
Mixed accelerated techniques for solving dense linear systems

Alexandros S. Papadakis, Efstratios Gallopoulos
papadakis@ceid.upatras.gr, stratis@ceid.upatras.gr

Abstract. The rounding-error analysis of Gaussian elimination shows that the method is stable only when the el-
ements of the matrix do not grow excessively in the course of the reduction. Usually such growth is prevented by
interchanging rows and columns of the matrix so that the pivot element is acceptably large. In this paper firstly we
introduce the Boosting LU factorization method based on a rank one modification. In the next we propose an efficient
algorithm based on an excisting algorithm that utilizes random transformation of the coefficient matrix to solve dense
linear systems without pivoting. In the end we develop a mixed algorithm for solving dense linear systems.

Key words. dense linear algebra, Sherman-Morrison-Woodbery formula, random transformations, rank one modifi-
cation, boosting, Gaussian elimination, LU factorization.

1. Introduction. It is known that for a general matrix,
the solution based on a LU factorization, is stable only
if some kind of pivoting strategy is utilized. However,
pivoting can significantly complicate the algorithm, in-
crease data movement, and reduse speed, particularly
on high-performance computers. For example figure 1
,which was taken from [2], shows the cost of pivoting,
the percentage of time due to pivoting in LU factoriza-
tion for several sizes of random matrices. We observe
that pivoting can represent more than 40% of the global
factorization time for small matrices and although the
overhead decreases with the size of the matrix, it still
represents 17% for a matrix of size 10000.

The fact that pivoting remains a bottleneck for linear
system solutions is a motivation to present in this paper.

Let A be a real matrix of order n. The method of Gaus-
sian elimination may be regarded as a technique for com-
puting the LU decomposition of A into the product of a
unit lower triangular matrix L and an upper triangular
matrix U. Specifically, at the kth step of the reduction
(for example kth pivot<threshold), we have

A =

(
L
(k)
11 0

L
(k)
21 I

)(
U

(k)
11 U

(k)
12

0 A
(k)
22

)

so to solve a system Ax=b , the form is(
A11 A12

A21 A22

)(
x1
x2

)
=

(
b1
b2

)
To find the solution we need to solve 2 systems of form(

L
(k)
11 0

L
(k)
21 I

)(
y1
y2

)
=

(
b1
b2

)
(1)

and (
U

(k)
11 U

(k)
12

0 A
(k)
22

)(
x1
x2

)
=

(
y1
y2

)
(2)

The solutions y1,y2,x1 can be found by solving trian-
gular systems. To find x2 solution we need to solve

A
(k)
22 x2 = y2. If we don’t want to do pivoting to find x2,

in bibliography [1],[3] there are 2 ideas that accomplish
it. Both ideas try to solve a new system Bz = y2 and
then they correct the solution z to find the original solu-
tion x2. In the next sections we breafly mention the two
existed algorithms and develop new. In the end we com-
pare each algorithm under our experiment framework.

From now on when we refer in phrase ”bad pivot”, we
mean a pivot that its absolute value is less than a con-
stant selected threshold.

2. Stewart’s algorithm. The idea is based on a rank

one modification of the matrix A
(k)
22 . Specifically the new

matrix B and A
(k)
22 differ only in their (1,1)-elements. So

B can be written in the form B = A
(k)
22 + σe1e

T
1 , where

e1 is the first column of the identity matrix.

Then it follows from the well known Sherman-Morrison-
Woodbery formula that

A
(k)−1
22 = B−1 − B−1e1e

T
1 B

−1

eT1 B
−1e1 − σ−1

1

So since we have found the solution of system Bz = y2
we can find the original solution x2 by

x = z − B−1e1e
T
1 z

eT1 B
−1e1 − σ−1

Now it follows the stewart algorithm

1) perform LU since you have found kth pivot less than
threshold
2) if there is not bad pivot, solve the system LUx=b and
return else solve the system(

L
(k)
11 0

L
(k)
21 I

)(
y1
y2

)
=

(
b1
b2

)
3) craft a new matrix B = A

(k)
22 + σe1e

T
1 , σ is selected so

the pivot is greater than threashold
4) solve the systems Bz = y2 and Bc1 = e1 using stewart
algorithm
5) correct the solution z to find the original solution x2
using the Sherman-Morrison-Woodbery formula

6) solve the system U
(k)
11 x1 = y1 − U (k)

12 x2

7) return

(
x1
x2

)
as solution

We obsereve that step 4 of stewart’s algorithm uses a re-
cursion. Stewart in [1] agrees that if there are too much
bad pivots his algorithm is not so good. In the next
section, we present a slight modification of the above
idea so that the algorithm doesn’t need a recursion.

