
Research Academic
COMPUTER TECHNOLOGY INSTITUTE

TECHNICAL REPORT No. TR 2005/07/03

IMPROVED FPTAS FOR MULTIOBJECTIVE

SHORTEST PATHS WITH APPLICATIONS

George Tsaggouris Christos D. Zaroliagis

July 2005

Improved FPTAS for Multiobjective Shortest Paths

with Applications∗

George Tsaggouris† Christos Zaroliagis†

July 10, 2005

Abstract

We consider multiobjective shortest paths, a fundamental (NP-hard) problem in multiobjec-
tive optimization, where we are interested not in optimizing a single objective, but in finding
a set of paths that captures the trade-off (the so-called Pareto curve) among several objectives
in a digraph whose edges are associated with multidimensional cost vectors. We provide a new
FPTAS for computing an approximate Pareto curve for multiobjective shortest paths that sig-
nificantly improves upon previous approaches, especially in the case of more than two objective
functions. We show how our new FPTAS can be used to provide better approximate solutions
to three related problems (multiobjective constrained optimal paths, multiobjective constrained
paths, and non-additive shortest paths) that have important applications in the areas of quality
of service routing in communication networks, and in computing traffic equilibria in transporta-
tion networks. We also show how our new FPTAS for multiobjective shortest paths can provide
efficient approximate solutions in a completely different context – to a natural generalization of
the weighted multicommodity flow problem with elastic demands and values that models several
realistic design scenarios in transportation and communication networks. Finally, as a byproduct
of our framework, we provide a generic method for constructing FPTAS for any multiobjective
optimization problem with non-linear objective functions of a rather general form.

∗This work was partially supported by the IST Programme (6th FP) of EC under contract No. IST-2002-001907
(integrated project DELIS), and the Action PYTHAGORAS of the Operational Programme for Educational &
Vocational Training II, with matching funds from the European Social Fund and the Greek Ministry of Education.

†Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece, and Dept of Computer Engineering and
Informatics, University of Patras, 26500 Patras, Greece. Emails: {tsaggour,zaro}@ceid.upatras.gr

1

1 Introduction

Multiobjective shortest paths (MOSP) is a core problem in the area of multiobjective optimization
(an area under intense study within Operations Research and Economics in the last 60 years [6, 7])
with numerous applications that span from traffic optimization to quality-of-service (QoS) routing
in networks and multicriteria decision making [9]. Informally, the problem consists in finding a set
of paths that captures not a single optimum but the trade-off among d > 1 objective functions in
a digraph whose edges are associated with d-dimensional attribute (cost) vectors.

In general, an instance of a multiobjective optimization problem is associated with a set of
feasible solutions Q and a d-vector function f = [f1, . . . , fd]T (d is typically a constant) associating
each feasible solution q ∈ Q with a d-vector f(q) (w.l.o.g we assume that all objectives fi, 1 ≤ i ≤ d,
are to be minimized). In a multiobjective optimization problem, we are interested not in finding
a single optimal solution, but in computing the trade-off among the different objective functions,
called the Pareto curve P, which is the set of all feasible solutions in Q whose vector of the various
objectives is not dominated by any other solution (a solution p dominates another solution q iff
fi(p) ≤ fi(q), ∀1 ≤ i ≤ d). Multiobjective optimization problems are usually NP-hard (as indeed
is the case for MOSP). This is due to the fact that the Pareto curve is typically exponential in size
(even in the case of two objectives). On the other hand, even if a decision maker is armed with the
entire Pareto curve, s/he is left with the problem of which is the “best” solution for the application
at hand. Consequently, three natural approaches to solve multiobjective optimization problems are
to: (i) study approximate versions of the Pareto curve; (ii) optimize one objective while bounding
the rest (constrained approach); and (iii) proceed in a normative way and choose the “best” solution
by introducing a utility (typically non-linear) function on the objectives (normalization approach).
In this paper, we investigate all these approaches for the multiobjective shortest path problem. In
particular, we provide an improved FPTAS for MOSP and show how this can be used to obtain
efficient approximate solutions to the multiple constrained (optimal) path problems (constrained
approach), and to the non-additive shortest path problem (normalization approach). We also show
how efficient approximate solutions can be obtained in a completely different context; namely, to
a natural generalization of the weighted multicommodity flow problem with elastic demands and
values that models several realistic scenarios in transportation and communication networks.

1.1 Multiobjective Shortest Paths

Despite so much research in multiobjective optimization [6, 7], only recently a systematic study of
the complexity issues regarding the construction of approximate Pareto curves has been initiated
[23, 28]. Informally, an (1 + ε)-Pareto curve Pε is a subset of feasible solutions such that for any
Pareto optimal solution, there exists a solution in Pε that is no more than (1+ε) away in all objec-
tives. Papadimitriou and Yannakakis in a seminal work [23] show that for any multiobjective opti-
mization problem there exists a (1 + ε)-Pareto curve Pε of (polynomial) size |Pε| = O((4B/ε)d−1),
where B is the number of bits required to represent the values in the objective functions (bounded
by some polynomial in the size of the input), that can be constructed by O((4B/ε)d) calls to a GAP
routine that solves (in time polynomial in the size of the input and 1/ε) the following problem:
given a vector of values a, either compute a solution that dominates a, or report that there is no
solution better than a by at least a factor of 1 + ε in all objectives. Extensions to that method
to produce a constant approximation to the smallest possible (1 + ε)-Pareto curve for the cases of
2 and 3 objectives are presented in [28], while for d > 3 objectives inapproximability results are
shown for such a constant approximation.

For the case of MOSP (and some other problems with linear objectives), Papadimitriou and
Yannakakis [23] show how a GAP routine can be constructed (based on a pseudopolynomial al-
gorithm for computing exact paths), and consequently provide a FPTAS for this problem. Note

2

Best previous This work
General
digraphs

d = 2 O
(
nm1

ε log (nCmax)
(
log log n + 1

ε

))
[28] O

(
n2m1

ε log (nCmax)
)

d > 2 O((log(nCmax)/ε)d · TGAP) [23] O

(
nm

(
n log(nCmax)

ε

)d−1
)

DAGs
d = 2 O

(
nm1

ε log n log (nCmax)
)

[30]
O

(
nm1

ε log (nCmax)
)

O
(
nm 1

ε2 log (nCmax)
)

[28]

d > 2 O
(
nm(n log(nCmax)

ε)d−1 logd−2(n
ε)

)
[30] O

(
m

(
n log(nCmax)

ε

)d−1
)

Table 1: Comparison of new and previous results for MOSP. TGAP denotes the time for a call to a
GAP routine, which is polynomial in the input and 1/ε (but exponential in d).

that FPTAS for MOSP were already known in the case of two objectives [17], as well as in the
case of multiple objectives in directed acyclic graphs (DAGs) [30]. In particular, the 2-objective
case has been extensively studied [7], while for d > 2 very little has been achieved; actually (to the
best of our knowledge) the results in [23, 30] are the only and currently best FPTAS known. Let
Cmax denote the ratio of the maximum to the minimum edge weight (in any dimension), and let
n (resp. m) be the number of nodes (resp. edges) in a digraph. For the case of DAGs and d > 2,
the algorithm of [30] runs in O(nm(n log(nCmax)

ε)d−1 logd−2(n
ε)) time, while for d = 2 this improves

to O(nm1
ε log n log(nCmax)). For d = 2, a FPTAS can be created by repeated applications of a

stronger variant of the GAP routine – like a FPTAS for the restricted shortest path (RSP) problem
[8, 18, 21]. In [28] it is shown that this achieves a time of O(nm|P∗ε |(log log n + 1/ε)) for general
digraphs and O(nm|P∗ε |/ε) for DAGs, where |P∗ε | is the size of the smallest possible (1 + ε)-Pareto
curve (and which can be as large as log1+ε nCmax ≈ 1

ε ln(nCmax)). All these approaches deal
typically with the single-pair version of the problem.

