
Interval Indexing and Querying on Key-Value
Cloud Stores

George Sfakianakis, Ioannis Patlakas, Nikos Ntarmos, and Peter Triantafillou

Computer Engineering & Informatics Dept., University of Patras, 26500 Rio, Greece
{sfakianaki,patlakas,ntarmos,peter}@ceid.upatras.gr

Abstract— Cloud key-value stores are becoming increasingly
more important. Challenging applications, requiring efficient and
scalable access to massive data, arise every day. We focus on
supporting interval queries (which are prevalent in several data
intensive applications, such as temporal querying for temporal
analytics), an efficient solution for which is lacking. We contribute
a compound interval index structure, comprised of two tiers: (i)
the MRSegmentTree (MRST), a key-value representation of the
Segment Tree, and (ii) the Endpoints Index (EPI), a column
family index that stores information for interval endpoints. In
addition to the above, our contributions include: (i) algorithms
for efficiently constructing and populating our indices using
MapReduce jobs, (ii) techniques for efficient and scalable index
maintenance, and (iii) algorithms for processing interval queries.
We have implemented all algorithms using HBase and Hadoop,
and conducted a detailed performance evaluation. We quantify
the costs associated with the construction of the indices, and
evaluate our query processing algorithms using queries on real
data sets. We compare the performance of our approach to two
alternatives: the native support for interval queries provided
in HBase, and the execution of such queries using the Hive
query execution tool. Our results show a significant speedup,
far outperforming the state of the art.

I. INTRODUCTION

The cloud is becoming increasingly more important for
data management applications, as it can seamlessly handle
huge amounts of data. The elastic and vast processing/storage
capacity of clouds has facilitated novel applications requiring
efficient and scalable access to massive data. In this picture,
cloud key-value stores hold a central position, with relevant
offerings including (but not limited to) Google’s Bigtable[1]
(and its open-source counterpart, Apache HBase[2]), Ya-
hoo! PNUTS[3], Apache (ex-Facebook) Cassandra[4], Ama-
zon Dynamo[5], etc. These systems are in the spotlight, pow-
ering applications dealing from data mining issues to social
networking, graph algorithms, spatial data processing, image
and video processing, bioinformatics, and so on. Along the
same lines, MapReduce[6] and the Apache Hadoop[7] project
– its open-source implementation – have emerged as the de-
facto standard programming paradigm for crunching through
massive data, although complex query processing is still better
done in a “centralized”, coordinator-based manner[8].

We focus on supporting interval queries, an efficient solution
for which is lacking in the field of cloud key-value stores. We
first establish the difference between range and interval queries
through an example, which shall also serve as our champion
application: analytics and time-traveling queries over web
archives. In this scenario, web crawlers dump new versions

Fig. 1. (a), (b): intervals outside the query interval; (c): interval contained
in the query interval; (d), (e): intervals covering the query interval; (c)-(i):
intervals intersecting the query interval.

of web pages into a distributed key-value store, keyed by the
URL of the page and timestamped by the time of the crawl.
Thus, each web page has several “incarnations” at different
time points, with any two subsequent such points defining the
interval during which each version is “alive”. These intervals
usually are implicit, in the sense that crawlers only record the
time of the crawl – that is, the beginning of an interval –
but do not update previous crawls to reflect the end time of
their validity, mainly for performance reasons. Now consider
a query of the form “find all versions of all web pages that
existed during a given time interval” (see Fig. 1). A range
query on the page timestamps for the query interval, would
return only pages that changed or were created during that
time interval (i.e., pages (c), (h), (i)); if the crawlers further
updated the timestamps of earlier crawls, an appropriate range
query might be able to also locate pages (f) and (g); however,
both range queries would fail to return pages that were created
or modified before the beginning and/or after the end of the
query interval (such as (e) and (d)). Such queries prove to
be both intriguing and impractical with current state-of-the-
art approaches, as we shall see shortly; in addition to their
inability to process such queries, standard cloudstore query
primitives on the item timestamps are also very inefficient, as
the cloudstore engine would have to scan through all crawl
key-value pairs across all cloudstore nodes, in order to locate
the relevant ones.

Interval queries are prevalent in several data intensive
applications, with temporal querying being the prototypical
example, and thus arise in a slew of situations, from online
social networking services (e.g., find events and notifications
that happened within a time interval, find all users that were
online during a time interval, etc.), to air control systems
(e.g., given the time of entry and exit of flights to/from our

controlled airspace, find all vessels we were responsible for in
a given time interval), and so on. Of course, interval queries
are not limited to the time dimension; examples can be easily
found in spatial and geographical databases (e.g., what streets
exist within a user-supplied contour?), scientific applications
(e.g., analysis of particle trajectories and collisions), etc.

In all above examples, the “primary keys” for the objects
in the database would not be the intervals themselves but
some other piece of information (i.e., URLs for crawled web
pages, event IDs for notifications, user IDs for online users,
flight numbers for the vessels, etc.) Without an appropriate
index, all contemporary cloud key-value stores need to check
all objects in the database for intersection or containment
against the queried intervals. Granted, this process could take
advantage of the high parallelism inherent in these systems, as
all nodes could be accessed in parallel (e.g., with MapReduce).
However, note that (a) not all nodes may contain relevant data,
and (b) even on relevant nodes, the processing engine would
have to access any and all stored rows to check for compliance
with the query predicate constraints.

Challenges: The open challenges we tackle here are the
following. First, we wish to identify appropriate indices which
can be employed on cloud key-value stores; this requires a
matching of the stores’ peculiarities and capabilities to the
index structures, finding appropriate key-value representations
for such indices, and developing novel MapReduce algorithms
to build and populate them. Second, specialized interval in-
dices, capable of answering interval queries are typically static
structures, which would preclude them from our intended
environment; thus, we need to develop strategies that can
efficiently handle updates in an efficient manner, appropriate
for cloud stores. Third, specialized appropriate interval indices
come from fields such as computational geometry and were
intended for use as a main-memory index; our adaptation of
such indices must address this explicitly. Fourth, we wish
to derive new indices, stemming from and exploiting the
key performance traits of key-value stores. Finally, given the
richness of possible queries, the key question is to study which
index can best handle efficiently which query types; then,
given a query, it is important to send it to the index that is
best suited for the query, or even decompose it into subqueries
each one of which utilizes different indices.

Contributions: Our contributions include:
• A compound index structure, comprised of two tiers:

– The MRSegmentTree (MRST); a distributed segment
tree index structure with a key-value representation,
bypassing the main-memory limitations of the Segment
Tree.

– The Endpoints Index (EPI); an inverted index on
interval endpoints information, as an interval index,
naturally arising from the key-value stores’ capabilities.

• MapReduce algorithms for efficiently and scalably creat-
ing and populating these index tiers.

• Algorithms and additional structures (the UpdatesIndex,
UI) for maintaining our indexed data in the face of on-line
data insertions and deletions, ensuring up-to-date query

results for a negligible overhead during query processing.
• A set of algorithms for interval-query processing over

either MRST or EPI, or both, taking advantage of the
query processing characteristics of our two index tiers.

• An implementation and thorough performance evaluation
of all of our algorithms for index building and interval-
query processing using Hadoop and HBase, showing
significant speedups against two alternatives: (i) the native
support provided by HBase through Hbase filters, and (ii)
the Hive[9] query processor.

