
Code4Thought Project: Employing the ISO/IEC-9126 standard for
Software Engineering - Product Quality Assessment

Panos Antonellis1, Dimitris Antoniou1, Yiannis Kanellopoulos2, Christos Makris1,
Christos Tjortjis2,3, Vangelis Theodoridis1, Nikos Tsirakis1

1. University Of Patras, Department of Computer Engineering and Informatics, Greece

2. The University Of Manchester, School of Computer Science, U.K.
3. Engineering Informatics and Telecommunications, University of Western Macedonia,

Greece

adonel@ceid.upatras.gr, antonid@ceid.upatras.gr,
Yiannis.Kanellopoulos@postgrad.manchester.ac.uk,

makri@ceid.upatras.gr, theodori@ceid.upatras.gr, christos.tjortjis@manchester.ac.uk,
tsirakis@ceid.upatras.gr

Abstract
The aim of the Code4Thought project was to deliver a

tool supported methodology that would facilitate the
evaluation of a software product's quality according to
ISO/IEC-9126 software engineering quality standard. It
was a joint collaboration between Dynacomp S.A. and the
Laboratory for Graphics, Multimedia and GIS of the
Department of Computer Engineering and Informatics of
the University of Patras. The Code4thought project
focused its research on extending the ISO/IEC-9126
standard by employing additional metrics and developing
new methods for facilitating system evaluators to define
their own set of evaluation attributes. Furthermore, to
develop innovative and platform-free methods for the
extraction of elements and metrics from source code data.
Finally, to design and implement new data mining
algorithms tailored for the analysis of software
engineering data.

1. Introduction

Software is playing a crucial role in modern societies.
Not only people rely on it for their daily operations or
business, but for their lives as well. For this reason a
correct and consistent behaviour of a software system is a
fundamental part of users’ expectations.

Therefore the demand for software quality is
increasing and is setting it as a differentiator, which can
determine the success or failure of a software product.
Moreover delivering high quality products is becoming

not just a competitive advantage but a necessary factor for
companies to be successful.

The goal of the Code4Thought project was to deliver a
tool supported methodology that would facilitate the
evaluation of a software product's quality according to
ISO/IEC-9126 software engineering quality standard [6.].

It was a joint collaboration between Dynacomp S.A.
and the Laboratory for Graphics, Multimedia and GIS of
the Department of Computer Engineering and Informatics
of the University of Patras. It was a 2 years R&D project
co-funded by G.S.R.T. (General Secretariat of Research
and Technology) and Dynacomp S.A. The project ended
in May 2008 and its budget was 422,000 Euro. The
members consisting the project’s team were:

• Project Coordinator: Dr Christos Tjortjis,
University of Manchester-Dynacomp S.A, School
of Computer Science

• University of Patras Coordinator, Dr Christos
Makris, School of Engineering Department of
Computer Engineering and Informatics

• Project Manager: Yiannis Kanellopoulos, PhD,
Dynacomp S.A.– University of Manchester,
School of Computer Science

• Evangelos Theodoridis, PhD Candidate,
University of Patras, School of Engineering
Department of Computer Engineering and
Informatics

• Antoniou Dimitris, PhD Candidate, University of
Patras, School of Engineering Department of
Computer Engineering and Informatics

• Tsirakis Nikos, PhD Candidate, University of
Patras, School of Engineering Department of
Computer Engineering and Informatics

• Antonellis Panagiotis, PhD Candidate, University
of Patras, School of Engineering Department of
Computer Engineering and Informatics.

The SQO-OSS project was also related to Code4Thought
[7.]. Both projects were focusing on software quality and
on employing data mining techniques for the analysis of
the derived software measurement data.

2. Research Focus

The research on the Code4Thought project was related
to software quality and data mining. For this reason, the
research focus in this project was the on extending at first,
the ISO/IEC-9126 standard by employing additional
metrics and developing new methods for facilitating
system evaluators to define their own set of evaluation
attributes [1], [4]. Furthermore innovative and platform
free methods for the extraction of elements and metrics
from source code data were developed. Finally new data
mining algorithms or combination of data mining
techniques tailored for the analysis of software
engineering data were designed and implemented [2], [3].

3. Project Achievements

The Code4Thought project developed at first a
generalised quality model for the assessment of both
structural and OO software systems [1]. The
characteristics of this model were:

The main characteristics of this methodology are:
• The necessary metrics were elements extracted

solely from source code.
• It employed the ISO/IEC-9126 standard as a

frame of reference for communication concerning
software product quality.

• It proposed a three-step approach and an
associated model, in order to link system level quality
characteristics to code-level metrics.

• It applied the Analytic Hierarchy Process (AHP)
in every level of the model’s hierarchy in order to reflect
the importance of metrics and system properties on
evaluating quality characteristics according to ISO/IEC-
9126.

Furthermore, k-Attractors, a clustering algorithm
tailored for the analysis of software measurement data was
developed for the purposes of this project [4.]. The
characteristics of this algorithm are:

• It defines the desired number of clusters (i.e. the
number of k), without user intervention.

• It locates the initial attractors of cluster centers
with great precision.

• It measures similarity based on a composite
metric that combines the Hamming distance and the inner
product of transactions and clusters’ attractors.

• It can be used for large data sets.
Finally another methodology based on the clustering

data mining technique was developed [2]. The scope of
the proposed methodology was to facilitate maintenance
engineers to identify classes which are fault prone and
more difficult to understand and maintain as well as to
study the evolution of a system from version to version,
and its classes’ dynamics. It consists of two steps:

• a separate clustering step for every version of a
system to assist software system’s evaluation in
means of maintainability.

• a macro-clustering analysis in order to study the
system’s dynamics from version to version.