Our main contribution in this work (Section 3) is a new and remarkably simple FPTAS for
constructing a set of approximate Pareto curves for the single-source version of the MOSP problem
in any digraph. For any d > 1, our algorithm runs in time O(nm(n log(nCmax)

ε)d−1) for general
digraphs, and in O(m(n log(nCmax)

ε)d−1) for DAGs. These results improve significantly upon previous
approaches for general digraphs [23, 28] and DAGs [28, 30], for all d > 2. For d = 2, our running
times depend on ε−1, while those based on repeated-RSP applications (like in [28]) depend on ε−2.
This always gives us better running times for DAGs, while for general digraphs we improve the
dependency on 1

ε . Table 1 summarizes the comparison of our results with the best previous ones.
Our approach for MOSP, unlike previous methods that are based on converting pseudopoly-

nomial time algorithms to FPTAS using rounding and scaling techniques, builds upon a natural
iterative process that extends and merges sets of node labels representing partial solutions, while
keeping them small by discarding some solutions in an error controllable way.

1.2 Applications

We consider four problems that play a key role in several domains, including QoS routing in
communication networks, traffic equilibria, transport optimization, and information dissemination.

Multiple Constrained (Optimal) Paths. The continuous demand for multimedia applications
over the Internet has initiated a bulk of research on how to satisfy the QoS requirements of these
applications (e.g., bandwidth, delay, jitter, packet loss, reliability, etc) [22]. One of the key issues in
providing QoS guarantees is how to determine paths that satisfy QoS constraints, a problem known
as QoS routing or constraint-based routing. The two most fundamental problems in QoS routing are

3

the multiple constrained optimal path (MCOP) and the multiple constrained path (MCP) problems
(see e.g., [16, 20] and [22] for a survey). In MCOP, we are given a d-vector of costs c on the
edges and a (d− 1)-vector b of QoS-bounds. The objective is to find an s-t path p that minimizes
cd(p) =

∑
e∈p cd(e), and obeys the QoS-bounds, i.e., ci(p) =

∑
e∈p ci(e) ≤ bi, ∀1 ≤ i ≤ d − 1.

MCOP is NP-hard, even when d = 2 in which case it is known as the restricted shortest path
problem and admits a FPTAS [8, 18, 21]. In MCP, the objective is to find an s-t path p that simply
obeys a d-vector b of QoS-bounds, i.e., ci(p) =

∑
e∈p ci(e) ≤ bi, ∀1 ≤ i ≤ d. MCP is NP-complete.

For both problems, the case of d = 2 objectives has been extensively studied and there are also
very efficient FPTAS known [8, 21]. For d > 2, apart from the generic approach in [23], only
heuristic methods and pseudopolynomial time algorithms are known [22]. In Section 4.1, we show
how (quality guaranteed) approximate schemes to both MCOP and MCP can be constructed that
have the same complexity with MOSP, thus improving upon previous approaches for any d > 2.

Non-Additive Shortest Paths. In this problem (NASP), we are given a digraph whose edges
are associated with d-dimensional cost vectors and the task is to find a path that minimizes a
certain d-attribute non-linear cost function. NASP is a fundamental problem in several domains
[12, 13, 26], the most prominent of which is finding traffic equilibria [12, 26]. In such applications,
a utility function for a path is defined that typically translates edge attributes (e.g., travel time,
cost, distance, tolls, etc) to a common utility cost measure (e.g., money). Experience shows that
users of traffic networks value certain attributes (e.g., time) non-linearly [19]: small amounts have
relatively low value, while large amounts are very valuable. Also, the vast majority of toll road or
transit systems have a non-additive (non-linear) toll/fare structure [12]. Consequently, the most
interesting theoretical models for traffic equilibria [12, 26] involve minimizing a monotonic non-
linear utility function. NASP is an NP-hard problem, and despite its importance no FPTAS is
known. Previous approaches either deal with exact solutions, thus resulting in pseudopolynomial
algorithms, or concern the efficient solution of the Lagrangian relaxation of NASP (best point in
the convex hull of the Pareto set); see [27] and the discussion in that paper.

In Section 4.2, we show how our FPTAS for MOSP can be used to obtain a FPTAS for NASP.
The complexity bound for NASP is identical to that for MOSP for a rather general form of the
utility function that includes any polynomial of bounded degree with non-negative coefficients.
This constitutes the first FPTAS for NASP.

Non-linear Objectives. Our solution machinery for NASP allows us to provide two general
results for any multiobjective optimization problem. In particular, we show (Section 4.3) that: (i)
given any multiobjective optimization problem along with its FPTAS, we can construct a FPTAS
for its normalized version when the utility function is any polynomial of bounded degree with non-
negative coefficients; (ii) a FPTAS for any multiobjective optimization problem with non-linear
objectives, of the aforementioned form, can be constructed from a FPTAS for a much simpler
version of the problem (with the same feasible solution set and objectives given by the attributes
of the non-linear objective functions in the original problem). Since GAP routines for non-linear
objectives are not known, this constitutes the first generic method for obtaining FPTAS for any
multiobjective optimization problem with such non-linear objectives.

QoS-aware Multicommodity Flow. In the classical weighted multicommodity flow (MCF)
problem, demands and commodity values (that multiply the flow in the objective function) are
considered fixed. In several realistic network design scenarios, however, encountered in communi-
cation and transportation networks [1, 4, 5, 11, 29], this may not be the case, since demands and
values are usually elastic to certain parameters – typically to the QoS provided by the network.
We call this generalized version of the weighted MCF problem as QoS-aware MCF. Consider, for

4

instance, network operators in a public transportation network who wish to route various commodi-
ties (customers with common origin-destination pairs) to meet certain demands [24, 29]. It has been
observed that when a customer is provided with a non-optimal path (route) due to unavailable ca-
pacity, s/he will most likely switch to another operator or even other means of transport and the
probability in doing so increases as the QoS drops. To minimize the loss of customers, the value
charged for the requested service is usually reduced to make the alternative (worse in QoS) path
attractive. A similar situation is encountered with the aforementioned multimedia applications over
the Internet or with information dissemination over various communication networks [5]. In such
a setting, a “server” (owned by some service provider) sends information to “clients”, who retrieve
answers to queries they have posed regarding various types of information (or service). Common
queries are typically grouped together. Answering a query incurs a cost and a data acquisition
time that depends on the communication capacity. When a “client” is provided with a non-optimal
service (e.g., long data acquisition time due to capacity restrictions), s/he will most likely switch to
another provider. On the other hand, the provider may reduce the cost of such a service in order
to minimize the loss. Consequently, network operators or service providers are confronted with the
following design issues: which is the maximum profit obtained with the current capacity policy that
incurs certain QoS-elastic demands and values? How much will this profit improve if the capacity
is increased? Which is the necessary capacity to achieve a profit above a certain threshold? A fast
algorithm for the QoS-aware MCF problem would allow network designers to address effectively
such issues by identifying capacity bottlenecks and proceed accordingly.

We show (Section 4.4) that the QoS-aware MCF problem can be described as a fractional
packing LP, and as such can be approximately solved by a Lagrangian-relaxation method like those
in [10, 14, 25, 31] (see [2] for a comprehensive survey). For our purposes, we use the remarkably
elegant and simple method given by Garg and Könemann [14] (henceforth the GK approach),
combined with the phases technique by Fleischer [10], which assumes the existence of an oracle that
identifies the most violated constraint of the dual LP. While in the classical weighted MCF problem
the construction of the oracle reduces to the standard (single objective) shortest path problem, in
the case of the QoS-aware MCF problem the oracle reduces to a multiobjective (actually non-
additive) shortest path problem due to the QoS-elastic demands and values. Using our FPTAS, we
can construct the required oracle and hence provide a FPTAS for the QoS-aware MCF problem.

2 Preliminaries

Recall that an instance of a multiobjective optimization problem is associated with a set of feasible
solutions Q and a d-vector function f = [f1, . . . , fd]T associating each feasible solution q ∈ Q with
a d-vector f(q). The Pareto set or curve P of Q is defined as the set of all undominated elements
of Q. Given a vector of approximation ratios ρ = [ρ1, . . . , ρd]T (ρi ≥ 1, 1 ≤ i ≤ d), a solution
p ∈ Q ρ-covers a solution q ∈ Q iff it is as good in each objective i by at least a factor ρi, i.e.,
fi(p) ≤ ρi · fi(q), 1 ≤ i ≤ d. A set Π ⊆ Q is a ρ-cover of Q iff for all q ∈ Q, there exists p ∈ Π such
that p ρ-covers q (note that a ρ-cover may contain dominated solutions). A ρ-cover is also called
ρ-Pareto set. If all entries of ρ are equal to ρ, we also use the terms ρ-cover and ρ-Pareto set.