3. Boosting LU factorization. We introduce a new
LU factorization method that avoid pivoting and utilizes
the Stewart’s idea.

It is known [4] that when we perform Gauss elimination
on a matrix A to find L,U triangular matrices for which
A=LU for each step of elimination we have

step 1.
U1 = EN,1 . . . E3,1E2,1A,

L1 = E−1
2,1E

−1
3,1 . . . E

−1
N,1

step 2.
U2 = EN,2 . . . E4,2E3,2L

−1
1 A,

L2 = L1E
−1
3,2E

−1
4,2 . . . E

−1
N,2

. . .

step k.

Uk = EN,k . . . Ek+2,kEk+1,kL
−1
k−1 . . . L

−1
2 L−1

1 A,

Lk = L1L2 . . . Lk−1E
−1
k+1,kE

−1
k+2,k . . . E

−1
N,k

Where Ei,j is the identity matrix in which the element
(i, j) is the quotient of division of (i, j) and (j, j) ele-
ments of L−1

j−1 . . . L
−1
2 L−1

1 A matrix.

Then assuming that there isn’t appeared any bad pivot,
we have U = UN and L = LN

Now let’s suppose that at step k+1, the k+1 pivot is
bad. Using the Stewart idea of a rank one modification,
we have

step k+1.

Ûk+1 = EN,k+1 . . . Ek+2,k+1(L−1
k . . . L−1

1 A+σk+1ek+1e
T
k+1)

Ûk+1 = L−1
k+1(L−1

k . . . L−1
1 A+ σk+1ek+1e

T
k+1)

L1 . . . Lk+1Ûk+1 = A+ σk+1L1 . . . Lkek+1e
T
k+1 (1)

The term σk+1L1 . . . Lkek+1e
T
k+1 is equal to

σk+1ek+1e
T
k+1 because of each Lj can be written as

I + ujej where uj is and ej is and 1 ≤ j ≤ k

So equation 1 is written as

L̂k+1Ûk+1 = A+ σk+1ek+1e
T
k+1

As we can see, the product L̂N ÛN is the LU factoriza-
tion of the boosted matrix A. In the next, the above
technique is referred as geboost factorization.

4. Parker’s algorithm. The idea is to transform the
matrix A randomly so that with propability 1 , LU fac-
torization without pivoting can be accomplished. Parker
has proved [3] that there are special crafted random
matrices (butterfly matrices) which when permultiply a
matrix, the product matrix does not need pivoting on
a LU factorization. Dongarra et al [2] demonstrate a
efficiently method of storing butterfly matrices and com-
puting the product.

Now it follows the parker algorithm

1) compute butterfly matrices G,H
2) compute the product B = GTAH
3) solve the system Bz = GT b with LU without pivoting
4) correct the solution z to find the original solution x,
x = Hz

As it is mentioned in [2],[3] a butterfly matrix has size
which is multiple of 2d, where d is the depth of butterfly
matrix. If the the size of matrix A is not multiple of
2d, matrix A is augmented with additional 1’s on the
diagonal. This has the effect of additional overhead due
to permutiply (step 2 of algorithm) which is applied to
bigger matrices. Although Parker has proved that for
d = log2N+1 the coefficient matrix which is the product
of step 2 of algorithm does not need any pivoting during
Gauss elimination, Dongara et al [2] show that for d = 2
the algorithm is stable. From now on we consider d = 2
in the following sections.

5. Parker’s algorithm when needed. Now we pro-
pose an efficient algorithm based on Parker’s algorithm.
If during the LU factorization , none pivot is less than

2

threshold , why to perform Parker’s algorithm? It is
better to perform Parker’s algorithm when there is realy
need. So the butterfly matrices will be smaller and the
product can be computed faster.

