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Abstract. In today’s Internet-centric world, two main challenges have arisen
regarding data exploration: a) the privacy of sensitive data and b) the need for
users to have an efficient way to manage their data. Cloud computing offers a
cost-effective way towards direct data storage and access, which can function as
a catalyst to modernize and update legacy systems. Although cloud computing
provides efficient dynamic storage space, data security remains a concern. To this
end, we propose a novel design and implementation of an application that enables
secure storage of personal data in the cloud through a complete homomorphic
encryption system. The application is named “SHeMed”, which stands for Secure
Homomorphic encryption on Medical cloud data. We have concentrated on the
secure storage of medical data for breast cancer patients to ensure patients’ data
privacy and prevent unauthorized access. With the introduction of homomorphic
encryption in the core of this application, we achieve four significant milestones
regarding the secure “sealing” of data privacy: a) the user does not share the private
key with the cloud provider, b) the user can proceed with implementing mathe-
matical operations on encrypted data, ¢) cloud can be easily scaled and provide a
convenient way to store data, d) after the implementation of mathematical oper-
ations, the new processed data may be shared with other users, mainly doctors,
without providing the original ones. Our design implies that our users will need
to retrieve their patient’s data just once. In this paper, we present a case study of
our application that utilizes homomorphic encryption to eliminate the burden of
preserving data confidentiality in the cloud and enable a convenient analysis of
medical data through computations on encrypted data.

Keywords: Homomorphic encryption - Cloud computing - Medical data - Data
privacy - Data storage - Malicious acts - Confidentiality - Computations - Breast
cancer

1 Introduction

Nowadays, the expansion of the Internet has made a tremendous impact on the amount
of data exchanged and on the way those data are retrieved, interpreted, and stored.
There are two key issues regarding data analysis, i.e., the privacy of sensitive data and
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the data management in the new era of cloud computing. We focus, but not restrict,
our attention on medical data analysis for the following reasons. First, medical data
privacy and confidentiality are critical and any violation, meaning that integrity may
be compromised from adversaries or could be stolen, may even lead to legal sanctions.
Second there is a worldwide attempt and ongoing process of medical data digitization
and storage. The goal is that health information and patients’ records can be created
and managed by authorized providers in a digital format having the ability of being
shared with other providers across more than one health care organization. For example,
healthcare industry proceeds with medical data digitization, referred to as Electronic
Health Records (EHR), which is a digital record of a patient’s medical history maintained
by hospitals or healthcare providers for better handling of medical examinations.

This is likely to improve the quality and efficiency of healthcare as there is ease of
access to records, where frequent examinations are required, for example for patients
with breast cancer. Given the potential for adversaries to steal or tamper with sensitive
data, ensuring its safety is crucial to prevent the dissemination of misleading information.
The necessity for full protection of medical digital data is essential, the consequence of
which is the rapid development of cryptographic systems as a countermeasure to security
threats of third parties.

Homomorphic encryption was first proposed in 1978 [1] as a solution to eliminate
the need for multiple decryptions that can potentially compromise the integrity of the
information received by the end-user. In other words, homomorphic encryption is a
cryptographical method designed to allow mathematical operations to be performed
on the already encrypted information while hiding the appearance of plaintext in any
third party. Homomorphic encryption enables processing of ciphertext such that the
resulting encrypted output data matches the output produced during the first decryption,
while preserving the confidentiality of the processed and encrypted data. The practical
implementation of homomorphic encryption was introduced by Gentry in 2009 [1].
Homomorphic encryption techniques can be categorized into three groups based on the
number and complexity of mathematical operations applied to the encrypted message,
resulting in diverse types of homomorphic encryption.

e Partially Homomorphic Encryption (PHE) [13]: Only one mathematical operation is
allowed to be performed on the encrypted message, either addition or multiplication,
with no limit on the number of repetitions.

e Somewhat Homomorphic Encryption (SWHE) [14]: It becomes possible to use
addition and multiplication with a limited number of iterations.

e Fully Homomorphic Encryption (FHE) [15]: It becomes possible to use the mathe-
matical operations, multiplication, and addition, on the encrypted information without
limitation in the number of iterations.