A fully polynomial time approximation scheme (FPTAS) for computing the Pareto set of an
instance of a multiobjective optimization problem is a family of algorithms that, for any fixed
constant ε > 0, contains an algorithm that always outputs an (1 + ε)-Pareto set and runs in time
polynomial in the size of the input and 1

ε .
If a = [a1, a2, · · · , ad]T is a d-dimensional vector and λ a scalar, then we denote by aλ =

[aλ
1 , aλ

2 , · · · , aλ
d]T . A vector with all its elements equal to zero is denoted by 0.

5

3 Single-Source Multiobjective Shortest Paths

In the multiobjective shortest path problem, we are given a digraph G = (V, E) and a d-dimensional
function vector c : E → [IR+]d associating each edge e with a cost vector c(e). We extend the cost
function vector to handle paths by extending the domain to the powerset of E, thus considering
the function c : 2E → [IR+]d, where the cost vector of a path p is the sum of the cost vectors of
its edges, i.e., c(p) =

∑
e∈p c(e). Given two nodes v and w, let P (v, w) denote the set of all v-w

paths in G. In the multiobjective shortest path problem, we are asked to compute the Pareto set of
P (v, w) w.r.t. c. In the single-source multiobjective shortest path (SSMOSP) problem, we are given
a node s and the task is to compute the Pareto sets of P (s, v) w.r.t. c, ∀v ∈ V .

Given a vector ε = [ε1, ε2, · · · , εd−1]T of error parameters (εi > 0, 1 ≤ i ≤ d − 1) and a
source node s, in this section we present an algorithm that computes, for each node v, a ρ-cover of
P (s, v), where ρ = [1 + ε1, 1 + ε2, · · · , 1 + εd−1, 1]T . Note that we can be exact in one dimension
(here w.l.o.g. the d-th one), without any impact on the running time. In the following, let cmin

i ≡
mine∈E ci(e), cmax

i ≡ maxe∈E ci(e), and Ci = cmax
i

cmin
i

, for all 1 ≤ i ≤ d. Let also P i(v, w) denote the

set of all v-w paths in G with no more than i edges; clearly, Pn−1(v, w) ≡ P (v, w).

3.1 The SSMOSP algorithm

Our algorithm can be viewed as a generalization of the classical (label correcting) Bellman-Ford
algorithm. Previous algorithms that follow such an approach [3, 6, 7] have an exponential time
complexity, since they keep all undominated solutions (exponentially large sets of labels). The key
idea of our method is that we can implement the label sets as arrays of polynomial size by relaxing
the requirements for strict Pareto optimality to that of ρ-covering.

We represent a path p = (e1, e2, · · · , ek−1, ek) by a label that is a tuple (c(p), pred(p), lastedge(p)),
where c(p) =

∑
e∈p c(e) is the d-dimensional cost vector of the path, pred(p) = ~q is a pointer to

the label of the subpath q = (e1, e2, · · · , ek−1) of p, and lastedge(p) = ek points to the last edge
of p. An empty label is represented by (0, null, null), while a single edge path has a null pred
pointer. This representation allows us to retrieve the entire path, without implicitly storing its
edges, by following the pred pointers. Let r = [r1, . . . , rd−1, 1] be a vector of approximation ratios.
The algorithm proceeds in rounds. In each round i and for each node v the algorithm computes a
set of labels Πi

v, which is an ri-cover of P i(s, v). We implement these sets of labels using (d − 1)-
dimensional arrays Πi

v[0..blogr1
(nC1)c, 0..blogr2

(nC2)c, · · · , 0..blogrd−1
(nCd−1)c], and index these

arrays using (d− 1)-vectors. This is done by defining a function pos : 2E → [IN0]d−1. For a path p,
pos(p) = [blogr1

c1(p)

cmin
1

c, blogr2

c2(p)

cmin
2

c, · · · , blogrd−1

cd−1(p)

cmin
d−1

c]T gives us the position in Πi
v correspond-

ing to p. The definition of pos along with the fact that for any path p we have ci(p) ≤ (n−1)cmax
i ,

∀1 ≤ i ≤ d, justifies the size of the arrays.
Initially, Π0

v = ∅, for all v ∈ V − {s}, and Π0
s contains only the trivial empty path. For each

round i ≥ 1 and for each node v the algorithm computes Πi
v as follows (see also Fig. 1). Initially, we

set Πi
v equal to Πi−1

v . We then examine the incoming edges of v, one by one, and perform an Extend-
&-Merge operation for each edge examined. An Extend-&-Merge operation takes as input an edge
e = (u, v) and the sets Πi−1

u and Πi
v. It extends all the labels in Πi−1

u by e, and merges the resulting
set of s-v paths with Πi

v, while maintaining at most one label (the one with the smallest cd cost) for
each position of the Πi

v array, thus keeping the size of the sets polynomially bounded. In particular,
the Extend-&-Merge operation on an edge e = (u, v) is implemented as follows. We iterate through
all labels p ∈ Πi−1

u and extend each p by e forming a new label (path) q = (c(p) + c(e), ~p, e).
We then insert q in the position pos(q) = [blogr1

c1(q)

cmin
1

c, blogr2

c2(q)

cmin
2

c, · · · , blogrd−1

cd−1(q)

cmin
d−1

c]T of Πi
v,

unless this position is already filled in with a label q′ for which cd(q′) ≤ cd(q).

6

SSMOSP(G, s, c, r){
forall v ∈ V {Π0

v = ∅;}
Π0

s[0] = {(0, null, null)};
for i = 1 to n− 1{

forall v ∈ V {
Πi

v = Πi−1
v ;

forall e = (u, v) ∈ E
Πi

v = Extend-&-Merge(Πi
v, Π

i−1
u , e);

}
}

}

function Extend-&-Merge(R, Q, e) {
forall p ∈ Q {

q = (c(p) + c(e), ~p, e);
pos(q) = [blogr1

c1(q)

cmin
1

c, · · · , blogrd−1

cd−1(q)

cmin
d−1

c]T ;

if R[pos(q)] = null or cd(R[pos(q)]) > cd(q) {
R[pos(q)] = q;

}
}
return R;

}

Figure 1: The SSMOSP algorithm

The following lemma establishes the correctness of our approach.

Lemma 1 For all v ∈ V and for all i ≥ 0, after the i-th round Πi
v ri-covers P i(s, v).

Proof. It suffices to prove that for all p ∈ P i(s, v), there exists q ∈ Πi
v such that c`(q) ≤ ri

`c`(p),
∀1 ≤ ` ≤ d. We prove this by induction.

For the basis of the induction (i = 1) consider a single edge path p ≡ (e) ∈ P 1(s, v). At
each round all incoming edges of v are examined and an Extend-&-Merge operation is executed
for each edge. After the first round and due to the if condition of the Extend-&-Merge operation,
position pos(p) of Π1

v contains a path q for which: (i) pos(q) = pos(p); and (ii) cd(q) ≤ cd(p).
From (i) it is clear that for all 1 ≤ ` ≤ d − 1, we have blogr`

c`(q)

cmin
`

c = blogr`

c`(p)

cmin
`

c, and therefore

logr`

c`(q)

cmin
`

−1 ≤ logr`

c`(p)

cmin
`

. This, along with (ii) and the fact that rd = 1, implies that c`(q) ≤ r`c`(p),
∀1 ≤ ` ≤ d.

For the induction step consider a path p ≡ (e1, e2, . . . , ek = (u, v)) ∈ P i(s, v), for some k ≤ i.
The subpath p′ ≡ (e1, e2, . . . , ek−1) of p has at most i−1 edges and applying the induction hypothesis
we get that there exists a path q′ ∈ Πi−1

u such that c`(q′) ≤ ri−1
` c`(p′), 1 ≤ ` ≤ d. Let now q̄ be

the concatenation of q′ with edge ek. Then, we have:

c`(q̄) ≤ ri−1
` c`(p), 1 ≤ ` ≤ d (1)

It is clear by our algorithm that during the Extend-&-Merge operation for edge ek in the i-th round
q̄ was examined. Moreover, at the end of the i-th round and due to the if condition of the Extend-
&-Merge operation, position pos(q̄) of Πi

v contains a path q for which: (iii) pos(q) = pos(q̄); and
(iv) cd(q) ≤ cd(q̄). From (iii) it is clear that blogr`

c`(q)c = blogr`
c`(q̄)c, ∀ 1 ≤ ` ≤ d − 1, and

therefore logr`
c`(q)− 1 ≤ logr`

c`(q̄), ∀ 1 ≤ ` ≤ d− 1, which implies that

c`(q) ≤ r`c`(q̄), 1 ≤ ` ≤ d− 1. (2)

Since rd = 1, combining now (iv) and (2) with (1), we get that c`(q) ≤ ri
`c`(p), ∀ 1 ≤ ` ≤ d.

