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Abstract. We present an improved upper bound on the competitiveness
of the online coloring algorithm First-Fit in disk graphs which are graphs
representing overlaps of disks on the plane. We also show that this bound
is best possible for deterministic online coloring algorithms that do not
use the disk representation of the input graph. We also present a related
new lower bound for unit disk graphs.

1 Introduction

We study minimum coloring, a fundamental combinatorial optimization prob-
lem in graphs. Given a graph G, the minimum coloring problem is to find an
assignment of colors (denoted by positive integers) to the nodes of the graph so
that no two nodes connected by an edge are assigned the same color and the
number of colors used is minimized. We consider intersection graphs modeling
overlaps of disks on the plane.

The intersection graph of a set of disks in the Euclidean plane is the graph
having a node for each disk and an edge between two nodes if and only if the
corresponding disks overlap. Each disk is defined by its radius and the coordi-
nates of its center. Two disks overlap if the distance between their centers is at
most equal to the sum of their radii. A graph G is called a disk graph if there
exists a set of disks in the Euclidean plane whose intersection graph is G. The
set of disks is called the disk representation of G. A disk graph is called unit disk
graph if all disks in its disk representation have the same radius. A disk graph
is σ-bounded if the ratio between the maximum and the minimum radius among
all the disks in its disk representation is at most σ.

In disk graphs, minimum coloring is important since it can model frequency
assignment problems in radio communication networks utilizing the Frequency
Division Multiplexing technology [10]. Consider a set of transmitters located in
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fixed positions within a geographical region. Each transmitter may select to use a
specific frequency from an available spectrum in order to transmit its messages.
Two transmitters can successfully (i.e., without signal interference) transmit
messages simultaneously either if they use different frequencies or if they use the
same frequency and their ranges do not overlap. Given a set of transmitters in a
radio network, in order to guarantee successful transmissions simultaneously, the
important engineering problem to be solved is the frequency assignment problem
where the objective is to minimize the number of frequencies used all over the
network. Assuming that all transmitters have circular range, the graph reflecting
possible interference between pairs of transmitters is a disk graph. The frequency
assignment problem is equivalent to minimum coloring.

An instance of the minimum coloring problem may or may not include the
disk representation (i.e., disk center coordinates and/or radii) of the disk graph as
part of the input. Clearly, the latter case is more difficult. Information about the
disk representation of a disk graph is not easy to extract. Actually, determining
whether a graph is a disk graph is an NP-complete problem [11].

The minimum coloring problem has been proved to be NP-hard in [3, 8] even
for unit disk graphs. A naive algorithm is algorithm First-Fit: it examines the
nodes of the graph in an arbitrary order and assigns to each node the smallest
color not assigned to its already examined neighbors. Clearly, First-Fit does not
use the disk representation. It computes 5-approximate solutions in unit disk
graphs [7, 14]. By processing the nodes of the graph in a specific order, First-Fit
computes 3-approximate solutions in unit disk graphs [8, 14, 15]. In general disk
graphs, a smallest-degree-last version of First-Fit achieves an approximation ratio
of 5 [7, 13, 14].

In the online versions of the problem, the disk graph is not given in advance
but is revealed in steps. In each step, a node of the graph appears together with
its edges incident to nodes appeared in previous steps (and possibly, together
with the center coordinates and/or the radius of the corresponding disk). When
a node appears, an online coloring algorithm decides which color to assign to
the node. The decisions of the algorithm at a step cannot change in the future.

The performance of an online algorithm is measured in terms of its com-
petitive ratio (or competitiveness, [1]) which is defined as the maximum over
all possible sequences of disks of the ratio of the number of colors used by the
algorithm over the minimum number of colors sufficient for coloring the graph
(i.e., its chromatic number).