4. Project Deliverable

The final deliverable of the project was a data mining

tool that was responsible for the extraction, analysis and
visualisation of data and results concerning the evaluation
of a software system. This tool consisted of the following
modules:

• Data Extraction and Preparation.
• Data Analysis.
• Results Visualization.

The objective of the data extraction and preparation
module was two-fold:

• At first to collect appropriate elements that
describe the software architecture and its
characteristics. These elements included native
source code attributes and metrics.

• Then to analyze the collected elements, choose a
refinement subset of them and store them in a
relational database system for further analysis.

Native attributes included definition files, classes,
structure blocks etc. Metrics, on the other hand, provided
additional system information and described more
effectively the system’s characteristics and behaviour.

All the metrics were associated with a native source
code attribute, e.g. the lack of cohesion is associated with
a class member method. All of the above collected
attributes and metrics were stored into appropriate
structured XML files. XML was chosen because of its
interoperability and its wide acceptance as a de facto
standard for data representation and exchange. Storing the
metrics in XML files enables further processing and
analysis with a variety of tools.

For simplicity, a refinement subset of the most
important collected elements was chosen for analysis. This
subset should be small enough in order to be easily
analyzed and large enough to contain all the necessary
system information. Based on this requirement, only the
metrics and their associated native attributes were stored
and further analyzed.

The elements chosen needed to be extracted from the
XML files and stored permanently in a relational database.
For this reason tools that mapped XML elements and
nodes into any relational database, keeping the extraction

method transparent from the underlying database were
used.

Figure 1 depicts the general architecture of the data
extraction and preparation module.

Figure 1: Data Preparation and Extraction Module

Figure 2: Data Analysis Module

Figure 3: Data Visualisation Module

As depicted in the Figure 2, the data analysis module is

the core of the Code 4 Thought methodology. At first, the
data mining algorithm, accepts data from the source code

analyzer, by performing queries on the database, where
the data reside. The outcome of the analysis is stored in
XML files, in order to be visualized by the corresponding

Source code
analysis

Attributes extraction
Metrics calculation

XML files

storing

RDBS
refined subset

XML mapping

Data Reader
Data Structure

Validator
Visualizer

Vizualization Module

XML

DATA

Results

module. The primary objective of the data analysis is to
obtain a general but illuminating view of a software
system that may lead maintenance engineers to useful
conclusions about its structure and maintainability.

The visualization module now consists of the
following parts:

• An XML reader for the clustering results.
• Text files for the results derived from association

rules and classification algorithms.
Figure 3 shows the parts of the visualization procedure

for the XML files, from the moment data are being
imported until the final results are available to the user.

5. Research Evaluation

The work during this project was evaluated on both

open source and proprietary systems of industrial scale.
Results were reviewed by domain experts who provided
their comments and assessments. The criteria for this
evaluation included accuracy of the tool and the ability to
capture knowledge that is valid, novel and potentially
useful to maintenance engineers. The evaluation results
shown at first, that descriptive data mining techniques
have the ability to support program comprehension and
maintainability evaluation according to ISO-IEC/9126. It
was shown that clustering can be complementary to
association rules mining in the sense that their
combination can form a single and coherent framework.
These two techniques provide the ability to create
overviews of a system and identify the same time hidden
relationships between its artefacts [3.]. Then it was
demonstrated that k-Attractors is significantly faster than
k-Means, a prominent clustering algorithm. Additionally,
regarding software measurement data, k-Attractors
appeared to form better, in terms of quality, and more
concrete clusters [4.]. Also it was demonstrated that
clustering software metrics can create groups of artefacts
with similar measurements and spot potentially important
maintainability issues [1.], [2.], [5.]. Finally, it was shown
how to translate source code measurements into high-level
quality characteristics (like maintainability) [1.], [5.].

All cases have shown promising results concerning the
combination of data mining techniques with a model
based on the ISO/IEC-9126. For instance, in one of the
case studies two classes with low maintainability values
were discovered and characterised by experts as a good
find, since there were considered as an important
maintainability issue. The third one demonstrated how to
summarise maintainability appraisal information in the
various levels of a software system, from raw source code
metrics describing a system’s artefacts, to the system itself
as a whole.

References
[1.] Antonellis et al. “A Data Mining Methodology for

Evaluating Maintainability according to ISO/IEC-9126

Software Engineering-Product Quality Standard” , in
the proceedings of IEEE 11th Conference on Software
Maintenance and Reengineering (CSMR 2007) special
session on System Quality and Maintainability (SQM
2007)

[2.] Antonellis et al. “Clustering for Monitoring Software
Systems Maintainability Evolution”, in the
proceedings of IEEE 12th Conference on Software
Maintenance and Reengineering (CSMR 2008) special
session on System Quality and Maintainability (SQM
2008)

[3.] Kanellopoulos Y., Makris C. and Tjortjis C., “An
Improved Methodology on Information Distillation by
Mining Program Source Code”, Data & Knowledge
Engineering, (Elsevier) May 2007, Volume 61, Issue
2, pp. 359 - 383.

[4.] Kanellopoulos Y., Antonellis P., Tjortjis C, Makris C.,
“k-Attractors: A Clustering Algorithm for Software
Measurement Data Analysis”, In the proceedings of
IEEE 19th International Conference on Tools with
Artificial Intelligence, (ICTAI 2007)

[5.] Kanellopoulos Y., Heitlager I., Tjortjis C., Visser J.,
“Interpretation of source code clusters in terms of
ISO/IEC-9126 Quality Aspects”, in the proceedings of
IEEE 12th Conference of Software Maintenance and
Reengineering (CSMR 2008).

[6.] Code4Thought: www.code4thought.org
[7.] SQO-OSS: www.sqo-oss.org