We now turn to the time complexity.

Lemma 2 Algorithm SSMOSP computes, for all v ∈ V , an rn−1-cover of P (s, v) in total time
O(nm

∏d−1
j=1(blogrj

(nCj)c+ 1)).

Proof. From Lemma 1, it is clear that, for any v ∈ V , Πn−1
v is an rn−1-cover of Pn−1(s, v) ≡ P (s, v),

since any path has at most n − 1 edges. The algorithm terminates after n − 1 rounds. In each

7

round it examines all of the m edges and performs an Extend-&-Merge operation. The time of this
operation is proportional to the size of the arrays used, which equals

∏d−1
j=1(blogrj

(nCj)c+ 1) and
therefore the total time complexity is O(nm

∏d−1
j=1(blogrj

(nCj)c+ 1)).

Applying Lemma 2 with r = [(1 + ε1)
1

n−1 , (1 + ε2)
1

n−1 , · · · , (1 + εd−1)
1

n−1 , 1], and taking into
account that ln(1 + δ) ≈ δ for small δ, yields the main result of this section.

Theorem 1 Given a vector ε = [ε1, ε2, · · · , εd−1]T of error parameters and a source node s, there
exists an algorithm that computes, for all v ∈ V , a ρ-cover of P (s, v) (set of all s-v paths), where
ρ = [1 + ε1, 1 + ε2, · · · , 1 + εd−1, 1]T , in total time O(ndm

∏d−1
j=1(

1
εj

log(nCj))).

Let Cmax = max1≤j≤d−1 Cj . In the special case, where εi = ε, ∀1 ≤ i ≤ d − 1, we have the
following result.

Corollary 1 For any error parameter ε > 0, there exists a FPTAS for the single-source multiob-
jective shortest path problem with d objectives on a digraph G that computes (1 + ε)-Pareto sets
(one for each node of G) in total time O(nm(n log(nCmax)

ε)d−1).

3.2 Extensions.

Further improvements can be obtained in the case of DAGs by exploiting the topological ordering
of such graphs. In particular for each node v we maintain a set Πv as in the general algorithm.
Initially Πv = ∅, ∀v ∈ V − {s} and Πv[0] = {(0, null, null)}. The algorithm visits all the nodes
w.r.t. the topological order and for each visited node, it performs an Extend-&-Merge operation to
all its outgoing edges. We can show that in this case the time reduces by a factor of n in all the
aforementioned results. For instance, the time of Corollary 1 becomes O(m(n log(nCmax)

ε)d−1).
It is also quite easy to see that the algorithm actually computes an approximate Pareto curve

w.r.t. the additional objective of minimizing the number of hops (number of edges in the path).
Indeed, Lemma 1 implies that for any v ∈ V the union of all Πi

v, over all i rounds, constitutes an
approximate Pareto curve also w.r.t. that additional objective.

4 Applications

We show how the result of Theorem 1 can be used to provide efficient approximate solutions to the
MCOP, MCP, NASP, and QoS-aware MCF problems mentioned in the Introduction.

4.1 Multiple Constrained (Optimal) Paths

Let ρ = [1 + ε1, 1 + ε2, · · · , 1 + εd−1, 1]T and let Π be a ρ-cover Π of P (s, t), constructed using the
SSMOSP algorithm as implied by Theorem 1. For MCOP, choose p′ = argminp∈Π{cd(p); ci(p) ≤
(1 + εi)bi, ∀1 ≤ i ≤ d − 1}. This provides a so-called acceptable solution in the sense of [16] by
slightly relaxing the QoS-bounds; that is, the path p′ is at least as good as the MCOP-optimum
and is nearly feasible, violating each QoS-bound 1 ≤ i ≤ d − 1 by at most an 1 + εi factor. For
MCP, choose a path p′ ∈ Π that obeys the QoS-bounds, or answer that there is no path p in
P (s, t) for which ci(p) ≤ (1 + εi)bi, ∀1 ≤ i ≤ d. By Theorem 1, the required time for both cases
is O(ndm

∏d−1
j=1(

1
εj

log(nCj)), which can be reduced to O(ndm
∏d−1

j=1(
1
εj

log(min{nCj , bj/cmin
j })) by

observing that it is safe to discard any path p for which cj(p) > (1 + εj)bj for some 1 ≤ j ≤ d− 1
(thus reducing the size of the Πi

v arrays).

8

4.2 Non-Additive Shortest Paths

In the Non-Additive Shortest Path (NASP) problem we are given a digraph G = (V, E) and a d-
dimensional function vector c : E → [IR+]d associating each edge e with a vector of attributes c(e).
A path p is also associated with a vector of attributes and c(p) =

∑
e∈p c(e). We are also given a

d-attribute non-decreasing and non-linear cost function U : [IR+]d → IR. The objective is to find a
path p∗, from a specific source node s to a destination t, that minimizes the objective function, i.e.,
p∗ = argminp∈P (s,t)U(c(p)). (It is easy to see that in the case where U is linear, NASP reduces to
the classical single-objective shortest path problem.) For the general case of non-linear U , it is not
difficult to see that NASP is NP-hard (via a reduction from the restricted shortest path problem).

To obtain our FPTAS, we consider a quite general family of non-linear functions U(x). Specif-
ically, let U(x) =

∑N
j=1 αjGj(xd)

∏d−1
k=1 xk

βjk , where αj , βjk ≥ 0, and each Gj is any non-negative
and non-decreasing function. Typically, N , αj , and βjk are considered constants, and we assume
that the value of U(x), for any x, can be computed in constant time. We can prove the following.

Theorem 2 Let U(x) =
∑N

j=1 αjGj(xd)
∏d−1

k=1 xk
βjk be a cost function, where αj , βjk ≥ 0, and

Gj be any non-negative and non-decreasing functions. Then, for any ε > 0, there exists an algo-
rithm that computes a (1 + ε)-approximation to the NASP optimum with respect to U(x) in time
O(ndm(log(nCmax)∆

ε)d−1), where ∆ = max1≤j≤N
∑d−1

k=1 βjk.

Proof. Apply Theorem 1 and construct a ρ-Pareto set Π of P (s, t), with ρi = (1 + ε)
1
∆ , ∀1 ≤ i ≤

d− 1, and ρd = 1. Pick p′ = argminp∈Π(U(c(p))). Let p∗ denote the optimal solution.
By the definition of Π we know that there exists some q ∈ Π such that ck(q) ≤ (1 + ε)

1
∆ ck(p∗),

∀1 ≤ k ≤ d− 1, and cd(q) ≤ cd(p∗). Since αj , βjk ≥ 0, ∀j, k, we get:

U(c(q)) =
N∑

j=1

αjGj(cd(q))
d−1∏

k=1

(ck(q))βjk ≤
N∑

j=1

αjGj(cd(p∗))
d−1∏

k=1

((1 + ε)
1
∆ ck(p∗))βjk

≤
N∑

j=1

((1 + ε)
1
∆)

∑d−1
k=1 βjkαjGj(cd(p∗))

d−1∏

k=1

(ck(p∗))βjk ≤ ((1 + ε)
1
∆)∆U(c(p∗))

Since p′ = argminp∈Π(U(c(p))), we get U(c(p′)) ≤ U(c(q)) ≤ (1 + ε)U(c(p∗)).
It is clear from Theorem 2 that we can still have a FPTAS for NASP, when N and βjk are

bounded by some polynomial in the size of the input, and U(x), ∀x, can be computed in time
polynomial in the size of the input. A straightforward application of Theorem 2 gives the following.