Currently, there are several implemented homomorphic encryption libraries. In our
implementation, the SHeMed application, SEAL library [3] and specifically EVA com-
piler [5] have been deployed. SEAL (Simple Encrypted Arithmetic Library), proposed
by Microsoft, is an open-source library that implements Fully Homomorphic Encryption
(FHE) technology. It provides a set of encryption libraries that allow computation to be
performed directly on encrypted data. This enables the creation of encrypted data storage
and computation services, where the client never needs to share its key with the service
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(e.g., cloud). In addition, this library supports two different homomorphic schemes with
different properties: the Brakerski-Fan-Vercauteren (BFV) [17], which allows arithmetic
operations on encrypted integers and Cheon-Kim-Kim-Song (CKKS) [8] scheme, which
allows approximate computations applied on encrypted real or complex data. The latter
method yields approximate results, due to Learning With Errors (LWE) [16] noise, which
is the foundation of CKKS homomorphic encryption scheme. CKKS aims at applica-
tions of medical nature or the application of machine learning models to encrypted data,
etc. Encrypted Vector Arithmetic (EVA) is a compiler for fully homomorphic encryp-
tion, implementing the functionality of the SEAL library. EVA has a Python frontend
system, called PyEVA, which allows calculations to be expressed using basic arithmetic
operations in Python.

Furthermore, healthcare industries require to store multiple EHRs for their patients
and the conventional hardware storages are not considered flexible while their cost is
significant. Thus, modern organizations adopt Cloud computing, which is defined by
NIST [12] as a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction. One of the most reliable and widely
known cloud providers is Google Cloud Provider (GCP).

It is worth emphasizing the presence of ad hoc algorithms in the medical domain,
which have been demonstrated by several recent studies, including those referenced as
[6] and [7]. These algorithms are developed on an as-needed basis and are designed
to address specific problems, making them highly tailored and efficient. Through these
studies, it is shown that machine learning and data mining methods can effectively
tackle specific medical issues, including but not limited to tracking COVID-19 cases
and analyzing genomic data. The application of these techniques can provide valuable
insights and aid medical professionals in making more informed decisions, ultimately
improving patient outcomes.

In the same manner, the motivation behind our research is driven by the objec-
tive to offer medical professionals valuable insights and support, empowering them to
make well-informed decisions and improve patient outcomes. To this end, our proposed
application seal the data securely using homomorphic encryption without providing the
encryption secret key in the cloud provider. The data in our case study are related to
patients with breast cancer and we have demonstrated the way that we managed these
big data set. In the following sections, we will analyze the design as well as the imple-
mentation of an application that allows the secure storage of medical data using a fully
homomorphic encryption scheme in cloud storage. Moreover, we will present relevant
screenshots of SHeMed application.