Let’s suppose that we have done LU factorization of ma-
trix A just to the kth pivot. So we need to solve two
systems (

L
(k)
11 0

L
(k)
21 I

)(
y1
y2

)
=

(
b1
b2

)
(1)

and (
U

(k)
11 U

(k)
12

0 A
(k)
22

)(
x1
x2

)
=

(
y1
y2

)
(2)

If we permutiply matrix A
(k)
22 by two batterfly matrices

G,H, we have(
I 0
0 GT

)(
U

(k)
11 U

(k)
12

0 A
(k)
22

)(
I 0
0 H

)
=

(
U

(k)
11 U

(k)
12 H

0 GTA
(k)
22 H

)

and our new systems are(
L
(k)
11 0

L
(k)
21 I

)(
y1
y2

)
=

(
b1
b2

)
(1)

and (
U

(k)
11 U

(k)
12 H

0 GTA
(k)
22 H

)(
x1
z

)
=

(
y1

GT y2

)
(2)

Now it follows the plu algorithm

1) perform LU since you have found the kth pivot less
than threshold
2) if there is not bad pivot, solve the system LUx=b and
return else solve the system(

L
(k)
11 0

L
(k)
21 I

)(
y1
y2

)
=

(
b1
b2

)
3) compute butterfly matrices G,H

4) compute the product B = GTA
(k)
22 H

5) solve the system Bz = GT y2 with LU without pivot-
ing
6) correct the solution z to find the original solution x2,
x2 = Hz
7) solve the system U

(k)
11 x1 = y1 − U (k)

12 x2

8) return

(
x1
x2

)
as solution

Although at the first glance, plu seems better than
parker algorithm, there are occasions that parker is bet-
ter. First of all let’s take the occasion which matrix size
of A is of form k2d + 1. Then if in matrix A is applied
parker algorithm the augmentetion that mentioned in
previous section will cause the size of matrix A to be
k2d +1+(2d−1). It is obvious then that the permutiply
will cause a redoubtable overhead. This is the worst case
of parker algorithm. Now if in matrix A is applied plu
algorithm and the bad pivot appeared from k2d to 2, we

expect that plu solves the problem faster than parker
does. In next let’s take the occasion which the size of
matrix A is multiple of 2d, for example k2d. If problem is
going to be solved by parker algorithm, there will be not
any augmentetion which implies no additional overhead.
Now in the case we don’t choose the parker algorithm,
the plu algorithm will be faster only if the bad pivot is
between k2d − 2d and 2. If bad pivot is between k2d − 1
and k2d−2d + 1, we expect plu to be worse than parker.
The worst case for plu algorithm is when a bad pivot
appeared at k2d − 2d + 1.

6. Mixed algorithm. Now we are ready to develop
a new algorithm which is a mix of Stewart and Parker
idea. The idea is to perform NUM times the Stewart’s
algorithm for the NUM bad pivots and if a NUM+1
bad pivot is appeared to performe the Parker’s algo-
rithm. There is a trade-off between small and big values
of NUM. For small value implies low cost of Sherman-
Morrison-Woodbery formula but high cost of possibly
augmentetion. For big value holds the inverse. In sec-
tion 8, it is shown the performance of various values of
NUM. Below we describe the idea of mixed algorithm.

First we perform geboost factorization of matrix A with
parameter NUM. As a result we have L̂,Û ,E,σ,k for
which hold that L̂ Û = A+ σEET and k is the NUMth
bad pivot.

Then we need to solve the following two systems(
L̂
(k)
11 0

L̂
(k)
21 I

)(
y11 y12
y21 y22

)
=

(
b1 E1

b2 E2

)
(1)

(
Û

(k)
11 Û

(k)
12

0 Â
(k)
22

)(
z1 c1
z2 c2

)
=

(
y11 y12
y21 y22

)
(2)

System 1 is solved normally. To solve system 2 we ob-
serve that we need to solve the following 2 sub-systems

Â
(k)
22

(
z2 c2

)
=
(
y21 y22

)
(3)

Û
(k)
11

(
z1 c1

)
=
(
y11 y12

)
− Û (k)

12

(
z2 c2

)
(4)

Sub-system 3 is solved by Parker’s algorithm and sub-
system 4 is solved normally. In the end we find the real

solution

(
x1
x2

)
by correcting the solution

(
z1
z2

)
using the

Sherman-Morrison-Woodbery formula.

7. Experiment Framework. In our experiments, a
critical point to compare each algorithm was the need
of matricies that during Gauss elimination they appear
enough bad pivots and in selected positions. So we
created a framework which a matrix during Gauss elimi-
nation appear enough virtual bad pivots and in selected
positions. Below we explain the framework.

FW1 model assume the kth pivot as virtual bad pivot
if k is devided perfectly by a constant selected value

3

(CSV). FW2 model assume the kth pivot as virtual
bad pivot if k is equal to CSV. For example a matrix
of size 1000x1000 with the constant selected value to
be 100, during a Gauss elimination process, in case
FW1 model it appears 10 virtual bad pivots at positions
{1000,900,800,...,100} and in the case FW2 model it ap-
pears 1 virtual bad pivot at pisition {100}.