First-Fit is essentially an online algorithm. It has been widely studied in a
more general context and has been proved to be Θ(log n)-competitive in in-
ductive graphs with n nodes [12, 9]. Disk graphs are inductive [4, 5] so the up-
per bound holds for disk graphs as well. The lower bound holds also for trees
(which are disk graphs) so the Θ(log n) bound holds for general disk graphs. In
unit disk graphs, First-Fit is at most 5-competitive [7, 14] while for σ-bounded
disk graphs with n nodes, it is at most O(min{log n, σ2})-competitive [4]. For
unit disk graphs, a lower bound of 2 on the competitiveness of any determin-
istic online coloring algorithm is presented in [6]. The best known lower bound
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on the competitiveness of deterministic coloring algorithms in σ-bounded disk
graphs is Ω(min{log n, log log σ}) [4]. A competitive ratio of O(min{log n, log σ})
is achieved by two algorithms presented in [4] and [2]. The former uses the disk
representation while the latter does not but it is quite impractival. Both algo-
rithms use First-Fit as a subroutine.

In this paper we show that algorithm First-Fit itself is O(log σ)-competitive
when applied to σ-bounded disk graphs. This significantly improves the previ-
ously known upper bound of O(σ2) on the competitiveness of First-Fit. Further-
more, it matches the best known upper bound for online deterministic coloring
algorithms, previously achieved either by algorithms that use the disk representa-
tion [4] or by quite impractical algorithms that do not use the disk representation
[2]. Our second result indicates that First-Fit has optimal competitiveness (within
constant factors) among all deterministic online algorithms for disk graphs that
do not use the disk representation. In particular, we show that any deterministic
online coloring algorithm that does not use the disk representation has compet-
itive ratio Ω(log σ) on σ-bounded disk graphs. Combined with previous results,
our lower bound establishes a tight bound of Θ(min{log n, log σ}) on the op-
timal competitiveness of deterministic online coloring algorithms in σ-bounded
disk graphs with n nodes that do not use the disk representation. We also prove
a new lower bound of 2.5 on the competitiveness of deterministic online coloring
algorithms for unit disk graphs that do not use the disk representation. This
result improves a previous lower bound of 2 [6].

The rest of the paper is structured as follows. A discussion on previous upper
bounds and the proof of the upper bound on the competitiveness of First-Fit
are presented in Section 2. The lower bounds are presented in Section 3. We
conclude with open problems in Section 4.

2 The Upper Bound

In this section, we prove the upper bound for algorithm First-Fit. Although this
upper bound can also be achieved by two other known algorithms presented
in [4] and [2], respectively, our result is important because of the simplicity of
algorithm First-Fit.

The algorithm of Erlebach and Fiala [4] classifies the disks into a logarithmic
number of classes so that the disks belonging to the same class form a 2-bounded
disk graph and runs algorithm First-Fit in each class using disjoint sets of colors
for coloring the disks of different classes. The classification is performed according
to the radii of the disks; hence, the algorithm uses the disk representation. The
proof of the O(log σ) upper bound follows by the fact that algorithm First-Fit
has constant competitive ratio on 2-bounded disk graphs.

The algorithm Layered classifies the disks into layers and applies algorithm
First-Fit to each layer separately, using a different set of colors in each layer.
Layers are numbered with integers 1, 2, ... and a disk is classified into the smallest
layer possible under the constraint that it cannot be classified into a layer if it
overlaps with at least 16 mutually non-overlapping disks belonging to this layer.
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The proof that algorithm Layered is O(log σ)-competitive is based on the
following arguments. First, if a disk of radius R belongs to some layer i > 1,
then there is a disk of radius at most R/2 belonging to layer i − 1. Hence, if
the disk graph given as input to algorithm Layered is σ-bounded, the number of
layers is at most 1 + log σ. The logarithmic competitive ratio follows since the
maximum independent set in the neighborhood of each node within each layer
has size at most 15, and, hence, algorithm First-Fit is proved to have constant
competitive ratio within each layer. Clearly, algorithm Layered does not use the
disk representation.