1.1 Related Work

The proposed application “SHeMed”, which stands for SEAL Homomorphic encryption
on medical data, has a major role in applying arithmetic operations in encrypted data
using the homomorphic theory while exploits the capabilities of cloud computing. By
implementing homomorphic encryption operations in the cloud provider, we exploit the
capabilities of cloud computation while we take advantage of the storage.
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However, there has been significant research towards securing cloud data with the aim
of homomorphic encryption. The research of Poteya M. M., Dhoteb C. A. and Deepak
H. S. in 2016 [11] presents an application in which they demonstrate the functionality
of a FHE scheme on the cloud. They use the AWS as a provider and add a simple logic
to present the accuracy of data from IDE environment as well as show the storage of the
encrypted data in DynamoDB of the AWS cloud provider. Another paper that expanded
our knowledge towards homomorphic encryption, was introduced by Chen B., Zhao
N. [4], where they analyze two fully homomorphic encryption FHE systems, DHCV
and CAFED, along with their capabilities and vulnerabilities towards the cloud. In both
systems, they propose alternative improved ways for algorithms having as objective to
send the key to the cloud server to retrieve ciphertext. Another research worth to be men-
tioned by Chauhan K. K., Sanger K. S. A. and Verma A. [10], examines the processing
state, which is considered as a critical stage for data security especially in cloud com-
puting. They proceeded with the analyzation of three partial homomorphic encryption
HE methods and their applications in cloud computing, expanding traditional encryption
techniques which are not efficient for processing state of data. Although, homomorphic
encryption methods successfully manage the problem of data security in cloud com-
puting, currently, both fully as well as partial homomorphic methods are not so easy
to implement for cloud computing. In addition, similar research has been conducted by
Vankudoth, Biksham & Vasumathi [18], where they present an overview of homomor-
phic encryption in cloud computing area urged from the need of security at infrastructure:
network level, host level, application level and data. Kocabasg, Ovﬁng and Soyata, Tolga
[9] have contributed to the value of fully homomorphic encryption systems by intro-
ducing a health monitoring system that detects patient health issues by continuously
monitoring the ECG data. This system consists of ECG acquisition devices, a cloud-
based medical application, and back-end devices that display the monitoring results.
Thus, in order to override security risks associated with personal health information in
cloud providers, such as Amazon, a fully homomorphic encryption scheme has been
formulated. With the aim of this encryption schema, the operation on encrypted data can
be applied without collisions in the cloud and with no concern about personal health data
privacy. The prominent work of Ahmad, I., and Khandekar, A. [2], which enhances the
knowledge around homomorphic encryption, suggests RSA and Paillier algorithm for
homomorphic encryption by using proxy re-encryption algorithm that prevents cipher
data from Chosen Cipher text Attack (CCA).

Overall, the abovementioned papers state that homomorphic encryption schemes
introduce a new era for security of cloud computing, since calculations on encrypted data
without knowing the plain data can be provided while respecting their confidentiality.

1.2 Our Work

The related work as presented above provides a valuable foundation for the research
on homomorphic encryption and its adaptation for cloud computing security, which
primarily focuses on theoretical aspects. Unlike other studies in the field, our paper adopts
a practical approach and expands on the theoretical concept by introducing a user-friendly
graphical user interface (GUI) on a cloud-based implementation. Hence, in comparison
with the existing literature our work differs as we bring an applicative dimension to
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the concept of cloud computing security on medical data. To this end, we introduce a
practical implementation of a fully homomorphic encryption scheme to securely store
medical records for patients with breast cancer in cloud storage, by introducing the
“SHeMed” application. The application offers a convenient way to remove any barriers
in terms of confidentiality, availability, integrity of personal medical data in the cloud
and enhance doctors to freely use the capabilities of the cloud. For this reason, Google
Cloud Provider (GCP) is considered as an appropriate cloud provider in which data can
be stored in a single cloud bucket, separated by folders which are used by different
users to store their patients’ health records, which use the application. Since medical
records are decimal results, the implementation of a FHE system, named CKKS, which
indicates the capabilities of SEAL library is the most appropriate to be used. To manage
quite conveniently the complexity of SEAL library, it has been introduced in the core of
SHeMed application the usage of EVA compiler of SEAL library. The user experience has
been implemented using the AuthQ page for a flexible and convenient way to identify the
application’s users. The SHeMed scheme results in improving the communication gap
between the cloud provider and the possible users, in our case doctors, having as impact
the development of patient’s confidence and medical staff in the use and exploitation of
personal data in cloud storage.

Our goal is that medical results after the SHeMed usage can be shared freely with
other users from around the world for better patients’ treatments and for exchanging
knowledge without barriers. In short terms, the innovation that homomorphic encryption
provides is a “swiss knife” against the struggles that someone may face using cloud
providers. We expect our application to trigger the usage of homomorphic encryption
in other applications, too. In short, we propose an innovative and convenient solution,
where the users can easily navigate through application’s UI and the creation of the
cryptographic keys can be done through a dedicated terminal locally. The implementation
of SEAL library through EVA compiler as we have adjusted it in our application, provides
anovel procedure which enables the practical use of homomorphic encryption in medical
data towards the aim of breast cancer treatment, expanding most of the research held in
this area, which focus on the theoretical issues of homomorphic encryption.