Corollary 2 If the cost function is of the form U([x1, x2]T) = x1G1(x2) + G2(x2), with G1,G2

non-negative and non-decreasing, then, for any ε > 0, there is an algorithm that computes an
(1 + ε)-approximation to the optimum of NASP in time O(n2m log(nC1)

ε).

4.3 Non-linear Objectives

The machinery of Theorem 2 can be used to obtain further results for multiobjective optimization
problems. Let M be (an instance of) a multiobjective optimization problem with set of feasible
solutions Q and vector of objective functions c = [c1, . . . , cd]T , associating each feasible solution
q ∈ Q with a d-vector of attributes c(q).

Let N be the normalized version of M w.r.t. a non-linear utility function U : [IR+]d → IR; i.e.,
the objective of N is minq∈Q U(c(q)). Arguing similarly to Theorem 2 we can prove the following.

9

Theorem 3 Let the objective function of N be of the form U(x) =
∑N

j=1 αj
∏d

k=1 xk
βjk . If there

exists a FPTAS for M with time complexity poly(1/ε,m), then there exists a FPTAS for N with
complexity poly(∆/ε, m), where m is the input size of M and ∆ = max1≤j≤N

∑d
k=1 βjk.

Now, let M′ be a multiobjective optimization problem, defined on the same with M set of
feasible solutions Q, but having a vector of objective functions U = [U1, . . . , Uh]T associating each
q ∈ Q with an h-vector U(q). These objective functions are defined as Ui(q) = Ui(c(q)), 1 ≤ i ≤ h,
where Ui : [IR+]d → IR are non-linear, non-decreasing functions. We can show the following.

Theorem 4 Let the objective functions ofM′ be of the form Ui(x) =
∑Ni

j=1 αij
∏d

k=1 xk
βijk . If there

exists a FPTAS for M with time complexity poly(1/ε, m), then there exists a FPTAS for M′ with
complexity poly(∆/ε,m), where m is the input size of M and ∆ = max1≤i≤h max1≤j≤Ni

∑d
k=1 βijk.

Proof. We construct an (1 + ε)
1
∆ -Pareto curve Π for M and show that Π constitutes an (1 + ε)-

Pareto curve for M′. To see this, it suffices to prove that for all q ∈ Q, there exists p ∈ Π such
that Ui(p) ≤ (1 + ε)Ui(q), ∀1 ≤ i ≤ h.

By the construction of Π he have that for all q ∈ Q there exists p ∈ Π such that ck(p) ≤
(1 + ε)

1
∆ ck(q), ∀1 ≤ k ≤ d. Since βijk ≥ 0, we have that

(ck(p))βijk ≤ (1 + ε)
βijk
∆ (ck(q))βijk , ∀1 ≤ i ≤ h, 1 ≤ j ≤ Ni, 1 ≤ k ≤ d.

Multiplying over all k we get

d∏

k=1

(ck(p))βijk ≤
d∏

k=1

(1 + ε)
βijk
∆

d∏

k=1

(ck(q))βijk , ∀1 ≤ i ≤ h, 1 ≤ j ≤ Ni.

Taking the weighted sum over all j gives us

Ni∑

j=1

αij

d∏

k=1

(ck(p))βijk ≤
d∏

k=1

(1 + ε)
βijk
∆

Ni∑

j=1

αij

d∏

k=1

(ck(q))βijk , ∀1 ≤ i ≤ h.

By definition,
∑d

k=1 βijk ≤ ∆, ∀1 ≤ i ≤ h, 1 ≤ j ≤ Ni, and therefore

Ni∑

j=1

αij

d∏

k=1

(ck(p))βijk ≤ (1 + ε)
Ni∑

j=1

αij

d∏

k=1

(ck(q))βijk , ∀1 ≤ i ≤ h,

and thus Ui(p) ≤ (1 + ε)Ui(q), ∀1 ≤ i ≤ h.

4.4 QoS-aware Multicommodity Flow Problem

4.4.1 Problem Definition

We are given a digraph G = (V, E), along with a capacity function u : E → IR+
0 on its edges. We are

also given a set of k commodities. A commodity i, 1 ≤ i ≤ k, is a tuple (si, ti, di, wti(·), fi(·), vi(·)),
whose attributes are defined as follows. Attributes si ∈ V and ti ∈ V are the source and the
target nodes, respectively, while di ∈ IR+

0 is the demand of the commodity. The weight function
wti : E → IR+

0 quantifies the quality of service (QoS) for commodity i (smaller weight means better
QoS). For any si-ti path p, wti(p) :=

∑
e∈p wti(e) and let δi(si, ti) be the length of the shortest

path from si to ti w.r.t. the weight function wti(·). The non-decreasing function fi : [1,∞) → [0, 1]
is the elasticity function of i that gives the portion fi(x) of the commodity’s demand di that we
lose if the provided path is x times worse than the shortest path w.r.t wti(·). Commodity i is also

10

associated with a non-increasing profit function vi : [1,∞) → IR+
0 that gives the profit vi(x) from

shipping one unit of flow of commodity i through a path that is x times worse than the shortest
path w.r.t wti(·).

Let Pi = {p : p is an si-ti path} be the set of candidate paths along which flow from commodity
i can be sent. Consider such a particular path p ∈ Pi and let Xi(p) ∈ IR+

0 denote the flow of
commodity i routed along p. The definition of the elasticity function implies that for each unit
of flow of commodity i routed along p, there are 1

1−fi(x) units consumed from the demand of the
commodity. Thus, we define a consumption function hi : [1,∞) → [1,∞) with hi(x) = 1

1−fi(x) . Since
fi is non-decreasing, hi is also non-decreasing. Accordingly, we define the consumption hi(p) ≥ 1 of
a path p as the amount of demand consumed for each unit of flow routed along p:

hi(p) = hi

(
wti(p)

δi(si, ti)

)
.

Similarly, we define the value vi(p) of a path p as the profit from routing one unit of flow of
commodity i through p:

vi(p) = vi

(
wti(p)

δi(si, ti)

)
.

The objective is to maximize the total profit, which is the sum over all commodities of the flow
routed from each commodity multiplied by the corresponding QoS-elastic value, subject to the
capacity and demand constraints and w.r.t. the QoS-elasticity of the demands. To formulate the
QoS-aware MCF problem as a linear program, for each commodity i and each path p ∈ Pi, we
introduce a variable Xi(p) denoting the flow of commodity i routed along p. Using the above
definitions, the QoS-aware MCF problem can be described as follows.

max
k∑

i=1

∑

p∈Pi

vi(p)Xi(p) (3)

s.t.
k∑

i=1

∑

e∈p,p∈Pi

Xi(p) ≤ u(e),∀e ∈ E (4)

∑

p∈Pi

Xi(p)hi(p) ≤ di,∀i = 1 . . . k (5)

4.4.2 Review of the GK Approach

A (pure) fractional packing LP is a linear program of the form max{cT x|Ax ≤ b, x ≥ 0}, where
AM×N , bM×1 and cN×1 have positive entries. By scaling we also assume that A(i, j) ≤ b(i), ∀i, j.
The dual of that problem is min{bT y|AT y ≥ c, y ≥ 0}. In [14], Garg and Könemann present
a remarkably elegant and simple FPTAS for solving fractional packing LPs. Their algorithm
maintains a primal and a dual solution. At each step they identify the most violated constraint in
the dual and increase the corresponding primal variable, and the dual variables. The most violated
constraint is identified by using an exact oracle.

The algorithm works as follows. Let the length of a column j with respect to the dual variables
y be lengthy(j) =

∑
i

A(i,j)
c(j) y(i). Let a(y) denote the length of the minimum-length column, i.e.,

a(y) = minj lengthy(j). Let also D(y) = bT y be the dual objective value with respect to y. Then,
the dual problem is equivalent to finding an assignment y that minimizes D(y)

a(y) . The procedure is
iterative. Let yk−1 be the dual variables and fk−1 be the value of the primal solution at the beginning
of the k-th iteration. The initial values of the dual variables are y0(i) = δ/b(i), where δ is a constant
to be chosen later, and the primal variables are initially zero. In the k-th iteration, a call to an

11

oracle is made that returns the minimum length column q of A, i.e., lengthyk−1
(q) = α(yk−1). Let

now p = argmini
b(i)

A(i,q) be the “minimum capacity” row. In this iteration, we increase the primal

variable x(q) by b(p)
A(p,q) , thus the primal objective becomes fk = fk−1+c(q) b(p)

A(p,q) . The dual variables
are updated as

yk(i) = yk−1(i)
(

1 + ε
b(p)/A(p, q)
b(i)/A(i, q)

)
,

where ε > 0 is a constant depending on the desired approximation ratio. For brevity we denote
a(yk) and D(yk) by a(k) and D(k), respectively. The procedure stops at the first iteration t such
that D(t) ≥ 1. The final primal solution constructed may not be feasible since some of the packing
constraints may be violated. However, scaling the final value of the primal variables by log1+ε

1+ε
δ

gives a feasible solution (see Lemma 7 in the Appendix).
The above algorithm can be straightforwardly extended to work with an approximate oracle1.