For checking whether a new node presented has 16 or more non-overlapping
disks of some layer in its neighborhood may require time Ω(n16). This could be
decreased to Ω(n8) by changing the constraint so that a disk cannot be classified
into a layer if it overlaps with at least 8 mutually non-overlapping disks belonging
to this layer. Still, it can be proved that there exists a constant α > 1 such that
for each disk of radius R belonging to some layer i > 1, there exists a disk at
layer i − 1 of radius smaller than R/α. This is the best possible improvement
in the idea of algorithm Layered since, for any α > 1 arbitrarily close to 1 (e.g.,
α = 1 + 1/σ), a disk of radius R can overlap with 7 mutually non-overlapping
disks of radius R/α, and, hence, the logarithmic upper bound on the number of
layers cannot be established.

Surprisingly, we show that algorithm First-Fit itself is at most O(log σ)-
competitive, improving the previously known O(σ2) upper bound. Combining
this result with the O(log n) upper bound which is known for the competitive
ratio of First-Fit we obtain that First-Fit is O(min{log n, log σ})-competitive. Al-
gorithm First-Fit runs in time proportional to the number of edges of the disk
graph, i.e., O(n2), and does not use the disk representation. Hence, it is much
simpler than the previously known algorithms that achieve the same bounds.

Theorem 1. First-Fit is O(log σ)-competitive for σ-bounded disk graphs.

Proof. Let G be a σ-bounded disk graph with chromatic number κ. Assume that
the nodes of G appear online and are colored by algorithm First-Fit. Consider
a representation of G by overlapping disks on the plane of radii between r (the
radius of the smallest disk) and Rmax (the radius of the largest disk) so that
Rmax/r ≤ σ. We classify the nodes into levels 0, 1, ..., �log (Rmax/r)� as follows:
a node corresponding to a disk of radius R belongs to level �log (R/r)�. Since
Rmax/r ≤ σ, the index of the last level is at most �log σ�.

We will first show that a node of G belonging to level i ≥ 0 is adjacent to at
most 15(κ − 1) other nodes of level at least i.

Assume otherwise that there exists a node u of G at level i which is adjacent
to at least 15κ − 14 other nodes of level at least i. Let R be the radius of the
disk d corresponding to node u in the disk representation. Then i = �log (R/r)�.
Also, let Sd be the set of disks corresponding to nodes adjacent to d which belong
to levels at least i. Clearly, all the disks of Sd have radii at least r2i.

We apply the following shrinking procedure on the disks of Sd. We shrink
each disk d′ in Sd into a disk of radius r2�log R/r� as follows: If the center cd′ of
d′ is inside d, we shrink d′ into a disk having the same center cd′ . Otherwise, let
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pd′ be the point in the periphery of d′ which is closest to the center of d. We
shrink d′ so that pd′ is again the point in the periphery of d′ which is closest
to the center of d. Denote by S′

d the set of shrunk disks. Clearly, each of the
disks in S′

d overlaps with d since either its center is contained in d or a point in
its periphery is contained in d. This means that all disks in S′

d are completely
contained into the disk of radius R + 2i+1 centered at the center cd of disk d.
An example of the shrinking procedure is depicted in Figure 1.
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Fig. 1. The shrinking procedure. The disk d overlaps with three disks. Grey disks are

the three corresponding shrunk disks

The node-induced subgraph H of G defined by the nodes of G corresponding
to the disks of Sd is (κ − 1)-colorable since the graph G is κ-colorable and the
nodes of H are all adjacent to u in G. Consequently, since by our assumption H
contains the neighbors of u in G with levels at least i and since there are at least
15κ − 14 such nodes, the maximum independent set in H has size at least 16.
Consider such an independent set of 16 nodes in H and the 16 non-overlapping
disks of Sd corresponding to these nodes. Clearly, the 16 corresponding shrunk
disks of S′

d are also non-overlapping. Each of these disks has radius r2i and,
hence, their total area is

16π
(
r2i

)2
= π

(
r2i+1 + r2i+1

)2

> π
(
R + r2i+1

)2
.

Since these disks are non-overlapping, this contradicts the fact that all disks
of S′

d are completely contained in the disk of radius R + r2i+1 centered at cd.
Consequently, our assumption is incorrect and u is adjacent to at most 15(κ−1)
other nodes of G of level at least i.