2 Problem Description

The advantages of cloud computing are considered as paramount regarding the usefulness
and the easy scalability. Overall cloud computing provides a convenient, easy-to-use way
to store personal data with the aim of cloud storage (depending on the provider, buckets
etc.). On the contrary, the cloud lacks security which leaves an open gap in healthcare
industries and individual doctors, according to their security. The security of medical
related data is considered as critical, especially when it comes to patient’s data privacy.
The health records are required to be confidential because of the protection law between
patients and doctors and can be only accessible from them. A patient with breast cancer
is required to perform a lot of medical examinations, as well as a doctor needs an efficient
way to store her data whiles extracts an output about the progress of medical treatment.

In data’s life cycle, as shown in Fig. 1, in every state data need to be accessible by
retaining confidentiality for authorized users, integrity for data correctness and avail-
ability in any time. One state, which raises concerns about data integrity is the storage.
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Despite the storage capabilities of the cloud, which are instantly upgradable based on
users demands, the data can be compromised, since to keep the personal data encrypted
for safety reasons, public and private keys need to be given in most of cloud providers.
The role of homomorphic encryption is a catalyst for this case, since the data stored
in the cloud can be changed while are encrypted, using mathematical operations. For
enhancing data security, in our application we use Google Cloud Provider (GCP), where
private key does not have to be provided. Thus, the state of storage can be locked in the
context of security. Hence, in this case of the homomorphic encryption problem studied
in this paper, our input is data which contains the frequent results, in a decimal form,
of medical examinations of several patients with breast cancer (which are monitored by
a doctor) and the goal is to manage and store the patients’ data in an encrypted form
securely in the cloud while we implement homomorphic operations, which result to a
different encrypted form.

¥

| Creation H Transfer H Use }—>| Share H Process H Store |

4

‘ Delete H Archive |

Fig. 1. Data life cycle

3 The Design of the Cloud-Based Application “SHeMeD”

To tackle the problem mentioned above, we propose a cloud-based application SHeMed
which is based on storing securely medical examinations for patients with breast cancer
on cloud storage using fully homomorphic encryption. The outcome of this application
is that users can use the advantages of cloud storage for their patients’ medical data,
without keeping them in their local systems, something that could compromise the data
integrity. The proposed architecture can be shown in Fig. 2 and its components will be
analyzed further below.

“Python CLI” Subsystem. The CLI is an external program, part of “SHeMed scheme,
that users need to install locally on their computer, so they can use the “ SHeMed”
application. The possible functions of CLI, use PyEVA, are the following and perform
the following actions. First, function “KeyGenerator” is responsible for generating public
and private cryptographic keys. Second, “Encryptor”, is able to encrypt the initial exam
and last, "Decryptor" decrypts the data on its private computer.

“Client” Subsystem. The role of the client subsystem is to provide to the user client,
all the necessary services for encryption and decryption of her medical data. To be more
precise, through the user’s local machine, the following occur:

The user has access to her patient’s original medical results for a specific day in excel
format, which will be encrypted using the Python CLI. The SEAL library will be imple-
mented for the encryption, key generation, and decryption processes via its compiler,
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Fig. 2. Architecture of SHeMed

PyEVA. If the required keys are generated via “KeyGenerator”, then the “Encryptor”
is called to encrypt the original data entered by the user. Finally, the “Decryptor” will
decrypt the processed data, which will be received from the cloud provider. Thus, to
avoid any compromise of the sensitive information that the data possesses, the private
key file is stored locally and the use of the signature of the EVA compiler is also required
for the final decryption of the files in their original excel format.

“UI + AUTHO0” Subsystem. The function of the “Ul + AUTHO” Subsystem is to
provide the end user, i.e., the client, all the components needed to interact with the
“SHeMed” application. There is an appropriate interface from which the following tasks
are performed. In order to ensure authentication, the user should be registered or logged
in, otherwise she cannot use it. Then, she can create new patients "Create Patients" to
add in bucket, have her total list of patients "List Patients", upload files to the cloud
"Upload files" and receive them locally from the cloud "Download files".