To our knowledge, this is the first work to address interval
indexing and query processing on cloudstores. We plan to
make our codebase available and submit it for inclusion in
a future release of HBase.

II. DATA AND QUERY MODEL

Our algorithms and data structures are designed for modern
cloud key-value stores. Below we outline the common charac-
teristics of these systems that are relevant in our context. As
our prototypical implementation is over HBase, we borrow
its lingo to describe basic building blocks; however, it should
be clear that our approach is applicable to other key-value
cloudstores as well.

The smallest unit of data – the equivalent of a single
value of some attribute in the relational model – is called a
column or (abusively) a key-value pair. Columns are in essence
associative arrays with four keys: rowkey, column name,
column value, and timestamp (denoted {rowkey: <column
name=column value> @ timestamp}). Each such data item
is uniquely identified by the triplet {rowkey, column name,
timestamp}, also coined the item’s key (we shall use the
term columnkey for clarity). Columns are contained within
ColumnFamilies – the rough equivalent of column-store rela-
tional tables – while all columns of a ColumnFamily sharing
the same rowkey are considered to belong to the same row
– the equivalent of relational tuples. ColumnFamilies are
sparse; that is, they can contain any set of columns and are
not required to contain any particular column. Within each
column family, columns are stored sorted on their columnkeys,
allowing for fast sequential row-level access on the rowkey
values. Furthermore, several of the cloudstores further utilize
stable storage indices to allow for fast random access, although
again based only on rowkeys (e.g., see HBase’s BlockIndex
and StoreFile Bloom filter options). Last, ColumnFamilies
may be logically grouped into Tables/Relations, which in turn
are horizontally partitioned on their items’ rowkeys (coined
regions in HBase) and distributed across the nodes of the
cloudstore (coined regionservers).

All well-known cloudstores use in-memory caching, write-
ahead-logging, and immutable stable storage, to provide high-
throughput/low-latency writes. The typical write path consists
of: (i) recording mutations in the write-ahead log, (ii) storing
the actual data in an in-memory cache, and (iii) lazily writing
new data to storefiles on disk in an append-only fashion,
moving onto new storefiles when the current ones exceed
some predefined size threshold. Deletions are handled through

tombstone records, while newer versions of a data item (i.e.,
items with the same rowkey and column name but larger
timestamps) may coexist with or hide older ones, according
to the system configuration. Write operations are typically
either single-row/single-column mutations (put(rowkey, ...))
or single-row/single-column deletions (del(rowkey, ...)). Read
requests can be either for single values (i.e., get(rowkey, ...)) or
sequential scans (i.e., scan(start rowkey, end rowkey, ...). Read
requests first go through the in-memory cache; if the request
cannot be served entirely (or at all) from there, the cloudstore
goes on to scan its storefiles. All of these operations can
further define other information in addition to the rowkey on
which to operate, such as column names, timestamps, column
families, etc., through what is called “filters”. The append-
only write scheme means that, over time, data for any given
“row” can be stored across several storefiles, thus hurting
read performance, as a read operation for all items with the
same rowkey (i.e., a row read) would have to scan several
storefiles; to this end, there is a periodic operation, coined
compaction, that scans through the storefiles, applying deletes
from tombstone records, and defragmenting the rows spanning
multiple storefiles.

As should be obvious from the above, key-value cloudstores
are designed for fast point queries and sequential scans on
rowkeys. However, operations on other attributes (e.g., column
names, column values, etc.) – including implicit key-value
timestamps – can be quite inefficient. Even a simple point
query on something other than the rowkey (e.g., SELECT *
FROM Table.ColumnFamily WHERE a ≤ Column.Timestamp
≤ b) would have to scan through all columns of the requested
ColumnFamily across all regions and all cloudstore nodes.
This fact alone makes efficient interval query processing all
the more challenging.

On the other hand, intervals are either explicit (e.g., the
base data features a column or pair of columns that define
the left and right endpoint of the interval) or implicit (e.g.,
in a web archiving scenario, the timestamp of the crawl of a
URL defines the left endpoint of an interval, the next crawl
for the same URL defines the right endpoint, etc.) This is
all orthogonal to our solutions; our algorithms and structures
accept intervals as inputs. In scenarios of the second case,
it is up to the application to deal with creating intervals out
of the base data to be fed to the index and query engine.
Consequently, the base data schema can be assumed to consist
of rows identified by a rowkey and containing (among others)
two columns storing item’s interval; i.e.:

{rowkey: <begin = ∗>, <end = ∗>}
In this work we primarily deal with two types of queries:
• Intersection Queries: Given an interval I = [a, b], return

the id’s of items whose interval has a non-empty inter-
section with I; that is items whose interval contains the
query interval, plus items with either interval endpoint
∈ [a, b]. More specifically, a row satisfies the intersection
query predicate, iff:

(begin ≤ a
⋂
end ≥ b)

⋃
((begin ≥ a

⋂
begin ≤ b)

⋃
(end ≥ a

⋂
end ≤ b))

• Stabbing Queries: Given a point a, return the id’s of items
that are “alive” at point a; that is, items with begin ≤ a
and end ≥ a. This is a special case of Intersection
Queries where a = b, but such queries arise frequently
enough to warrant provision for added optimizations.
More specifically, a row satisfies the stabbing query
predicate, iff:

(begin ≤ a
⋂
end ≥ a)

Let us examine how an interval query of one of the above
forms can be answered natively by a cloud key-value store.
Remember that each object is stored on a region server, based
on its rowkey. We can discern the following cases:

1) The rowkey is some information other than the interval
data, and there is a separate interval-related column – e.g.,
in the web archive scenario, the timestamp is recorded
along with other data in each row.

2) The rowkey is some information other than the interval
data, and there are separate columns recording the item’s
interval.

3) The interval is explicitly used as (a prefix of) rowkeys
(e.g., a concatenation of the left and right endpoint values
is prefixed to the rowkey).

In the first case, interval queries are translated into selection
queries over the timestamp column. As rows are distributed
across regionservers based on the rowkey, the query processing
algorithm will have to access all regionservers in search of
matching rows. Additionally, any given regionserver will have
to search through all of the rows it stores, as there is no
index on information other than the rowkeys. The same holds
for automatic timestamps, as there is no global index on that
information either. What’s more, in this case cloud key-value
stores can answer none of the query types considered in this
work at all, as each item bears only the left endpoint of
its timespan interval. In the second case, interval queries are
translated into selection queries over the interval columns; un-
fortunately, again the cloudstore cannot reduce the processing
of the query to a limited number of regionservers and thus all
rows on all regionservers will have to be checked against the
query predicate. The third case can allow for efficient retrieval
of intervals (c), (h), and (i) in Fig. 1 through a range query
(scan()) over rowkeys, but in order to fully answer an interval
query one would have to resort again to accessing all data on
all regionservers.

III. INTERVAL INDICES

The above discussion showcases the inherent inability of
an indexless setup to efficiently process interval queries (if at
all). To this end, we have built an index structure, consisting of
two tiers: the Endpoints Index (EPI), an inverted index on the
interval endpoints, and the MRSegmentTree (MRST), a novel
key-value adaptation of Segment Trees for cloud stores. Our
index is stored as a cloudstore table consisting of two column
familes: one for the EPI and one for MRST index data. This
decision was dictated by our desire to ride on the scalability
and performance of the underlying distributed key-value store.
We first give an overview of Segment Trees, then describe

our indices and the algorithms for building, maintaining, and
querying them.