We will now show that each node of G at level i ≥ 0 is colored by al-
gorithm First-Fit with a color in the range [1, (15κ − 14) (i + 1)]. Hence, the
maximum color that can be assigned to a node of G by First-Fit is at most
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(15κ − 14) (�log σ� + 1). Since G has chromatic number κ, this implies that al-
gorithm First-Fit is O(log σ)-competitive.

We use induction on the level of nodes. The statement is true for nodes of
level 0, since any such node is adjacent to at most 15(κ − 1) nodes of G and,
hence, it will be assigned a color in [1, 15κ − 14].

Now assume that the statement is true for nodes of level i = 0, ..., k (for
k < �log σ�). We will show that it also holds for nodes of level k + 1. Consider a
node u at level k +1. This node will be adjacent to nodes of smaller levels which
may use up to color (15κ−14)(k+1) and to at most 15(κ−1) additional nodes of
levels at least k+1. Hence, the maximum color that can be assigned by algorithm
First-Fit to node u is (15κ− 14)(k + 1) + 15(κ− 1) + 1 = (15κ− 14)(k + 2). This
completes the proof of the theorem. ��

3 The Lower Bound

The result proved in the following establishes that algorithm First-Fit achieves the
best possible competitive ratio (within constant factors) among all deterministic
online coloring algorithms that do not use the disk representation.

We present an adversary ADV which, on input an integer k and a determin-
istic online coloring algorithm A, outputs a tree T with at most 2k−1 nodes such
that A colors T with at least k colors. We describe the adversary ADV in the
following. This is a non-recursive description of the adversary very similar to
that used in [4] for proving lower bounds on disk graphs and (in a more general
form) in [12] for proving lower bounds on inductive graphs. We use the notation
〈s, t〉 to represent the nodes in the tree but the root, where t ≥ 1 is an integer
representing the level of the node and s a binary string of length k − t − 1. We
use the function str() which, on input integers i ≥ 0 and j with 0 ≤ j ≤ 2i,
returns a string of length i (possibly empty) which is the binary representation
of j with i binary digits. We use the symbol 	 to denote the concatenation of
two strings. The adversary ADV can be described as follows.

Create 2k−2 nodes labeled as 〈str(i, k− 2), 1〉, for each i = 0, ..., 2k−2 − 1, and
introduce them to algorithm A.
For i = 2 to k − 1

For j = 0 to 2k−i−1 − 1
Let S� be the set of colors assigned by A to nodes

〈str(j, k − i − 1) 	
i − 1 times
︷ ︸︸ ︷
000...00 , 1〉, 〈str(j, k − i − 1) 	

i − 2
︷ ︸︸ ︷
00...00, 2〉,

..., 〈str(j, k − i − 1) 	 0, i − 1〉.
Let Sr be the set of colors assigned by A to nodes

〈str(j, k − i − 1) 	 1

i − 2
︷ ︸︸ ︷
00...00, 1〉, 〈str(j, k − i − 1) 	 1

i − 3
︷︸︸︷
0..00, 2〉,

..., 〈str(j, k − i − 1) 	 1, i − 1〉.
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If S� = Sr then
Create a new node 〈str(j, k − i − 1), i〉 connected to nodes

〈str(j, k − i − 1) 	 1

i − 2
︷ ︸︸ ︷
00..00, 1〉, 〈str(j, k − i − 1) 	 1

i − 3
︷︸︸︷
0..00, 2〉,

..., 〈str(j, k − i − 1) 	 1, i − 1〉
and introduce it to algorithm A.

else
Let 〈s, t〉 be the node to which A assigns a color not in S�.
Rename it as 〈str(j, k − i − 1), i〉

Endif
Endfor

Endfor
Create a new node r connected to nodes labeled

〈
k − 2

︷ ︸︸ ︷
000...00, 1〉, 〈

k − 3
︷ ︸︸ ︷
000...00, 2〉, ..., 〈0, k − 2〉, 〈∅, k − 1〉,

and introduce it to algorithm A.