“GCP” Subsystem. The “GCP” Subsystem is the server side of the “SHeMed” applica-
tion and performs the following tasks. First, the interface communicates with the Google
Cloud Provider (GCP) using the Flask framework to build REST APIs and establish
authentication via JWT generation. Then, Caddy server is responsible for using the SSL
protocol through “Let’s Encrypt”, which provides the appropriate certificate. Next, the
virtual machine on which our application code resides is responsible for communicating
with the storage in the cloud. Last, the “Executor” call is responsible for performing on
the virtual machine the operations on the encrypted data which occur with the aim of
SEAL.
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4 Implementation of “SHeMeD”

Implementation of Python CLI. The patients’ medical examinations need to be
encrypted before they are sent to the cloud provider GCP. Hence, an encryption pro-
cedure needs to be followed from a user’s CLI terminal. Primarily, an input polynomial
program is created using PyEVA. Due to some limitations in the CKKS model, the
parameters of the vector entered by the user must be of power of two and in this case 16
test results were selected. The aforementioned polynomial program needs to be compiled
based on CKKS scheme requirements, which requires two more coefficients: the fixed-
point scale for the inputs, i.e., set_input_scales, and the maximum coefficient ranges
on the outputs, i.e., set_output_ranges, corresponding to several bits. After the compi-
lation of the program into a fully functional EVA program that can be run on encrypted
data, the compile() method returns: the compiled program, the encryption parameters for
Microsoft SEAL, and a signature object which specifies how the inputs/outputs should
be encoded and decoded, respectively.

Evaluate of a polynomial program:
poly = EvaProgram('Polynomial’,
vec_size=16)

Decryption of encOutputs:
outputs =
secret_ctx.decrypt(encOutputs,
signature)

},

Compilation of program:
compiled_program, SEAL_params,
signature = CKKSCompiler().compile(poly)

Execution of operations in GCP:
encOutputs =
public_ctx.execute(compiled_poly,
enclnputs)

Generate keys:
public_key, secret_key =
generate_keys(SEAL_params)

!

Encrypt original inputs:
enclnputs =
public_ctx.encrypt(inputs,
signature)

Fig. 3. Process of homomorphic encryption and decryption

Also, EVA through generate_keys() uses SEAL parameters, as an input, to generate a
pair of keys: one private and one public, where the public key will be used to encrypt the
original input data and the private key will be used to decrypt them after applying homo-
morphic encryption operations in Google Cloud Provider (GCP). Figure 3 illustrates the
prior described process.

Implementation of Backend GCP. The application of the polynomial operation
requires the loading of the program (poly), the public key and the encrypted data, entered
by the user, from the subfolder (located in medicaleva) of each patient. The call to the
EVA compiler’s built-in function execute() is responsible for implementing the homo-
morphic operation, where eventually the result of this function results in an encOutputs
vector. Then, again using the save() function, the results end up in a suitably customized
file, where it will end up again in the patient’s folder.

The application as a backend system is located and “running” on a virtual machine
of Ubuntu 22.04 LTS operating system. Therefore, the user from the graphical user
interface (UI), selects certain network addresses (endpoints), which through the REST
API respond with the corresponding response to the user’s request. Below, in Fig. 4,
there is a complete scheme of the application’s endpoints, that the users can access once
they are identified.
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Fig. 4. Endpoints of application

4.1 Environment Analysis

For the implementation of the system, the usability provided by Docker is more con-
venient as with the implementation of three (3) different Dockerfiles, it is possible to
specify all the requirements of the system, without any dependencies installed on a local
machine. We have developed a specialized Docker environment that satisfies the func-
tional requirements of the SEAL library and EVA compiler. The second one has been
created to cover the appropriate requirements for our backend system, that the applica-
tion will run on. The last Dockerfile, is responsible for creating appropriate executable
files, one for backend application, which can be uploaded in the cloud’s virtual machine,
and a second one to create an executable SEAL CLI, which end users will store and use
in their local machines. The abovementioned Dockerfiles that make up the requirements
of the final system, are combined in a bash file to create the final images.