8. Results. We implement all algorithms that mentions
in this work in matlab. Performance experiments were
run using a Intel Core i5-2500 CPU @ 3.30GHz. The
measure of camparison is the count floating point opera-

tions per second (flops) which is estimated as (2N−1)N2

t
where N is the matrix size and t the execution time.

Figure 2 compares Stewart’s algorithm based on recur-
sion (blue line) and boosting LU factorization (green
line).

Next Figure compares Parker’s algorithm and plu al-
gorithm. X axis represent the matrix size which pure
Parker’s algorithm called. Matrix size was 2063 and CSV
was [2061 2060 2057 2056 2053 2052 1003 1002 503 502
93 92]. FW2 model is used.

Next figure compares mixed algorithm for various values
of NUM. X axis represent the CSV which takes values
[4:32:300]. Matrix size was 2063. FW1 model is used.

Now it’s follow experiments to measure the accuracy of
each procedure described in the previous sections. Ta-
ble 1 presents relative residuals comparisons of linear
systems solved using the mentioned algorithms: STW
(stewart’s algorithm), SLU (stewart’s algorithm based
on geboost factorization), PLU (efficient parker’s algo-
rithm), PRK (parker’s algorithm), MLU4 (mixed accel-
erated LU using NUM=4)

All matrices are of size 512×512, either belonging to
the Matlab function gallery or generated using Matlab
function rand.

For all test matrices, we suppose that the exact solution
is x = [1 1 . . . 1] and we set the right-hand side b = Ax.

Matrix STW SLU PLU PRK MLU4
condex 2e-12 1e-12 1e-12 1e-12 2e-12
fiedler 5e-8 NAN 6e-7 4e-8 NAN
toeppd 5e-12 5e-12 5e-12 5e-12 5e-12

randcorr 3e-14 2e-14 4e-14 3e-14 3e-14
orthog 8e-14 3e+2 2e-9 1e-8 8e-9
prolate 4e-1 2e-13 9e-2 2e-8 1e-7

hadamard 8e-11 4e-11 1-11 1-11 4-11
rand 4e-8 2e-10 5e-8 3e-10 2e-10

4

9. Conclution and Future Work. In this work we
studied algorithms that solve dense linear systems using
LU factorization without pivoting. First, we introduced
the Boosting LU factorization method based on a Stew-
art’s idea of a rank one modification. Next, we proposed
an efficient algorithm based on Parker’s algorithm that
utilizes random transformation of the coefficient matrix
to solve dense linear systems without pivoting. Then
we developed a mixed algorithm for solving dense linear
systems which compines Stewart’s and Parker’s algo-
rithm. In the end we compared each algorithm under
our experiment framework, and we observed that in some
occasions our suggested algorithms is much better than
that of literature.

As part of future work would be the implementation of
mentioned algorithms in GPU, for example using the
MAGMA framework [6] and straight comparison them
with already implimented algorithms like Parker’s al-
gorithm [2]. Also a more theoritical work would be to
find the optimal NUM for the mixed algorithm. From
our research we know that NUM is associated clearly by
problem’s matrix, for example during Gauss elimination
when bad pivots is appeared and when the size of sub-
matrix for which will be applied Parker’s algorithm is
multiple of 2d.

Source code for all the algorithms presented here is avail-
able at the project Web site [5]. Stewart’s and Parker’s

algorithms were evidently not publicly available from
their respective authors, which are essentials to evalu-
ate their performance relative to other competing algo-
rithms. The current authors have strived to implement
them as efficiently as they could, paying attention to ev-
ery detail by following the description of the algorithms
available in the published literature. By making the
source code for these as well as the other implemented
algorithms publicly available, the authors provide the
scientific community with an infrastructure to facilitate
further studies and comparisons on an objective basis
without having to re-implement them.

References
[1] Modifying Pivot Elements in Gaussian Elimination,
G.W.Stewart

[2] Accelerating linear system solutions using randomiza-
tion techniques, M.Baboulin,J.Dongarra,J.Herrmann,S.Tomov

[3] Random Butterfly Transformations with Applications
in Computational Linear Algebra, D. Stott Parker

[4] Introduction to Linear Algebra, Gilbert Strang

[5] http://students.ceid.upatras.gr/∼papadakis/malu

[6] http://icl.cs.utk.edu/magma/software/index.html

5