A. Segment Tree Overview

Segment Trees were proposed to support indexing of in-
tervals with logarithmic complexity querying [10]. Let id :
[begin, end] be an interval with endpoints begin and end
(begin ≤ end) identified by id, and let a list of N such
intervals be the input to our algorithm. An elementary interval
is an interval [e, e′], so that e and e′ appear as endpoints
of some interval(s) in the input collection, and there is no
input interval endpoint in (e, e′). In other words, elementary
intervals can be computed by creating a sorted set of the
left and right endpoints of all intervals in the input, and then
considering all sequential pairs of endpoints from this set.

For N input intervals, there are O(N) elementary intervals.
Given these, the Segment Tree is a balanced binary tree
of height O(log2 N), using O(N log2 N) space, with the
following properties (see Fig. 2 for an example):
• Each node in the tree stores the left and right endpoint

of the range of values it indexes, along with pointers to
its left and right child nodes (where applicable), just like
in ordinary binary trees. Let span(x) denote the interval
defined by the endpoints stored in the node.

• Elementary intervals are indexed at the leaf level; that is,
for every elementary interval in the input collection there
is a single leaf node with endpoints equal to the elemen-
tary interval’s endpoints. Moreover, elementary intervals
are indexed in an ordered manner, so that the leftmost leaf
node corresponds to the leftmost elementary interval, and
in general the i’th leaf node stores information for the i’th
elementary interval.

• Internal nodes always have two child nodes and index the
union of their ranges; i.e., the left endpoint of an internal
node equals the left endpoint of its left child, and its
right endpoint equals the right endpoint of its right child.
Furthermore, the id of an internal node equals the middle
point of its children; i.e., the right endpoint of its left
child (or equivalently the left endpoint of its right child).

• Each (leaf or internal) node further stores a subset of
the IDs of input intervals, so that each interval id :
[begin, end] in this set (i) contains span(x), and (ii) does
not contain span(parent(x)). That is, each node in the
Segment Tree stores the intervals that span through its
endpoints but do not span through its parent’s endpoints.

B. Endpoints Index and MRSegmentTree Index

The creation of EPI and MRST proceeds in phases. First,
we compute the EPI data/elementary intervals from the input
data, using a MapReduce job. Given these, we build subtrees
of the complete tree, merge them, and populate them with
interval IDs, using another MapReduce job. We shall also
prove some fundamental features of our approach, relating the
number of subtrees to the number of map/reduce partitions
and also prove that our algorithms indeed produce a tree with
the key properties of a Segment Tree.

Fig. 2. Example Segment Tree

1) Endpoints Index: The first step in building a Segment
Tree is computing the elementary intervals, using a MapRe-
duce algorithm. Remember that items are assumed to be stored
in rows with the id of the object (e.g. web page url, etc.) as
the rowkey, and a pair of begin/end columns. Each mapper is
automatically assigned a subset of the input keys/rows by the
MapReduce framework. For each row {rowkey : <begin =
a>, <end = b>} in its input set, each mapper emits two
rows/key-value pairs: {begin: < ”r”|rowkey = end >} and
{end: < ”l”|rowkey = begin >}, where ”x”|y denotes
the binary concatenation of the string ”x” and the binary
representation of y, and ”l” or ”r” denote that the column
value is the left or right endpoint (in which case, the key-value
pair’s rowkey is the right or left endpoint value) respectively.

If we take a more careful look at this index, we can
see how it is in essence an inverted index on the interval
endpoints. We coin this the “Endpoints Index” (or EPI) and
store it in a column family of its own. We choose to treat
this data as a separate index tier, as it exhibits different
query characteristics than the tree structure discussed shortly,
dictating the decomposition of queries to subqueries over the
two tiers, as we shall see shortly.

From an implementation point of view, the MapReduce
framework can be configured to write the above “emitted”
key-value pairs to the appropriate cloudstore column family,
either by using a special “null” table reducer that directly
stores the emitted key-value pairs into the cloudstore (also
called a “map-only job”), or to store it in specially formatted
files (called HFiles in the case of Hadoop/HBase) that are then
bulk-loaded into the cloudstore.

In some cases, the endpoints of the elementary intervals are
known or can be computed a priori. For example, consider a
web archiving system where crawlers periodically download
and store new versions of each archived web page with a fixed
frequency (e.g., web pages are updated every say hour, day
or week, depending on their popularity and other metrics).
Moreover, in real-world systems, interval queries may have
relaxed precision requirements, in the sense that one is hardly

Rowkey ← −−− Key-value pairs −−− →
7L l=5 r=10
10 l=5 r=15 L=7L R=12L

12L l=10 r=15 ix10=20
15 l=5 r=20 L=10 R=18 iw5=22

16L l=15 r=18
18 l=15 r=20 L=16L R=19L ix10=20, iy15=25

19L l=18 r=20 iz18=22
20 l=5 r=30 L=15 R=25

21L l=20 r=22 iw5=22, iz18=22
22 l=20 r=25 L=21L R=23L iy15=25

23L l=22 r=25
25 l=20 r=30 L=22 R=27L

27L l=25 r=30
R p=20

Fig. 3. MRSegmentTree for the example of Fig. 2 (column name prefix
“l”/“r”: left/right endpoint, “L”/“R”: left/right child rowkey, “i”: interval IDs,
“p”: root node rowkey)

ever interested in nanosecond accuracy for an object’s crawl
time. Instead, we can support an hourly/daily/weekly etc.
query granularity, by employing matching fixed elementary
intervals (one hour, one day, one week, etc.)

2) Building Subtrees: MRST nodes are stored as rows in
a separate column family (see Fig. 3 for an example). Each
internal node/row uses the middle point of its children (i.e., the
value of the right endpoint of its left child) as its rowkey, while
leaf nodes use the median of their interval range (i.e., right and
left endpoints) plus a special suffix (“L”) to differentiate them
from internal nodes. In both cases, the row further consists
of columns for the node’s left (“l”) and right (“r”) endpoints,
the rowkeys of the node’s left (“L”) and right (“R”) child, plus
columns for the IDs of the items/intervals indexed on that row,
named “i”|item ID|left endpoint, with the right endpoint as
their value. Rows corresponding to leaf nodes will of course
have no columns for child node rowkeys, and nodes storing no
input interval rowkeys will have no “interval IDs” columns.
Last, there is also a single row with rowkey “R” storing a
single key-value pair with “p” as the column name and the
rowkey of the tree’s root as its value. For example, the first line
in Fig. 3 (i.e., row {7L: <“l”=5>, <“r”=10>}) corresponds
to the left-most leaf node of Fig. 2, indexing the interval
[5, 10] storing no interval IDs; the fourth line (i.e., row {15:
<“l”=5>, <“r”=20>, <“L”=10>, <“R”=18>, <iw5=22>})
corresponds to the left child of the root, indexing the interval
[5, 20], storing interval w : [5, 22].