4.2 Theoretical Approach

Our case-study includes a demonstration of program operation and the practical imple-
mentation of the CKKS fully homomorphic encryption scheme. This case study uses
statistical data for women with breast cancer obtained from [20].

e Initial medical data: The data include measurements from categories of tests for
women with benign or malignant disease. A total of 16 categories were sampled
from the total. Data obtained from [20]. For these medical records, it is assumed that
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each test category shares and follows a normal (Gaussian) distribution, N (u, o).
The values for the mean, |, and standard deviation, o, are obtained from Eq. (1-2):

N
W= % (1)

N . .\2
o D e (;3 ) )

and after examining medical datasets, x;, from a wide sample of patients, N, the final
values are as following: u = 0.1137 and o = 0.05689 (Fig. 5).

Normal Distribution

. Common
|| Uncommon

[ Rare

Probability Density

2.28% 413.59% 13.59% h. 2.28%

— Cr—
H—4c p—-30c u—-20 pu-o 7 H4+0o U420 p+30c p+4o

Fig. 5. Normal Distribution indicating three statistical categories [19]

As mentioned, the input data are showcased as part of a normal distribution. A
polynomial is, then, calculated as a means of approximating — to some extent — the
probability function of the normal distribution. This was achieved by implementing
Taylor series of second order, centered around the mean value p, and based on the
maximum range ([0, 1]) of a Probability Density Function (PDF). Hence, the following
polynomial is obtained:

f(x.)_l_i*(u_xi)q_ ! *<,u—xi)3 X; : inputdata 3
"Er T mE o) s e )

In the proposed function, after the replacement of pando the function that results is
the following one:

i) = =216.67x) +73.91x7 — 1.4x; + 0.021 4)

The x; variable describes the input data of each patient.

e Data output f(x): The values of f(x) belong to the range from O to 1. The conceptual
meaning of the output indicates a result, ranging from 0 to 1, corresponding to a
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percentage (%), which categorizes the result of an examination into three different
statistical categories (see Fig. 4), based on the rarity of each medical recording. The
categorization of the medical records according to the range of the function values is
the following.

— functionvaluesof[0.4, 0.6] are considered common,
— functionvaluesof{[0.3, 0.4) U (0.6, 0.7]} are considered uncommon,
— functionvaluesof{(0, 0.3) U (0.7, 1)} are considered rare.

This categorization along with the benignity or malignancy of cancer, could prompt
the doctor to conduct the necessary treatment.

It should be mentioned that the aforementioned mathematical polynomial function
is not a scientific medical criterion, but an assumption based on the nature of the medical
data on breast cancer patients and acts merely as an example to showcase the program’s
capabilities.

5 Graphical User Interface

So far, we have described the functionality of this application, which can be seen through
the layout of the application interface. It is an easy walkthrough for any user to be able
to use it without confusion. This application is addressed to particular users, mainly
doctors, who want to keep track of their patients’ health records, which are stored in the
cloud. The application’s home page is the following one, shown in Fig. 6.

! =

"SHeMed"

Secure Breast Cancer Data in Cloud

i

actio tics that
speak to the n

The
eed to end this deadly dist
the global burden of

This is my thesis project from @ ceid.

Fig. 6. Home page
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Registered users select the “Log In” button, where the following page appears
(Fig. 7):

Welcome

Forgot password?

==

n' have an account? Sign up

G Continue with Google

e,

Fig. 7. Sign In

bl

After logging in, the user may navigate in tabs of SHeMed application. In the next
Fig. 8, the user is required to download the executable file to her computer via “Download
Seal-CLI” to be able to generate the required keys and encrypt the original data before
sending it to the GCP.

The user needs to use the terminal of her operating system to access the executable
file and ‘run’ the command “./seal_cli”’, which is mentioned in the instructions. The
relevant commands are:

e /seal_cli --action encrypt --mode create --path < PATH > --file < PLAIN_FILE
> xls: user creates the required keys (public, private), the crypto-program, and the
medical data entered are encrypted.

e ./seal_cli --action encrypt --mode add_file --path < PATH > --key < PUBLIC_KEY
> --file < PLAIN_FILE > .xls: user already has necessary keys at her disposal and
simply encrypts new medical data of her patients with the keys to store them in the
cloud.

e /seal_cli --action decrypt --mode decrypt_file --key < PRIVATE_FILE > --path <
PATH > --file < ENC_OUTPUTS >: the encrypted data retrieved by the user from

e the cloud is decrypted with the private key, which is located exclusively on the local
computer of the treating physician. This data is saved in excel file format and ends up
in a new folder “medical_results”, which is created when the command is executed.