The adversary forces the algorithm to use at least k colors. In each iteration,
it can be shown by induction on i that all the i− 1 nodes examined for defining
the set S� (and similarly for Sr) are colored with i − 1 different colors. Hence,
after the if-then-else statement, the adversary will have forced algorithm A to
use i different colors, i.e., k − 1 colors at the end of all iterations. This clearly
holds if the sets S� an Sr are not the same (else statement). Otherwise, it is guar-
anteed by the introduction of a new node which is connected to nodes colored
with the i− 1 different colors of Sr (if-then statement). Then, the last node r is
connected to nodes with k−1 different colors and will be assigned a k-th color by
algorithm A.

Also, it can be seen that when a new node is introduced in an iteration, the
nodes to which it is connected will not be connected to other nodes in subse-
quent iterations. Hence, in general, the resulting graph is a forest. The number
of nodes is at most 2k−1 since there are 2k−2 nodes at level 1, at most one
new node in each iteration and one more node at the end. Actually, when the
adversary runs against algorithm First-Fit, then the constructed graph is a tree
with exactly 2k−1 nodes (in each iteration, a new node is introduced). We de-
note this tree by TFF (k) and we will first show that this is an αk−1-bounded
disk graph, for every α > 2. Then, we will show how to adapt this construction
for forests produced by the adversary against other deterministic online coloring
algorithms.

Given a disk d of radius R corresponding to some node of the tree TFF (k),
we define the vertical stripe of d to be the vertical stripe of width 2R which
completely contains d. In our construction, the disk representation of TFF (k)
is such that the disks corresponding to nodes in the subtree of a node u do
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not cross the boundaries of the vertical stripe of the disk d corresponding to
u. Furthermore, the vertical stripes of any two disks corresponding to children
of the same node are disjoint. These two invariants guarantee that the disks
corresponding to nodes belonging to different subtrees do not overlap.

We first locate a disk of radius αk−1 corresponding to the root r of the tree.
Disks corresponding to nodes of level i (for i = 1, ..., k − 1) will have radius
αi−1.

A node u at level i with i = 2, ..., k, has i− 1 children u1, ..., ui−1 in TFF (k)
with levels 1, ..., i−1, respectively. Let d be the disk corresponding to node u and
let d1, ..., di−1 be the disks corresponding to its children u1, ..., ui−1, respectively.
Assuming that the center of the disk d has horizontal coordinate h, the center of
the disk dj has horizontal coordinate hj = h−αi−1+3αi−12−i+j . The horizontal
stripes of the disks d1, ..., di−1 are disjoint since for two disks dj and dj′ with
j > j′, their centers differ in the horizontal coordinate by

hj − hj′ = (h − αi−1 + 3αi−12−i+j) − (h − αi−1 + 3αi−12−i+j′
)

=
3
2
αj−1(α/2)i−j(2 − 2−j+j′+1)

>
3
2
αj−1

> αj−1 + αj′−1

which is the sum of their radii.
Furthermore, neither the leftmost disk d1 nor the rightmost disk di−1 cross

the boundary of the horizontal stripe of d. Indeed, the leftmost point of d1 has
horizontal coordinate

h1 − 1 = h − αi−1 + 3αi−12−i+1 − 1
= h − αi−1 + 3(α/2)i−1 − 1
> h − αi−1 + 2
> h − αi−1

which is the horizontal coordinate of the left boundary of the horizontal stripe
of d. Also, the rightmost point of di−1 has horizontal coordinate

hi−1 + αi−2 = h − αi−1 + 3αi−1/2 + αi−2

= h + αi−1/2 + αi−2

< h + αi−1

which is the horizontal coordinate of the right boundary of the horizontal stripe
of d.