In order to build and populate this structure, we execute
a single map-only MapReduce job. In this job, each mapper
reads a sorted partition of EPI rowkeys (i.e., elementary
interval endpoints), computes an in-memory subtree corre-
sponding to these intervals, populates its subtree, and then
emits individual nodes to the MapReduce framework. We shall
first discuss the subtree building phase, then show how the
population is performed. Let M be the number of map tasks
in this phase, E be the number of elementary intervals each
such task should get, and N be the total number of elementary
intervals in the EPI. In order to produce a correct Segment tree,
we must make sure that M is a power of two (see [10]), and
that each of the M map tasks is assigned the proper subset

of E = N
M elementary intervals. M , the number of mappers,

is user-selectable, based on the desired degree of parallelism
(subject to the power-of-2 constraint). Then, before starting the
MapReduce job, we retrieve the count of elementary intervals.
Then, the number of elementary intervals assigned to each
mapper is computed by recursively dividing N by 2 until M
parts have been produced; when the number being divided
is odd, the “left” part receives a rounded-up and the “right”
part a rounded-down half of intervals. The core idea is that
each mapper builds a proper segment tree for the elementary
intervals it receives, then individual subtrees can be merged to
produce the final MRST.

Lemma 1: The k-th mapper of the Tree Building phase will
produce the k-th subtree of S with log2

⌊
N
M

⌋
height.

Proof: Due to the above partitioning, the k-th map task
will be assigned the intervals numbered in:[

1 +

⌊
k · N

M

⌋
,

⌊
(k + 1) · N

M

⌋]
Each mapper will get i =

⌊
N
M

⌋
elementary intervals. If the

division of N over M leaves a remainder then the N mod
M ’th mappers will get one more elementary interval. Thus, the
subtree built has a log2 i height, and the k-th mapper produces
the k-th subtree of S.

Running the algorithm for the tree building up to this point
ensures the building of M subtrees of the Segment tree. For
the complete segment tree S we need to assemble the tree
from the M subtrees produced during the previous step, up to
the root of S. Consider the intervals defined by the roots of
the subtrees; then, the segment tree built from their interval
endpoints is identical to the top levels of the complete segment
tree. We coin this tree the “top-tree”. As it is small in size
(consisting of O(M) nodes) and the relevant endpoints are
already known (computed during the bootstrap stage of this
phase, while calculating M and the mapper input partitions),
it can be pre-computed and stored during the startup phase of
the MapReduce job. Then, each mapper first loads the top-tree,
computes the Segment tree for its input data, attaches it at the
corresponding position in the top-tree, and then iterates over
all tree nodes emitting their information (without interval ID
columns at this stage) to the MapReduce framework. Again,
the latter can be configured to either write data directly to the
cloudstore, or to dump it to flat files and bulk-load them.

Theorem 1: The data structure built in the Tree Building
phase is a correct Segment Tree.

Proof: From the definition of the Segment Tree, the
algorithm used in the mappers of the first phase builds a
Segment Tree locally, so the M subtrees are correct Segment
Trees. The textbook approach to build a segment tree is by
finding the median of the elementary interval set and then
building two new segment trees recursively from the sets
defined by splitting up the input set at that median. If only
log2 M recursions are allowed then there will be M subsets of
elementary intervals produced. It can be easily shown that the
distribution of the elementary intervals in those subsets is the
same as the distribution defined by lemma 1, so the subtrees

created by each mapper would be the same as those created
for the correct segment tree. Moreover, the top-tree, having
the M subtree roots as its leafs, is also a correct segment tree
and equals the top log2 M levels of the complete tree.

3) Tree Population: Up to now we have created and stored
the tree structure in the cloudstore. We now have to populate
the MRSegmentTree with interval IDs to make it fully opera-
tional. When each mapper has completed building its subtree,
it has in essence a completely functional part of the total
MRSegmentTree for the range of elementary intervals assigned
to it. In order to populate this part, the mapper initiates a
scan on the Endpoints Index column family for that same
range. For every row of the Endpoints Index retrieved, the
mapper computes the input intervals by putting together all
combinations of the rowkey and “r”-∗ columns. For each such
row {a: <”r”|rowkey = b>} the interval rowkey: [a, b] is
in turn inserted in the partial tree, with the sole difference
that instead of storing interval IDs in the in-memory tree,
the mapper emits a {node.id: <”i”|rowkey|a = b>} key-
value pair (thus leading to this key-value pair being stored in
the cloudstore). Note that IDs of intervals with at least one
endpoint in a mapper’s partition do appear in its subtree, thus
intervals spanning multiple partitions (and thus indexed in the
top-tree) are added to the appropriate top-tree node(s) by the
mappers responsible for their endpoints.

C. Index Updates

The segment tree is by definition a static structure, and (as
we shall see) building the MRST consumes considerable time
and cloud resources. Thus, accommodating online updates
would either result in excessive resource consumption (if
the MRST is rebuilt on every update) or in query results
which are oblivious to these insertions/deletions (if the tree is
rebuilt periodically). This section addresses these problems by
exploiting the key-value stores’ inherent high write throughput
and fast range scans.

We extend our two-tier index scheme by adding a third
tier, coined Updates Index (or UI). This is in essence a
separate, smaller Endpoints Index, storing information on data
mutations since the creation of the MRSegmentTree index and
implemented as a new column family in the index table. On
system startup, the above algorithms are executed to bootstrap
the EPI and MRST column families. After that, insertions are
recorded to both the Endpoints and Updates Indices, while
deletions are handled through deletion of the actual records
and insertion of “tombstone” records: key-value pairs with
a “-” character suffix in the column name. When present
in a query result set, these records translate to a removal
of their “positive” counterparts from the final result set. We
provide a short example of their usage in the query processing
discussion. Last, updates are handled as an insertion of the new
values followed by a deletion of the old ones (performed in a
single operation, if supported by the cloudstore).

Fig. 4 depicts the changes to the EPI and UI when x’s
interval is updated from [10, 20] to [9, 18]. The starting state
of the EPI (Fig. 4(a)) corresponds to the tree of Fig. 2. The

update call first inserts the new values in the indices, resulting
in the state of Fig. 4(b). Then comes the deletion of the old
values, resulting in the state of Fig. 4(c). Notice how the EPI
always has fresh information, while the UI only maintains
information pertaining to changes (much like a log).

The information recorded in the Updates Index must even-
tually be integrated in the MRSegmentTree data. This is
performed periodically, based on the actual query/update
workload; for example, we can choose to rebuild the MRSeg-
mentTree when the Updates Index reaches a predefined size
threshold, or when query processing times exceed a predefined
time threshold, etc. When the time comes, two new column
families are created: one to hold any further updates coming
in while the MRSegmentTree is being rebuilt and the other to
hold the new MRSegmentTree data. Then, the Updates Index
and MRSegmentTree are “frozen”; when the system is in this
state, insertions/deletions to/from the index propagate only to
the temporary Updates Index. The system then initiates the
tree building/population algorithms outlined earlier to create
the new tree. When this process completes, the system updates
the Endpoints Index with the data in the temporary Updates
Index, switches to the new MRSegmentTree and Updates
Index column family, and dumps the old Updates Index and
MRSegmentTree. As all key-value pairs are timestamped,
replaying of the temporary Updates Index consists of merely
put()/del() operations with the same timestamps as the
update data, translating key-value pairs with a “-” prefix to
deletions and the rest to insertions.

IV. PROCESSING INTERVAL QUERIES

We first describe how interval queries can be processed
by using only EPI or MRST. Then, we describe a hybrid
algorithm using both index tiers. Last, we discuss how interval
queries are processed in the face of online updates.