Then, the user can upload file to  corresponding  endings
(.eva,.sealvals,.sealpublickey) in GCP storage by entering the name of a new patient or
by choosing an existing one. Select one or multiple files to upload to the cloud, for which
it is ensured through the system that they correspond to an allowed file type. Finally, user
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Using the WebApp

In order to use the WebApp, proceed with downloading the application:

Instructions:

a2 oy thesis preject from @) ceic

Fig. 8. SEAL CLI

selects the “Submit” button, where she uploads the encrypted medical files to the cloud for
the selected patient. The user is presented with a new window with the option to proceed
to run the polynomial at the cloud server level (Fig. 9).

. Home Download CLI Upload File Douwnload File xara@xara.com @ &

Barbara

Click or drag files to upload

polyeva

The files are successfully uploaded

Select date and proceed the execution?

2022/07/21

This is my thesis project from @ ceid,

Fig. 9. Upload and execution in the cloud
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The user is finally able to download the encrypted files for a chosen patient from the
corresponding folder in the unified cloud bucket (Fig. 10).

. Home Download CLI Upload File Downlaad File xara@xara.com )

enc_outputs_20220704 sealvals
polyeva

poly.sealpublickey

This is my thesis project from @ ceicl

Fig. 10. Download files from the cloud

6 Results and Inferences on Real Data Examples

In this section, we provide our case-study, which was specifically designed for demon-
strating the usefulness of our homomorphic scheme. To accomplish this, for the needs
of our application, we have used medical breast cancer data from online platform [20],
related to smoothness, compactness, concavity, concave points, symmetry, etc. in a deci-
mal form. Mathematical operations combined in a polynomial, which form is encrypted,
are implemented in the encrypted form of the original medical data, likewise. After per-
forming mathematical operations, the results were stored in the cloud storage bucket.
The EVA compiler of SEAL library was used to perform the mathematical operations
inside a cloud VM.

The user can proceed with downloading locally the encrypted modified results from
the cloud, by first selecting the patient, and retrieve the relevant “.sealvals” file. The user
is now able to decrypt the retrieved cloud data locally. The aforementioned data indicate
that the accuracy we achieved is pretty significant. The MSE (Mean Squared Error) is
quite low compared to the case where the original data would have been modified after the
polynomial was applied: the error approximates the value 1.9878780595116836¢ — 18.

In Table 1, there is a demonstration regarding a sample of the medical examinations
for a specific day, which indicates for each category the condition of a patient regarding
the results. Specifically, a category corresponds to some initial test values from which
the results are derived, after the application of the mathematical polynomial. The results
indicate the condition of the patient according to the fields of values corresponding to
them, as shown in Sect. 4.2.
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Table 1. Sample of results for patient’s health records

Examination category Original data Results Condition
Smoothness 0.08983 0.334590 Uncommon
Compactness 0.03766 0.061527 Rare
Concavity 0.1063 0.447085 Common
Concave points 0.1322 0.627030 Uncommon
Symmetry 0.1467 0.722176 Rare

7 The Novelty of SHeMed: Features and Outcomes

In this paper, we presented a user-friendly application based on a homomorphic scheme,
along with a suitable user interface to store medical data in organized folders on the
cloud using the same bucket while applying homomorphic operations on encrypted data
with the aim of SEAL library. In a more detailed analysis, the application offers the

following outcomes:

e Enables an oncology physician to use the cloud as a method of storing medical
examinations of breast cancer patients.

e Atthe same time, it applies mathematical operations, in particular the application of a
probability function to the encrypted results of breast cancer’s examinations regard-
ing symmetry, coherence, regularity, etc. This possibility presents three important

advantages:

— Our application utilizes the computational power of cloud computing to securely

perform complex mathematical operations on encrypted data, without requiring
a powerful computing system on the user’s end. This allows users to perform
computationally intensive tasks within the application that would otherwise be
impractical or impossible.