Simply, in the k-th iteration we call an oracle that returns an (1+w)-approximation of the minimum
length column of A. If q is the column returned by the oracle, then we have that lengthyk−1

(q) ≤
(1 + w)a(yk−1). By working similarly to [14] and choosing δ = (1 + ε)((1 + ε)M)−1/ε, we can show
the following theorem (whose proof is in the Appendix for the sake of completeness).

Theorem 5 There is an algorithm that computes an (1−ε)−2(1+w)-approximation to the packing
LP after at most Mdlog1+ε

1+ε
δ e = Md1

ε log1+ε Me iterations, where M is the number of rows.

4.4.3 The FPTAS for QoS-aware Multicommodity Flows

Recall the LP formulation of the QoS-aware MCF problem. To obtain its dual, we introduce for
each edge e a dual variable l(e) that corresponds to the capacity constraint (4) on e, and for each
commodity i we introduce a dual variable φi that corresponds to the demand constraint (5) on i.
The dual LP becomes

max D =
∑

e∈E

l(e)u(e) +
k∑

i=1

φidi (6)

s.t. l(p) + φihi(p) ≥ vi(p), ∀i = 1 . . . k,∀p ∈ Pi (7)

where l(p) :=
∑

e∈p l(e). It can be easily seen that the primal is a (pure) fractional packing
LP. We solve this problem using the GK approach, which boils down in constructing a suitable
approximate oracle to identify the most violated constraint (7) of the dual. To apply the algorithm,
we have to scale the capacities and demands by min{mine∈E u(e), min1≤i≤k

di
hmax

i
}, where hmax

i =

hi(
(n−1)maxe∈E wti(e)

δi(si,ti)
) is an upper bound on the maximum possible value of hi(·), so that u(e) ≥ 1,

∀e ∈ E, and di ≥ hi(p), ∀1 ≤ i ≤ k, p ∈ Pi.
Given an assignment (l, φ) for the dual variables, the length of a dual constraint is defined

as length(l,φ)(i, p) = l(p)+φihi(p)
vi(p) and by a(l, φ) = min1≤i≤k minp∈Pi length(l,φ)(i, p) we denote the

length of the most violated constraint. The algorithm maintains a dual variable l(e) for each edge
e, initially equal to δ

u(e) , and a dual variable φi for each commodity i, initially equal to δ
di

, where

δ = (1 + ε)((1 + ε)(m + k))−
1
ε .

The algorithm proceeds in iterations. Initially all flows are zero. In each iteration, it makes
a call to an oracle that returns a commodity i′ and a path p ∈ Pi′ that approximately minimizes
length(l,φ)(i, q) over all 1 ≤ i ≤ k and q ∈ Pi; i.e., we have length(l,φ)(i′, p) ≤ (1 + ε)a(l, φ). It then

1Such an extension of the GK approach to work with approximate oracles was known before [15], and its combi-
nation with the phases technique of Fleischer [10] for solving packing problems has been first observed by Young [31]
for solving the more general case of mixed packing LPs.

12

QoS-MCF(G, u, s, t,d, wt, v, ε) {
forall e ∈ E { l(e) = δ

u(e) }
for i = 1 to k { φi = δ

di
}

for i = 1 to k { forall e ∈ E { Xi(e) = 0 }}
D = (m + k)δ;
for i = 1 to k { pi = NASP(G, si, ti, l, wti, ε) }
a = 1

1+ε min1≤i≤k

{
l(pi)+φihi(pi)

vi(pi)

}
;

i = 1;
while D ≤ 1 {

(p, i, a) = QoS-MCF-oracle(G, s, t, l, wt, v, φ, ε, i, a);
∆ = min{ di

hi(p) , mine∈p u(e)};
Xi(p) = Xi(p) + ∆;
forall e ∈ p do l(e) = l(e)(1 + ε ∆

u(e));

φi = φi(1 + ε∆hi(p)
di

);
D = D + ε∆ l(p)+φihi(p)

vi(p) ;
}
for i = 1 to k { forall e ∈ E { Xi(e) = Xi(e)/log1+ε

1+ε
δ }}

}

QoS-MCF-oracle(G, s, t, l, wt, v, φ, ε, j, a) {
while true {

for i = j to k {
p = NASP(G, si, ti, l, wti, ε);
if l(p)+φihi(p)

vi(p) ≤ a(1 + ε)2

return (p, i, a);
}
a = a(1 + ε); /* update rule for

next phase */
}

}

Figure 2: The approximation algorithm for the QoS-MCF problem.

augments ∆ = min{ d′i
h′i(p)

, mine∈p u(e)} units of flow from commodity i′ through p and updates the

corresponding dual variables by setting l(e) = l(e)(1 + ε ∆
u(e)), ∀e ∈ p, and φi′ = φi′(1 + ε

∆hi′ (p)
di′

).

The algorithm terminates at the first iteration for which D =
∑

e∈E l(e)u(e) +
∑k

i=1 φidi > 1, and
scales the final flow by log1+ε

1+ε
δ .

We now proceed to describe the oracle. Observe that our task is to approximately minimize,
overall 1 ≤ i ≤ k and q ∈ Pi, the function

l(q) + φihi(q)
vi(q)

=
l(q) + φi · hi

(
wti(q)

δi(si,ti)

)

vi

(
wti(q)

δi(si,ti)

) .

Note that for a fixed i, the above function is of the form required by Corollary 2 with c = [l, wti]T ,

G1(x) = 1

vi

(
x

δi(si,ti)

) and G2(x) = φi ·
hi

(
x

δi(si,ti)

)

vi

(
x

δi(si,ti)

) . Consequently, for a fixed i we can make use of

a non-additive shortest path routine p̄ = NASP(G, si, ti, l, wti, ε) that returns an si-ti path p̄ that
approximately (within (1 + ε)) minimizes the above function, overall q ∈ Pi.

To efficiently implement the oracle, we do not call the NASP routine for every value of i. Instead,
the oracle proceeds in phases (like in [10]), maintaining a lower bound estimation a of a(l, φ), initially
equal to a = 1

1+ε min1≤i≤k{ l(pi)+φihi(pi)
vi(pi)

|pi = NASP(G, si, ti, l, wti, ε)}. In each phase, the oracle
examines the commodities one by one by performing NASP computations. For each commodity i
the oracle returns any path p = NASP(G, si, ti, l, wti, ε)} for which l(p)+φihi(p)

vi(p) ≤ a(1 + ε)2. It then
continues with commodity i + 1. After all k commodities are considered in a phase, we know that
a(l, φ) ≥ (1 + ε)a and proceed to the next phase by setting a = (1 + ε)a. The pseudocodes of our
algorithm and the oracle are given in Fig. 2.

To discuss correctness and time bounds, we start with the following lemma that establishes an

13

upper bound on the ratio of the lengths of the minimum length column at the start and the end of
the GK algorithm.

Lemma 3 Let a(0) and a(t) be the lengths of the minimum length column at the start and the end
of the algorithm, respectively. Then, a(t)

a(0) ≤ 1+ε
δ .

Proof. By the initial values of the dual variables, we have a(0) = minj
∑

i
A(i,j)
c(j) y0(i) = δ ·

minj
∑

i
A(i,j)
c(j)b(i) . Since now the algorithm stops at the first iteration t such that D(t) > 1 and the

dual variables increase by at most 1+ ε in each iteration, it holds that D(t) ≤ 1+ ε. Consequently,∑
i b(i)yt(i) ≤ 1 + ε, which implies that yt(i) ≤ (1 + ε) 1

b(i) , ∀i. Hence, a(t) = minj
∑

i
A(i,j)
c(j) yt(i) ≤

(1 + ε) ·minj
∑

i
A(i,j)
c(j)b(i) = 1+ε

δ a(0).
The following lemma establishes the approximation guarantee for the oracle.