A. Interval Queries on Endpoints Index

Given an interval query [a, b], we can proceed as follows:
• Intersection Queries (i.e., b6=a): Execute (in parallel) two

scans on the EPI column family: (i) a scan() for all
items with rowkeys in [a, b], and (ii) a scan() for items
with rowkeys in (−∞, a], filtering for key-value pairs
whose column name starts with ”r” and value is ≥ b.
What this second scan does is that it returns all those
columns corresponding to intervals with a right (”r”-
prefix) endpoint ≥ b, and a left endpoint ≤ a (due to
the rowkey constraint); i.e., all those items whose interval
covers the query interval. Finally return the item IDs (i.e.,
the column name without the ”l”/”r” prefix) of the set
union of the two result sets.

• Stabbing Queries (i.e., b=a): Execute a single scan on
the EPI column family for items with keys in (−∞, a],
filter/keep key-value pairs whose column name starts with
”r” and value is ≥ a, and return the item IDs.

Although the Endpoints Index can process all types of
interval queries dealt with by our work in a more efficient
manner than in an indexless case, there are still scenarios

rowkey EPI EPI UI EPI UI
5 rw=22

insert(x,9,18)−−−−−−−−−→

rw=22

delete(x,10,20)−−−−−−−−−→

rw=22
9 rx=18 rx=18 rx=18 rx=18

10 rx=20 rx=20 rx-=20
15 ry=25 ry=25 ry=25
18 rz=22 lx=9, rz=22 lx=9 rz=22 lx=9
20 lx=10 lx=10 lx-=10
22 lw=5, lz=18 lw=5, lz=18 lw=5, lz=18
25 ly=15 ly=15 ly=15

(a) (b) (c)

Fig. 4. Example of online updates (update(x, 10, 20, 9, 18) → insert(x, 9, 18) + delete(x, 10, 20))

where the above scans can be quite slow. More specifically,
unless when dealing with queries whose interval spans a
large part of the dataset, the first part of Intersection query
processing is inherently fast as it uses directly the cloudstore’s
scan() primitive. It is the second part, also appearing in
Stabbing query processing, that proves to be the performance
hog and hence a target for optimization.

B. Interval Queries on MRSegmentTree

In general, MRST-only queries proceed as follows:
1) Retrieve the row for the root node of the MRST.
2) If the query interval overlaps with the current node

interval, append all interval IDs stored on the current node
to the result set.

3) If the query interval overlaps with the interval of the left
child node, descend to it and recur to step 2.

4) If the query interval overlaps with the interval of the right
child node, descend to it and recur to step 2.

The recursion always stops at the leaf level, so at least log2 N
nodes are visited in the process. Moreover, if the query interval
overlaps with both child nodes, the algorithm descends to both
nodes in parallel.

Figure 5 shows the nodes visited by an intersection query
for the interval [17, 21], and a stabbing query for 17, on our
example MRST. Remember that the MRST nodes are stored
in the cloudstore using their node IDs as the rowkey (see Fig.
3). To retrieve a node we just issue a get() to the cloudstore
for the rowkey of that node, and the cloudstore responds with
all the columns of the MRST column family for that rowkey,
including the interval IDs stored in the given node and the
rowkeys of its child nodes (if any). Intersection queries are
somewhat more complicated than stabbing queries, since if
there is a non-empty intersection with both children of the
current node, the query descends in parallel to both subtrees.

C. Querying MRST and EPI

As is evident from the above, stabbing queries are very
efficient when processed using the MRST. However, Inter-
section queries can visit an arbitrarily large subset of the
nodes in the tree, depending on the query interval. This
would pose no problem in a centralized environment where
the complete Segment Tree would be available directly to the
query processor (possibly stored completely in main-memory);
however, in our large-scale, distributed scenario, retrieving

20

15 25

10 18 22

7L

[5,10]

12L

[10,15]

16L

[15,18]

19L

[18,20]

21L

[20,22]

27L

[25,30]

23L

[22,25]

get(20)

get(15)

(16,20)

get(18)

(16,20)

get(16L)

(16,18)

w

y

x

x,y

w,zz

x

w

y

z

get(25)

(20,21)

get(22)

(20,21)

get(19L)

(18,20)

get(21L)

(20,21)

R

Intersection Query (16,21)

get(R)

20

Stabbing Query (17)

get(R)

get(20)

get(15)

get(18)

get(16L)

Fig. 5. Example Queries on the MRSegmentTree

parts of the tree one level at a time can prove to be quite
costly (we discuss this in more depth in Sec. V). In order to
overcome this situation, we proceed by using a hybrid of both
the MRST and EPI structures.

Note that the intervals comprising the result set of an
Intersection query can be divided in two categories: (i) inter-
vals completely containing the query range, and (ii) intervals
with at least one endpoint (i.e., intersecting or completely
contained) in the query range. The second kind of intervals
is retrieved by a range query over the Endpoints Index. In
order to retrieve all intervals with at least one endpoints in
query interval [a, b], we perform a scan() for all items with
rowkeys in [a, b]. The cloudstore will then access just the
regionservers storing relevant information, and directly retrieve
only the relevant rows (i.e., with rowkey ∈ [a, b]). Recall that
for each endpoint, the Endpoints Index also stores the interval
IDs and the other endpoint for all matching intervals. Thus,
the set of IDs returned by the above operation consists of just
the rowkeys of intervals with a non-empty intersection with I .
Then, the first kind of intervals can be retrieved by executing
a stabbing query on MRST, for any point in the query interval.
These two queries are executed in parallel, so that the overall

query processing time is (on average) equal to the maximum
of the two.

D. Interval Queries with Online Updates

As outlined above, the MRSegmentTree is used for stabbing
queries and the Endpoints Index for a range query for the query
interval range. With the Updates Index in place, incoming
queries are again broken up into two parts; the range query
part is executed only on the Endpoints Index, while the
stabbing query part is executed on both the MRSegmentTree
and the Updates Index (when the system is in the phase of
updating the MRSegmentTree, the temporary Updates Index
is also taken into account). The reasoning behind this decision
should be obvious: with updates propagating directly to the
Endpoints Index, the range query part will always return fresh
information. However, the stabbing part, which up to now was
executed only on the MRSegmentTree, may return stale data;
by taking into account the data from the Updates Index as
well, stale results are dropped from the result set and fresh
are added. These three queries are executed in parallel, so that
the overall query processing time is again (on average) equal
to the maximum of the three. An important difference is that in
the case of online updates, the stabbing part always queries for
the interval’s left endpoint, as opposed to a random point in the
interval. The reasons for this are twofold: (a) since stabbing
queries on the Update Index are in essence scan()’s from the
minimum key value in UI up to the query value, this leads to
fewer rows being examined and thus a faster turnaround time;
and (b) choosing the left endpoint guarantees that all relevant
tombstone records are located, as we explain below with a
short example. Also, note that UI will be small by design,
hence running such queries on it will be very fast!