The doctor can draw conclusions about the health history of the patient in question.
Based on our approach, the doctor may revisit thoroughly application’s results
about patient’s condition for medical categories, where the states uncommon or
rare are present. Thus, the doctor can proceed with changing the patient’s current
treatment or run additional tests to crossover results.

In order to protect patient privacy and maintain data security, oncologists can
share modified results, i.e., data output f(x) of medical data with other medi-
cal professionals, rather than the original patient data. This approach, known as
de-identification, allows doctors to collaborate and share knowledge without com-
promising the integrity of the medical data or the privacy of their patients. By doing
so, medical research and patient care can be improved while still maintaining high
standards of data security and privacy.
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e The separation of the patients’ medical data is delegated through the “SHeMed”
application to the cloud provider, GCP in our case, by creating the corresponding
folders in the unified bucket. For instance, a user, i.e., a doctor, is advised to categorize
her patients with a unique ID or nickname and can upload medical examinations for
“patient_2305” and a corresponding folder is being created in the bucket.

Therefore, the main conclusion derived from the introduction of this application is
the complete security in data lifecycle in the cloud, since:

e A separate CLI is created with the ability for the user to generate the necessary keys
and provide the original medical data encrypted, without sharing anything on the web.

e Within the application, appropriate authentication is established using AuthQ, where
the communication with the provider is done during the respective user sessions.

e The type of files that can be stored on the internet is controlled through the application.
The application prevents users from uploading file types “.sealprivatekey”, which
holds the private key that is generated from CLI.

e Only the public key and the encrypted operation defined for the imported data are
available to the provider, without the risk of decrypting the medical results, since the
private key is in the possession of the user.

e From a list of patients and based on a date, selected by the attending physician, the
attending physician selects and retrieves the encrypted tests, which will eventually
be decrypted via the CLI with the usage of the private key, which is reserved locally.

In this paper, the usability of SHeMed, as an implementation of a FHE scheme, has
been demonstrated through the field of medical data. However, SHeMed application can
be easily extended and adapted to a broad range of applicability, including various data
and scenarios.

8 Conclusion and Future Work

In this paper, we have proposed an efficient, easy-to-use application for implement-
ing fully homomorphic encryption by using SEAL library for data stored in a cloud
provider. The usage of this application indicates that important confidential data can be
stored in the cloud securely. Consequently, it can provide the possible elimination of
any countermeasure and risk of interception or destruction of personal medical data.
Although homomorphic encryption is still an emerging field, research has indicated that
it has the potential to protect against attacks from malicious actors, even in the presence
of quantum computing. Also, the computational power and complexity that quantum
computing offers can provide the resources so that operations take place in less compu-
tation time. Thus, this application will provide a practical foundation for working with
big data sets of medical data and developing standards for homomorphic encryption in
healthcare organizations and other industries. The current implementation has a limited
set that can be managed efficiently. However, the problem is expected to be solved with
the introduction of quantum theory. Overall, instead of classic encryption techniques,
homomorphic encryption will be a milestone in the elimination of the unencrypted secu-
rity gap, which will provide innovative options for cyber security. The unlimited medical
data storage on cloud will introduce a worldwide access for users to gather information
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without collisions or the fear of compromising the patients’ privacy. From homomorphic
encryption’s perspective, another future research direction would be the enhancement
of existing homomorphic encryption techniques, like Fully Homomorphic Encryption
(FHE) schemes, which are currently time consuming and cannot support management
of unlimited data. Also, another potential avenue for future enhancements is to adapt the
secure multi-party computation (MPC) technique to facilitate multiple parties computing
a function on their private inputs without compromising their inputs to each other. This
advancement holds great promise for the healthcare sector, as it would enable doctors
from around the world to collaborate and achieve superior medical outcomes. Further
research can concentrate on developing more efficient homomorphic encryption meth-
ods that are optimized for secure MPC, improving the privacy, security, and efficiency
of healthcare data analytics.
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