The vertical coordinate of the center of disk dj is defined so that it is smaller
than the vertical coordinate of the lowest point in the intersection of disk dj

with disk d. This guarantees that, among all disks corresponding to nodes in
the subtree of u, the disks that d overlaps with are those corresponding to its
children in TFF (k).
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In the disk representation of the tree TFF (k), we use disks of radii between
1 and αk−1. So, TFF (k) is an αk−1-bounded disk graph. An example of the
construction is depicted in Figure 2.

c3

c

c4

d

Fig. 2. The disk representation of the tree produced by algorithm ADV on input k = 5

and algorithm First-Fit. The dashed lines indicate the boundaries of the horizontal

stripes of two disks

Now, consider the forest created by the adversary on input an integer k and
some other algorithm A. In this case, some iterations may have renamed some
nodes instead of introducing new ones. We construct the disk representation
of such a forest by starting with the disk representation of TFF (k). We follow
the execution of the adversary on input k and some algorithm A. When, the
adversary executes the else statement in an iteration, we remove the disk cor-
responding to the node 〈str(j, k − i − 1), i〉 (since this node is not introduced)
and move horizontally all the disks corresponding to nodes of the subtree of
node 〈s, t〉 so that the disk d corresponding to node 〈s, t〉 (and no other disk
in its subtree) overlaps with the disk corresponding to the parent node of node
〈str(j, k−i−1), i〉 in TFF (k). From now on, the node to which disk d corresponds
has been renamed as 〈str(j, k − i − 1), i〉.

Clearly, this also yields an αk−1-bounded disk graph. The above discussion
leads to the following lemma.

Lemma 1. For any α > 2, the forest constructed by the adversary ADV on
input an integer k ≥ 3 and any deterministic online coloring algorithm A is an
αk−1-bounded graph.
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Now given a sufficiently large σ, the graph produced by the adversary on input
k = 1+�logα σ� and any deterministic algorithm is a 2-colorable σ-bounded disk
graph which the algorithm colors with at least 1 + �logα σ� colors. We obtain
the following.

Theorem 2. Any deterministic online algorithm for coloring σ-bounded disk
graphs that does not use the disk representation has competitive ratio Ω(log σ).

For unit disk graphs, the best known lower bound on the competitiveness of
any deterministic algorithm is 2 [6] and holds also for algorithms that use the
disk representation. On input a deterministic online algorithm A, the adversary
in the proof of [6] constructs a κ-colorable unit disk graph with κ ∈ {1, 2, 3},
which algorithm A colors with at least 2κ colors. In the following, we improve
this lower bound for deterministic online coloring algorithm in unit disk graphs
that do not use the disk representation.

Consider a deterministic online coloring algorithm A and the forest produced
by adversary ADV on input 5 and algorithm A. Each connected component of
the forest produced by ADV is a subtree of the tree TFF (5) produced by ADV
on input 5 and algorithm First-Fit. The tree TFF (5) is a unit disk graph as shown
in Figure 3.

Fig. 3. The tree TFF (5) and its disk representation with unit disks

Hence, the output of the adversary ADV on input 5 and any deterministic
algorithm A is a unit disk graph. Since this output is a forest, it is 2-colorable,
while the adversary forces A to use at least 5 colors. We obtain the following.

Theorem 3. Any deterministic online algorithm for coloring unit disk graphs
that does not use the disk representation has competitive ratio at least 2.5.

4 Open Problems

Our results on σ-bounded disk graphs can be extended to other classes of geo-
metric graphs such as intersection graphs of squares and intersection graphs of
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rectangles whose height to width ratio is bounded by a constant. It still remains
to show whether there exist deterministic online coloring algorithms that use the
disk representation and have competitive ratio o(log σ). Our lower bound clearly
fails in this case since a very simple online algorithm could use the information
for the radii of the disks produced by the adversary ADV and color disks of
radius αi with colors 1 and 2 depending on whether i is even or odd.

Also, it would be interesting to investigate whether randomization helps in
improving the known upper bounds and even beating the lower bounds for deter-
ministic algorithms. To our knowledge, randomized online coloring algorithms
have not been studied except for very general classes of graphs (e.g., in [16])
where the results are much weaker than those for disk graphs.
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