Consider the example of Fig. 4(a) and 4(c). A Stabbing
query for value 9 in the original state would be processed
by the MRSegmentTree alone, returning only w as the result.
With x updated to [9, 18] in the final state, the MRSegmentTree
would still miss x; however, by executing the Stabbing query
on the Updates Index as well using the method outlined in
section IV-A – i.e., scan rows (−∞, 9] and keep results with
“r” column name prefix and a value ≥ 9 – we now add x to the
result set. Now, consider an Intersection query for [19, 21]. In
the original state, we would execute a scan on the Endpoints
Index for this interval, thus adding x to the result set, and a
Stabbing query on the MRSegmentTree, adding w, y, and z.
With the left endpoint of x updated to 18 in the final state, the
scan on the Endpoints Index would not add x, but the Stabbing
query on the stale MRSegmentTree would still return w, y, z,
and x : [10, 20]. Now, note that the Stabbing query for 19
on the Updates Index will return the tombstone record {10:
<”r”x”-”= 20>}; this translates to “omit any record with key
x, left endpoint 10, and right endpoint 20”, thus removing
x : [10, 20] from the final result set.

V. EXPERIMENTAL EVALUATION

Our experimental evaluation was performed on the Amazon
EC2 infrastructure, using the versions of HBase and Hadoop

in the Cloudera CDH3u3 distribution. Our implementation
consists of approximately 3.5k (physical) lines of Java code.
Our clusters consisted of three, five, and nine m1.large nodes
(each with two 64-bit virtual cores with 2 EC2 compute units
each, 7.5 GB of memory, and 850 GB of instance storage).
The above clusters all comprised one HBase master node
(also a Hadoop namenode and jobtracker), and two, four, and
eight HBase regionserver nodes respectively (also operating
as Hadoop datanodes and tasktracker nodes). Sample results
with larger cluster sizes (i.e., 20+1, 40+1, 80+1 nodes) agree
with those presented here, with indexing times falling quasi-
linearly to the cluster size, and query processing times seeing
slight reductions across all cases; we do not report on them,
though, as we only got full sets of measurements for the
smaller clusters, due to budget limitations with the larger ones.
We measured both the time required to build and populate
the indexes, and the query processing time with the various
algorithms outlined earlier. The figures presented below were
averaged over 5 repetitions for the indexing times, and 20
repetitions for the query processing times.

To study the effect of dataset size and interval distributions
on our algorithms’ performance, we employed two real-world
data sets, coined “UKGOV” and “DMOZ”. The former is
a circa 2.5-years worth web archive of the gov.uk domain,
consisting of ≈1 million web pages, resulting in ≈5.7 million
intervals (i.e., distinct page versions) with distinct nanosecond-
accuracy endpoints, amounting to ≈1TB of raw data. The
latter is a circa 2-years worth web archive of the dmoz.org
domain, consisting of ≈1.9 million web pages, for a grand
total of ≈2.5 million intervals, again with distinct nanosecond-
accuracy endpoints, amounting to ≈300GB of raw data. In
addition to the difference in size, these two datasets further
exhibit totally different distributions of intervals (page ver-
sions) across time. The DMOZ dataset increases in abrupt
steps around months 6 and 21, with the largest part (≈65%)
of web pages being added and subsequently modified in the
last couple of months. The UKGOV dataset increases almost
linearly, with new pages being added over time, and the
number of modifications increasing in tandem with the number
of pages, albeit at a lower pace.

For our queries, we used six different sets of query dumps:
(i) three samples of 100 queries each drawn from an actual
trace of user searches on the UKGOV dataset, corresponding
to single points in time, one-week, and one-year ranges
respectively, and (ii) three synthetically generated sets of 100
queries over the DMOZ dataset with selectivities of 2%, 25%
and 75% of distinct intervals respectively. We compare our
approach against both HBase filtered scans and Hive. We
further present results on query processing performance in the
face of index updates.

A. Index Building

Figure 6 depicts the index building time results for DMOZ
and UKGOV, for the three cluster sizes, broken up into the
time required by each of the EPI and MRST indices. As is
evident, the time required to create/populate our two indices

Fig. 6. Indexing time (DMOZ & UKGOV)

shows a linear dependency on the size of the input (remember
that UKGOV is around twice the size of DMOZ). The first
phase (computation of elementary intervals/building of EPI)
takes on average the same (small) time across all three cluster
sizes. On the other hand, the building/population of the MRST
– the most time-consuming of the two phases – scales well
with the number of nodes in the cluster, with the required
time decreasing quasi-linearly to the number of nodes. The
figure also depicts the standard deviation of the measurements,
showcasing the performance stability of our algorithms.

The respective combined MRST+EPI index sizes where
circa 1.5GB and 600MB for the UKGOV and DMOZ datasets
respectively. In order not to penalize the HBase and Hive
query processing results presented next, we reduced the initial
datasets down to the bare minimum of timestamp pairs for
each page ID for these two contenders; as we shall see shortly,
even with this preprocessing on behalf of our contenders, our
indices still manage to perform consistently better in query
processing times, often by more than a factor of 2×-3×.

B. Queries

In the execution model of HBase, the client acts as the
query coordinator. This is evident in our results, as the query
turnaround times were practically the same across the various
sized clusters. Hive, on the other hand, executes queries as
MapReduce jobs and thus gains in performance with larger
clusters. Due to this (and for space reasons), we report results
only for the 9-node cluster.

First let us look at Stabbing queries. Figure 7(a) depicts
the relevant results over the UKGOV dataset. As we can
see, HBase filtered scans are the worst of the pack, requiring
around 26”. Hive improved on this figure although not by
much, dropping the query time to around 20”. By using only
the Endpoints Index the time drops to around 4”, with a
standard deviation of around 1.7. This is an already significant
improvement over the current approaches. When using only
the MRSegmentTree, the time drops even more to ≈1.4” with
a standard deviation of ≈0.38, an improvement of more than
an order of magnitude compared to our contenders, and almost
3× compared to the EPI-only scenario! Note that since the
algorithm utilizing both indices already does a stabbing query
for the required range, it takes the exact same time as the
MRST-only case (i.e., the scan part is not executed at all).

Next, figures 7(b) and 7(c) depict the query processing
times for the 1-week and 1-year queries respectively over the
UKGOV dataset. HBase and Hive again require around 26”
and 20” respectively. Our first query processing algorithm,
using only the EPI, requires on average 4” to answer the 1-
week queries (with a standard deviation of 1.63), while using
only the MRST this figure shoots to around 58”. The high cost
of large intersection queries on the MRST is due to inherent
characteristics of the MRST/Segment tree, HBase, and Java.
For N input intervals there may be up to 2N elementary
intervals and thus up to ≈4N nodes in the MRST. For
2.5M intervals this translates to over 10M MRST nodes/rows
across 11-13 tree levels. Stabbing queries only retrieve a
single node/row from each MRST level (e.g., a stabbing query
on the above tree would consist of 11-13 get()s), but an
intersection query spanning a large part of the interval space
would have to retrieve millions of rows. Our first approach to
parallelize this operation was to use a thread pool for the get()
invocations. This provided only a constant factor speedup,
while for larger pool sizes the context switching and network
contention become major hurdles. We thus opted for an
HBase-aware solution: pooling/sorting get()s per level and us-
ing batch operations (i.e., HTable.get(List<Get>)). The HBase
client library groups requests by their target regionserver and
dispatches them in parallel. This approach achieves a much
higher throughput than any threading solution could do, taking
advantage of HBase’s high sequential read throughput and
blockcache. We thus reduced the MRST-only time by an
order of magnitude for large intersection queries, but such
queries still required tens of thousands of such multi-get()s,
again translating to a considerable time overhead, also due
to TCP connection overhead, network contention, blockcache
thrashing, etc. On the other hand, a scan() for K consecutive
rows is significantly faster than K perfectly batched Gets. This
was the driving reason why we opted to break up queries into
two complementary parts: a stabbing part on the MRST (i.e.,
a handful of get()s) and a range part on the EPI (via a row-
limited scan()). In this case the hybrid approach (utilizing
MRST and EPI) shines, achieving an average query time of
around 1.2” (with a standard deviation of 0.3), again more than
an order of magnitude lower than that of current approaches.