Lemma 4 A call to the oracle returns an (1 + ε)2-approximation of the most violated constraint
in the dual.

Proof. Let aj be the value of a during the j-th phase of the algorithm. It suffices to show that for
all phases j ≥ 1, aj ≤ a(l, φ).

Initially (j = 1), we set a1 = 1
1+ε min1≤i≤k

{
l(pi)+φihi(pi)

vi(pi)
|pi = NASP(G, si, ti, l, wti, ε)

}
. By the

definition of the NASP routine, we get a1 ≤ 1
1+ε min1≤i≤k

{
(1 + ε)minp∈Pi

l(p)+φihi(p)
vi(p)

}
= a(l, φ).

For any subsequent phase j > 1, consider phase j − 1. The oracle finishes the examination of
a commodity i and proceeds with i + 1 only when a call to NASP(G, si, ti, l, wti, ε) in phase j − 1
returns a path pi for which l(pi)+φihi(pi)

vi(pi)
> aj−1(1 + ε)2. This inequality and the definition of the

NASP routine imply that at the end phase j − 1, we have for each commodity i

aj−1(1 + ε)2 < (1 + ε) min
p∈Pi

l(p) + φihi(p)
vi(p)

.

Hence, by the definition of a(l, φ), and since l(e) can only increase during the algorithm, at the end
of the phase we have aj−1(1 + ε)2 < (1 + ε)a(l, φ). Since aj = aj−1(1 + ε), we get aj < a(l, φ).

To establish a bound on the time complexity of the algorithm, we need to count the number
of NASP computations. Clearly, at most one NASP computation is needed per augmentation of
flow. The rest of NASP computations (not leading to an augmentation) are bounded by k times
the number of phases. The following lemma establishes a bound on the total number of phases.

Lemma 5 The number of phases of algorithm QoS-MCF is bounded by d1
ε log1+ε(m + k)e+ 2.

Proof. Let a(0) and a(t) be the lengths of the most violated constraint at the start and the end of
the algorithm, respectively. Let now aj be the value of a during the j-th phase of the algorithm,
and T be the last phase of the algorithm.

Initially, we set a1 = 1
1+ε min1≤i≤k

{
l(pi)+φihi(pi)

vi(pi)
|pi = NASP(G, si, ti, l, wti, ε)

}
and by the defi-

nition of the NASP routine we get that a(0) ≤ (1+ε)a1. From the proof of Lemma 4, we have that
aT ≤ a(t), and from Lemma 3 we get that a(t) ≤ 1+ε

δ a(0). Combining the last three inequalities

we get aT ≤ (1+ε)2

δ a1. By the update rule for a on each phase, we have that aT = a1(1 + ε)T−1,

and therefore a1(1 + ε)T−1 ≤ (1+ε)2

δ a1, which implies that T ≤ log1+ε
(1+ε)3

δ . Hence, the number of

phases is bounded by dlog1+ε
(1+ε)3

δ e = d1
ε log1+ε(m + k)e+ 2, since δ = (1 + ε)((1 + ε)(m + k))−

1
ε .

We are now ready for the main result of this section.

14

Theorem 6 There is an algorithm that computes an (1− ε)−2(1 + ε)2-approximation to the QoS-
aware MCF problem in time O((1

ε)3(m+k) log(m+k)mn2(1
ε log(m+k)+ log(nU)), where n is the

number of nodes, m is the number of edges, k is the number of commodities, and U = maxe∈E u(e)
mine∈E u(e) .

Proof. From Theorem 5 (with M = m+k) and Lemma 4 we have that the algorithm computes an
(1−ε)−2(1+ε)2-approximation to the optimal and terminates after at most (m+k)dlog1+ε(m+k)e
augmentations. Since for each phase at most k NASP computations do not lead to an augmentation,
we get from Lemma 5 that the oracle performs at most kd1

ε log1+ε(m+k)e+2k NASP computations
not leading to an augmentation. Therefore, the total number of NASP computations during an
execution of the algorithm is O((m + k) log1+ε(m + k)).

A NASP computation is carried out in time O(1
εn2m log(nL)), where L = maxe∈E l(e)

mine∈E l(e) . From
the initialization of l(e), and since they can only increase during the algorithm, it is clear that
mine∈E l(e) ≥ δ

maxe∈E u(e) . Since now the algorithm stops at the first iteration such that
∑

e∈E l(e)u(e)+∑k
i=1 φidi > 1 and the dual variables increase by at most 1 + ε in each iteration, it holds that∑
e∈E l(e)u(e) +

∑k
i=1 φidi ≤ 1 + ε. Consequently at the end of the algorithm we have l(e) ≤

(1+ε)
u(e) , ∀e ∈ E, and thus maxe∈E l(e) ≤ 1+ε

mine∈E u(e) . Hence, L ≤ 1+ε
δ U . By our choice of δ =

(1 + ε)((1 + ε)(m + k))−
1
ε , we have that L ≤ ((1 + ε)(m + k))

1
ε U , and hence the time re-

quired for a NASP computation is O(1
εmn2(1

ε log(m + k) + log(nU))). Thus, we get an algo-
rithm that computes an (1− ε)−2(1 + ε)2-approximation to the QoS-aware MCF problem in time
O((1

ε)3(m + k) log(m + k)mn2(1
ε log(m + k) + log(nU)), which is polynomial to the input and 1

ε .

Acknowledgments. We are indebted to Naveen Garg, Jochen Könemann, Spyros Kontogiannis,
and Frank Wagner for various useful discussions.

References

[1] M. Beckmann, G. McGuire, and C. Winsten, Studies in the Economics of Transportation, Yale
University Press, 1956.

[2] D. Bienstock, Potential Function Methods for Approximately Solving Linear Programming
Problems: Theory and Practice, Kluwer Academic Publishers, Boston, 2002.

[3] H. Corley and I. Moon, “Shortest Paths in Networks with Vector Weights”, Journal of Opti-
mization Theory and Applications, 46:1(1985), pp. 79-86.

[4] S. Dafermos, “The General Multimodal Network Equilibrium Problem with Elastic Demands”,
Networks, 12 (1982), pp. 57-72.

[5] A. Datta, D. Vandermeer, A. Celik, and V. Kumar, “Broadcast Protocols to Support Effi-
cient Retrieval from Databases by Mobile Users”, ACM Transactions on Database Systems,
24:1 (1999), pp. 1-79.

[6] M. Ehrgott, Multicriteria Optimization, Springer, 2000.

[7] M. Ehrgott and X. Gandibleux (Eds), Multiple Criteria Optimization – state of the art anno-
tated bibliographic surveys, Kluwer Academic Publishers, Boston, 2002.

[8] F. Ergun, R. Sinha and L. Zhang “An improved FPTAS for restricted shortest path”, Infor-
mation Processing Letters, 83 (2002) pp.287-291.

15

[9] J. Figueira, S. Greco, and M. Ehrgott (Eds), Multiple Criteria Decision Analysis – state of the
art surveys, Springer, 2005.

[10] L.K. Fleischer, “Approximating fractional multicommodity flows independent of the number
of commodities”, SIAM Journal on Discrete Mathematics, 13:4 (2000), pp. 505-520.

[11] M. Florian and S. Nguyen, “A Method for Computing Network Equilibrium with Elastic
Demands”, Transportation Science, 8 (1974), pp. 321-332.

[12] S. Gabriel and D. Bernstein, “The Traffic Equilibrium Problem with Nonadditive Path Costs”,
Transportation Science 31:4(1997), pp. 337-348.

[13] S. Gabriel and D. Bernstein, “Nonadditive Shortest Paths: Subproblems in Multi-Agent
Competitive Network Models”, Computational & Mathematical Organization Theory 6(2000),
pp. 29-45.

[14] N. Garg and J. Könemann, “Faster and simpler algorithms for multicommodity flow and other
fractional packing problems”, in Proc. 39th IEEE Symposium on Foundations of Computer
Science – FOCS’98, (IEEE CS Press, 1998), pp.300-309.

