthestFirst. In addition, 

the main phase of k-Attractors requires 20 iterations regarding the 4 iterations required by k-Means until 

it converges. This is due to the fact that the Iris dataset contains only a few frequent itemsets, with very 

small cardinality. Hence, k-Attractors cannot utilize those frequent itemsets in order to form the initial 

attractors for the clustering process. k-Attractors utilizes the statistical mean to approximate the value of 

each attribute in the initial attractors instead. This approach leads to the fact that the initial attractors are 

very similar to each other, because most of their attributes have the same value and as a result the 

performance of k-Attractors is relatively poor. 

Table 6 and Table 7 present the experimental results for the Vehicle dataset. As it can easily be seen, k-

Attractors in its main phase performs better than the other clustering algorithms (weighted F-measure 

0.43 regarding the weighted F-measure 0.37 of k-Means, 0.37 of EM and 0.24 of FarthestFirst). 

Additionally, k-Attractors requires only 2 iterations compared to the 8 iterations required by k-Means. 

This is due to the fact, that the Vehicle dataset contains enough frequent itemsets in order for the initial 

attractors to be calculated right, thus k-Attractors in its main phase performs better than the other 

clustering algorithms both in accuracy and time performance. 
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Table 8 and Table 9 present the experimental results for the Haberman surgery dataset. As it can be seen, 

k-Attractors in its main phase performs better than the other 3 algorithms and requires only 2 iterations 

while k-Means requires 6 iterations. This performance boost comes from the fact that the range of 

attribute values in this dataset is relatively small (varies between 1 and 5), thus there exist a lot of frequent 

itemsets in order to efficiently calculate the initial attractors for the k-Attractors algorithm.  

Table 10 shows that k-Attractors’ clusters are closer to the domain expert’s clusters. k-Attractors achieves 

a weighted 0.85 F-measure, while k-Means achieves a weighted 0.60 F-measure. Especially, regarding the 

two largest clusters (cluster 1 and cluster 2), the corresponding calculated F-measure is very high and 

better than the two corresponding k-Means clusters. Considering now, the smallest cluster in k-Attractors 

(cluster 4) and k-Means (cluster 4), these clusters correspond to the domain expert’s outlier cluster. It is 

obvious that k-Attractors approximates the domain expert’s cluster because of the application of the 

outlier handling phase. k-Means lacks such a phase, thus the recall, precision and f-measure of the 

corresponding cluster are both 0. 

Hence, the experimental results show that k-Attractors forms more accurate (better quality) clusters, in 

terms of higher F-Measure, than k-Means, approximating the domain expert’s manually created clusters. 

This can be explained by the fact that software measurement data are expected to demonstrate specific 

behavior and not random patterns or trends as in software development projects programmers follow 

certain specifications, design guidelines and code-styles. Thus, this type of data usually contains frequent 

common itemsets which can be captured during k-Attractors’s initial phase leading to more accurate 

results (Kanellopoulos et al. 2007). 

 

6.3 Discussion 

 

We conducted a series of experiments in order to compare k-Attractors with kMeans, EM and 

FarthestFirst clustering algorithms. The results are promising as in most cases k-Attractors, in its main 
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phase, performs better than the other clustering algorithms both in performance (converge-speed) and in 

accuracy (quality of the formed clusters). This efficiency of k-Attractors is a result of the calculation of 

the approximate initial attractors for each formed cluster during the initialization phase. However, this 

phase adds a significant overhead to the overall algorithm’s performance but as long as it contributes 

significantly to its accuracy this overhead is considered justifiable. 

K-Attractors performed worse on the Iris dataset compared to k-Means, EM and FarthestFirst in terms of 

performance and accuracy. This result was due to the fact that the Iris dataset contains only a few frequent 

itemsets with very small cardinality. Hence, k-Attractors could not utilize those frequent itemsets in order 

to form the initial attractors for the clustering process and was outperformed by the other clustering 

algorithms. As mentioned in section 5.2, in case of few discovered frequent itemsets, k-Attractors utilises 

the statistical mean of every dimension in order to calculate the attractors. Thus the formed attractors are 

very similar to each other resulting in poor performance. It would be interesting to utilise a more 

sophisticated statistical measurement in order to approximate the missing dimensions and test whether 

this improves the performance of k-Attractors. 

7. Conclusions and Future Work 

 

The aim of this work was the development of a new partitional clustering algorithm, k-Attractors, tailored 

to numeric data analysis, overcoming the weaknesses of other partitional algorithms. 

The initialization phase of the proposed algorithm involves a preprocessing step which calculates the 

initial partitions for k-Attractors. During this phase, the exact number of k-Attractors clusters was 

calculated in addition with the initial attractors of each cluster. Thus the problems of defining the number 

of clusters and initializing the centroids of each cluster are resolved. In addition, the constructed initial 

attractors approximate the real clusters’ attractors, improving that way the convergence speed of the 

proposed algorithm.  
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The main phase of k-Attractors forms clusters employing a composite distance metric which utilises the 

Hamming distance and the inner product of data item vector representations. Thus, the employed metric is 

adapted to the way the initial attractors are determined by the preprocessing step. 

The last step deals with outliers and is based on the distance between a data item and its cluster’s 

attractor. The discovered outliers are grouped into a separate cluster. 

The results from the conducted experiments are promising, as k-Attractors’ main phase outperformed in 

performance and accuracy the other algorithms in most of the cases. This is attributed to its initialization 

phase which however adds an overhead which is deemed acceptable when it contributes significantly to 

algorithm’s accuracy. 

For this reason we plan on improving the way the initial attractors are derived in order to minimize the 

cost of the initialization phase. We could also attempt to customise the proposed distance metric in order 

to adapt it to categorical semantics thus making it applicable to categorical datasets. 
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