For the 1-year queries, the HBase and Hive solutions are
again falling behind (≈26” and ≈21” respectively). With an
interval this large (spanning nearly half of the dataset) the
scan()-based operations start dominating the query processing
cost. Thus, the EPI-only case achieves an average query
response time of around 14”, the larger part of which is
attributed to the scan (i.e., not the stabbing) component of the
intersection query. The large interval effect is even more severe
in the MRST-only case, leading to an average query processing
time of around 326”. Last, as the scan part is also present
in the MRST+EPI approach, it also dominates its processing
time, hence the almost identical processing time compared to
the EPI-only case. Despite this, this approach requires almost
half the query processing time of plain HBase and around 65%
compared to Hive.

(a) Stabbing queries (b) 1-week intersection queries (c) 1-year intersection queries

Fig. 7. Query times for the UKGOV dataset

(a) 2% selectivity intersection queries (b) 25% selectivity intersection queries (c) 75% selectivity intersection queries

Fig. 8. Query times for the DMOZ dataset

(a) Stabbing queries (b) 1-week intersection queries (c) 1-year intersection queries

Fig. 9. Query times for the UKGOV dataset w/ online updates

Fig. 8(a), 8(b), and 8(c) present the query processing times
for queries over the DMOZ dataset, for selectivities of 2%,
25%, and 75% of the intervals respectively. The situation
here is quite different with regard to the HBase vs. Hive
performance, with the former performing considerably better.
As far as our algorithms are concerned, for small selectivities
(2%) they are all clear winners, with all of them having more
than an order of magnitude lower average query turnaround
times, and the MRST+EPI approach being again the best of
the pack (≈0.1” average query processing time, compared to
≈0.2” for the EPI-only case and ≈0.35” for the MRST-only
case). For medium selectivities (25%) the cost of the scan
component increases again, thus leading to an increase of the

overall query processing time of all of our algorithms (≈2.3”
for EPI-only, ≈5.2” for MRST-only, and less than 1.5” for
MRST+EPI); even then, our algorithms achieve considerable
improvements over the current approaches (≈11” for the
plain HBase approach and ≈18” for Hive). Last, for large
selectivities (75%), the tree-only algorithm is worst; on the
other hand, EPI-only requires (on average) only half the time
of plain HBase, while MRST+EPI needs less than one third
the time of plain HBase.

Finally, we look into query processing performance in the
face of online updates. We show only results for the EPI-
only and MRST+EPI algorithms, as index updates are either
irrelevant or inapplicable to the other approaches. In these

experiments we inserted a sample of the original dataset into
EPI and MRST at the beginning of each run, then treated
the remaining dataset as a set of updates. Figure 9 depicts
the query processing times for UKGOV (results for DMOZ
are omitted for space reasons), for various percentages of the
original dataset already having been inserted into MRST. Our
algorithms incur little to no extra cost in all cases but one: the
1-year query set for the UKGOV dataset. For all other query
sets, the stabbing part of the query dominates the processing
time. The reason the MRST+EPI cost is increasing with the
number of updates is that in these queries the scan component
of queries greatly dominates the stabbing part, and it is this
cost component that scales with the number of updates, as
stabbing queries on the Updates Index are answered using a
scan() operation (see section IV-A). We have omitted showing
figures for the cost of index updates; this is due to the fact
that this cost is miniscule, as all index update operations are
either put()’s or del()’s, which are by design very fast (i.e.,
few msecs) in HBase.

VI. RELATED WORK

Interval indexing and querying in key-value cloud stores has
not been previously addressed. Work related to ours includes
efforts to (i) develop B-tree and R-tree variants for indexing
objects in (bi-)temporal DBs, and (ii) to develop B-tree and
R-tree indices with MapReduce.

We chose Segment Trees as a starting point for our indexing
efforts, as (along with Interval trees) it is the prototypical
structure for indexing 1-dimensional intervals [10]. Segment
Trees require more storage than Interval Trees However, Inter-
vals Trees induce greater query response times since, at each
accessed tree node, post processing is required to filter out
irrelevant intervals stored at that node. Further, Segment Trees
can easily be extended to handle multiple dimensions (with
multi-level Segment Trees). Finally, related literature (from
temporal DBs) shows that the essentials of Segment Trees have
been used to improve previously-inadequate variants of B-tree
or R-tree indexes, [11].

The community has also investigated alternative index struc-
tures, primarily in the context of (bi-)temporal DBs, [11],
with most of these being B-Tree and R-Tree variants. As
our data items (intervals) are one-dimensional, R-trees are
inappropriate. R-trees have been employed in two-dimensional
indexing in bi-temporal DBs, [12], albeit without great suc-
cess [11] due to lack of clustered data objects in several
dimensions and the fact that for some interval queries there
is a high overlap among data objects; a fact that is known
to cause performance problems for R-Trees. Some of these
performance problems can be avoided if Segment R-Trees [13]
are used, which utilize essential features of Segment Trees.
B-Tree-based variants, have also been employed primarily for
1-dimensional time indices in temporal DBs. One of the better
known representatives, the Time Index, [14], results in an
index that is too space-consuming (O(n2)), as opposed to the
Segment Trees O(nlogn)) and too costly for updates. In fact,
some suggestions for lowering the above costs borrow ideas

again from Segment Trees, as in the TimeIndex+ structure
[15]. In general, however, B-tree indexes are also viewed as
inadequate for the job [11]. On the other hand, a disadvantage
of Segment Trees is that they are static structures (in that
updates are supported only as long as elementary intervals do
not need to be redefined). We manage to efficiently accom-
modate insertions and deletions, by employing an auxiliary
structure and adopting the rather typical approach for cloud
data, involving the periodic rebuilding of the segment tree. As
our results show this efficiently overcomes this limitation.

The work in [16] is related to our work as it describes a Dis-
tributed Segment Tree. The emphasis is on supporting range
and cover queries in a P2P DHT network overlay. The problem
dealt with is quite easier than interval query processing and
the underlying infrastructure is radically different.

In the cloudstore/MapReduce field, there is a number
of works building tree-based indices for query processing
speedups. All of these works (discussed shortly) build either
B-tree or R-tree based indices, which are not as efficient for
interval queries as segment trees, as discussed earlier. All tree-
based MapReduce indexing mechanisms (including ours) are
similar to the extent that they all proceed in phases of input
data partitioning and subtree building/population/integration.
This similarity in the MapReduce jobs structure is natural for
all tree indices. However, our approach has several striking
differences, outlined below.