[15] N. Garg and J. Könemann, personal communication, 2005.

[16] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis, “Efficient Computation of
Delay-Sensitive Routes from One Source to All Destinations”, in Proc. IEEE Conf. Com-
put. Commun. – INFOCOM 2001.

[17] P. Hansen, “Bicriterion Path Problems”, Proc. 3rd Conf. Multiple Criteria Decision Making –
Theory and Applications, LNEMS Vol. 117 (Springer, 1979), pp. 109-127.

[18] R. Hassin, “Approximation schemes for the restricted shortest path problem”, Mathematics of
Operations Research, 17 (1992), pp.36-42.

[19] D. Hensen and T. Truong, “Valuation of Travel Times Savings”, Journal of Transport Eco-
nomics and Policy (1985), pp. 237-260.

[20] T. Korkmaz and M. Kruz, “Multiconstrained optimal path selection”, in Proc. IEEE
Conf. Comput. Commun. – INFOCOM 2001, pp. 834-843.

[21] D.H. Lorenz and D. Raz, “A simple efficient approximation scheme for the restricted shortest
path problem”, Operations Research Letters, 28 (2001) pp.213-219.

[22] P. Van Mieghem, F.A. Kuipers, T. Korkmaz, M. Krunz, M. Curado, E. Monteiro, X. Masip-
Bruin, J. Sole-Pareta, and S. Sanchez-Lopez, “Quality of Service Routing”, Chapter 3 in
Quality of Future Internet Services, LNCS Vol. 2856 (Springer-Verlag, 2003), pp. 80-117.

[23] C. Papadimitriou and M. Yannakakis, “On the Approximability of Trade-offs and Optimal
Access of Web Sources”, in Proc. 41st Symp. on Foundations of Computer Science – FOCS
2000, pp. 86-92.

[24] PIN project (Projekt Integrierte Netzoptimierung), Deutsche Bahn AG, 2000.

[25] S. Plotkin, D. Shmoys, and E. Tardos, “Fast Approximation Algorithms for Fractional Packing
and Covering Problems”, Mathematics of Operations Research 20 (1995), pp. 257-301.

16

[26] K. Scott and D. Bernstein, “Solving a Best Path Problem when the Value of Time Function
is Nonlinear”, preprint 980976 of the Annual Meeting of the Transportation Research Board,
1997.

[27] G. Tsaggouris and C. Zaroliagis, “Non-Additive Shortest Paths”, in Algorithms – ESA 2004,
LNCS Vol. 3221 (Springer-Verlag, 2004), pp. 822-834.

[28] S. Vassilvitskii and M. Yannakakis, “Efficiently Computing Succinct Trade-off Curves”, in
Automata, Languages, and Programming – ICALP 2004, LNCS Vol. 3142 (Springer, 2004),
pp. 1201-1213.

[29] F. Wagner, “Challenging Optimization Problems at Deutsche Bahn”, AMORE Workshop (in-
vited talk), 1999.

[30] A. Warburton, “Approximation of Pareto Optima in Multiple-Objective Shortest Path Prob-
lems”, Operations Research 35(1987), pp. 70-79.

[31] N. Young, “Sequential and Parallel Algorithms for Mixed Packing and Covering”, in Proc. 42nd
IEEE Symp. on Foundations of Computer Science – FOCS 2001, pp. 538-546.

A APPENDIX

A.1 Proof of Theorem 5

The analysis is straightforward from [14]. We only consider an approximate oracle. In order to
prove Theorem 5 we need the next two lemmata. In the first lemma, we establish a bound on the
ratio of the optimal dual value to the primal objective value at the end of the algorithm.

Lemma 6 Let β = miny
D(y)
a(y) be the optimal dual value and let t be the last iteration of the algo-

rithm. The ratio of the optimal dual value to the primal objective value at the end of the algorithm
is bounded by ε(1+w)

ln(1/Mδ) .

Proof. For each iteration k ≥ 1 it is

D(k) =
∑

i

b(i)yk(i)

=
∑

i

b(i)yk−1(i) + ε
b(p)

A(p, q)

∑

i

A(i, q)yk−1(i)

≤ D(k − 1) + (1 + w)ε(fk − fk−1)a(k − 1)

which implies that

D(k) ≤ D(0) + (1 + w)ε
k∑

l=1

(fl − fl−1)a(l − 1).

Since β = miny D(y)/a(y) it is β ≤ D(l − 1)/a(l − 1), ∀l = 1 . . . k, and thus

D(k) ≤ Mδ +
(1 + w)ε

β

k∑

l=1

(fl − fl−1)D(l − 1).

Observe now that for fixed k, this right hand side is maximized by setting D(l−1) to its maximum
possible value for all 1 ≤ l − 1 < k, and let us denote this maximum value by D′(k), i.e.,

D′(k) = Mδ +
(1 + w)ε

β

k∑

l=1

(fl − fl−1)D′(l − 1).

17

Consequently,

D(k) ≤ D′(k)

= D′(k − 1) +
(1 + w)ε

β
(fk − fk−1)D′(k − 1)

= D′(k − 1)
(

1 +
(1 + w)ε

β
(fk − fk−1)

)

≤ D′(k − 1)e
(1+w)ε

β
(fk−fk−1)

≤ D′(0)e
(1+w)ε

β

∑k
l=1(fl−fl−1)

≤ D′(0)e
(1+w)ε

β
(fk−f0)

Since now D′(0) = Mδ and f0 = 0 it follows that

D(k) ≤ Mδe(1+w)εfk/β.

From our stopping condition it is 1 ≤ D(t) ≤ Mδe(1+w)εft/β and hence

β

ft
≤ ε(1 + w)

ln(1/Mδ)
.

The final primal solution constructed may not be feasible since some of the packing constraints
may be violated. The second lemma shows that the final primal assignment can be appropriately
scaled as to obtain a feasible solution.

Lemma 7 Scaling the final primal assignment by log1+ε

(
1+ε

δ

)
, we obtain a feasible solution to the

fractional packing LP.

Proof. When we pick a column q and increase the left-hand-side of the i-th constraint by A(i,q)b(p)
A(p,q)b(i) .

Simultaneously we increase the dual variable y(i) by a multiplicative factor of 1 + εA(i,q)b(p)
A(p,q)b(i) . By

the definition of p it follows that A(i,q)b(p)
A(p,q)b(i) ≤ 1 and thus increasing the left-hand-side of the i-th

constraint by one causes an increase in y(i) by a multiplicative factor of 1 + ε. Since t is the
first iteration for which D(t) > 1, it is yt−1(i) < 1/b(i) and thus yt(i) < (1 + ε)/b(i). Since now
y0(i) < δ/b(i) it follows that the left-hand-side of the i-th constraint is no more than log1+ε

(
1+ε

δ

)
for any i. Thus scaling the primal solution by log1+ε

(
1+ε

δ

)
gives a feasible solution.

We now proceed with the proof of Theorem 5.
Proof of Theorem 5: In the k-th iteration we increase the dual variable of the “minimum
capacity” row by a factor of 1 + ε. Since we stop the algorithm at the first iteration t such that
D(t) > 1 it follows that D(t) < 1 + ε and thus yt(i) < 1+ε

b(i) for any row. Since now y0(i) = δ
b(i)

and yt(i) < 1+ε
b(i) and there are M rows the total number of iterations is at most Mdlog1+ε

1+ε
δ e =

Md1
ε log1+ε Me, by choosing δ = (1 + ε)((1 + ε)M)−1/ε.
The ratio of the optimal dual value to objective value of the scaled final primal assignment is

γ = β
ft

log1+ε

(
1+ε

δ

)
by substituting the bound on β

ft
from Lemma 6 we get

γ ≤ ε(1 + w)
ln(1/Mδ)

log1+ε

(
1 + ε

δ

)
=

ε(1 + w)
ln(1 + ε)

ln 1+ε
δ

ln(1/Mδ)

18

For δ = (1 + ε)((1 + ε)M)−1/ε, the ratio ln 1+ε
δ

ln(1/Mδ) equals (1− ε)−1, hence we have

γ ≤ ε(1 + w)
(1− ε) ln(1 + ε)

≤ ε(1 + w)
(1− ε)(ε− ε2/2)

≤ (1− ε)−2(1 + w)

19