In [17], authors show how to build R-trees with MapRe-
duce for multi-dimensional data. The authors propose using
two MapReduce phases: the first to compute a near-optimal
partition function, and the second to let each reducer build
a subtree of the R-tree. In [18] an extension is presented,
proposing a new way to partition objects using the X-means
Partition algorithm. [19] provide an analysis of the cost and
benefits of parallel building of an R-tree. The issues in
the parallel building of a structure storing spatial data are
complex and the approach in this work provides an analytical
model encompassing metrics like the number of processors,
partitioning, number of objects, etc. Compared to these works:
(i) We also first compute the input data partition keys; however,
we feed them to the phase 2 partitioner thus freeing up our
mappers to do more than just shuffling data around; (ii) Our
algorithm does all chores in the mappers of a single M/R
job, avoiding costly transfers to reducers and allowing further
speed-ups by writing directly to HFiles and bulk-loading them
afterwards; and (iii) Our mappers directly affix their subtrees
to the appropriate top-tree leaf nodes, rendering the sequential
subtree consolidation of [17] obsolete. This makes a huge
difference, as storing intervals spanning several subtrees on
the subtree roots, then reconstructing upper levels from these
populated nodes, proves too time/memory hungry, let alone if
done sequentially.

Traverse[20] provides indexing B-tree based mechanisms
for MapReduce operations, which can be used later for join
operations. The motivation here is similar to ours: to avoid
having MapReduce processes loading and processing all the
data, even for small-selectivity queries. [21] contribute a

scalable, efficient, distributed B-tree. The main contribution
is the efficient maintenance of a B-tree using transactions that
minimize the cost and maximize the availability of the B-tree
index. Another approach for B-tree based indexing in the cloud
is presented in [22]. Compared to these works: (i) Segment
trees require computing elementary intervals whereas there is
no such need for B-trees; (ii) Segment trees require a top-
down population approach; bottom-up tree building/population
proves too memory hungry even for m1.xlarge EC2 instances;
(iii) [20] use a MapReduce phase for each tree level; this
can be too time consuming for very large datasets, even if
only 2 levels are built; (iv) The authors show no results
for tree building times; (v) Our tree indices are stored in
HBase, not on HDFS; we thus harness the lower I/O latency
of HBase to provide very low query processing times, while
retrieving data directly from HBase without the MapReduce
setup/cleanup overhead ([20] ignore this overhead in their
performance results); and (vi) We support online updates to
our indices, a field not touched by [20] at all; and with our
indices built on top of HBase, they are much easier to handle
compared to if stored on flat files on HDFS.

Last, [23] address the problem of time-traveling queries over
web archives. Their approach is based on creating augmented
inverted text indexes (with entries storing timestamped interval
information). Sharding is used for the augmented text index,
along the document id axis. Unlike our work, there is no
support (index and querying) for interval data items. Interval
queries are time-interval queries and are facilitated only within
the context of keyword searching. Moreover, their algorithms
are not intended to be used with MapReduce and are not
designed to work on cloud key-value stores and no index
updates are not addressed.

VII. CONCLUSIONS

Clouds and key-value stores are increasingly attracting at-
tention for processing complex queries. A prominent example
of such queries, which are useful in several applications, are
interval queries. In this work we have addressed the issues
associated with indexing and querying intervals over key-
value, cloud stores. Starting from the segment tree, as a
prototypical interval indexing structure, we first studied how
to build it in our environment, yielding the MRST structure.
We accompanied the MRST with another index useful for
interval queries, coined the Endpoints Index (EPI), which is a
new column family index storing the endpoints of the indexed
intervals. As segment trees are relatively static and our envi-
ronment can face heavy insertion loads, we have contributed
techniques to maintain our indexes. These utilize an auxiliary
structure in a way that, on the one hand, exploits the key-value
store’s inherent high write throughput, while, on the other,
ensures that incoming queries would observe updates, while
paying only a negligible cost. We have contributed efficient
MapReduce algorithms to build and populate these indexes.
We have described algorithms for answering interval queries
using our indexes. These algorithms exploit the strengths

of each of MRST (i.e., excellent performance for stubbing
queries) and EPI (which performs great for the sequential
scan part), “routing” subqueries to the most appropriate index
tier. Last, we presented extensive experimental results, with
real-world datasets, showing that our indexing and query
processing algorithms far outperform the naive approaches of
a pure HBase/Bigtable-like system, as well as the well-known
Hive query processor.

ACKNOWLEDGMENTS

This work is supported by the 7th Framework IST pro-
gramme of the European Union through the focused research
project (STREP) on Longitudinal Analytics of Web Archive
data (LAWA) under contract no. 258105.

REFERENCES

[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” in Proc. OSDI, 2006.

[2] “Apache HBase,” http://hbase.apache.org/.
[3] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-

hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts:
Yahoo!’s hosted data serving platform,” in Proc. VLDB, 2008.

[4] A. Lakshman and P. Malik, “Cassandra - a decentralized structured
storage system,” in Proc. ACM SOSP, 2007.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proc. ACM SOSP, 2007.

[6] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proc. USENIX OSDI, 2004.

[7] “Apache Hadoop,” http://hadoop.apache.org/.
[8] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson,

A. Pavlo, and A. Rasin, “MapReduce and parallel DBMSs: Friends or
foes?” Communications of the ACM, vol. 53, no. 1, 2010.

[9] “Apache Hive,” http://hive.apache.org/.
[10] J. Bentley, “Solutions to Klee’s rectangle problems,” Carnegie-Mellon

Univ., Pittsburgh, PA, Tech. Rep., 1977.
[11] B. Salzberg and V. J. Tsotras, “Comparison of access methods for time-

evolving data,” ACM Computing Surveys, vol. 31, no. 2, 1999.
[12] A. Kumar, V. J. Tsotras, and C. Faloutsos, “Designing access methods

for bitemporal databases,” IEEE Trans. Knowl. Data Eng, vol. 10, no. 1,
1998.

[13] C. Kolovson and M. Stonebraker, “Segment indexes: Dynamic indexing
tech- niques for multi-dimensional interval data,” in Proc. ACM SIG-
MOD, 1991.

[14] R. Elmasri, G. Wuu, and Y. Kim, “The time index: An access structure
for temporal data,” in Proc. VLDB, 1990.

[15] V. Kouramajian, I. Kamel, V. Kouramajian, R. El-Masri, and S. Wa-
heed, “The time index+: an incremental access structure for temporal
databases,” in Proc. ACM CIKM, 1994.

[16] C. Zheng, G. Shen, S. Li, and S. Shenker, “Distributed segment tree:
Support of range query and cover query over DHT,” in Proc. IPTPS,
2006.

[17] A. Cary, Z. Sun, V. Hristidis, and N. Rishe, “Experiences on processing
spatial data with mapreduce,” in Proc. SSDBM, 2009.

[18] J. Ballesteros, A. Cary, and N. Rishe, “Leveraging cloud computing in
geodatabase management,” in Proc. IEEE GrC, 2010.

[19] A. Papadopoulos and Y. Manolopoulos, “Parallel bulk-loading of spatial
data,” Parallel Comput., vol. 29, no. 10, 2003.

[20] H.-C. Yang and S. Parker, “Traverse: Simplified indexing on large map-
reduce-merge clusters,” in Proc. DASFAA, 2009.

[21] M. K. Aguilera, W. Golab, and M. A. Shah, “A practical scalable
distributed B-tree,” PVLDB, vol. 1, no. 1, 2008.

[22] S. Wu, D. Jiang, B. Ooi, and K.-L. Wu, “Efficient B-tree based indexing
for cloud data processing,” PVLDB, vol. 3, no. 1, 2010.

[23] A. Anand, S. Bedathur, K. Berberich, and R. Schenkel, “Temporal index
sharding for space-time efficiency in archive search,” in Proc. ACM
SIGIR, 2011.

