FIND THE WAY": A SERIOUS GAME FOR THE MINIMUM SPANNING
TREE PROBLEM

I. Sarrist, E. Papaioannou?, N. Karanikolas?, C. Kaklamanis?

University of Patras (GREECE)
University of Patras and CTI "Diophantus" (GREECE)

Abstract

"Find the Way" is a serious game we developed with the intention to help mainly university students
but also all interested persons to understand the Minimum Spanning Tree (MST) problem and become
familiar with the application of the algorithms suggested by R. Prim and J. Kruskal. Both algorithms
are discussed as part of the curriculum in the context of courses on Introduction to Algorithms and are
used in a wide range of practical real-world applications.

In the context of Graph Theory, a graph is a collection of vertices (i.e., points) and edges (i.e., lines
connecting points). Vertices correspond to entities. An edge between two vertices implies that the
corresponding entities are somehow related. Edges can bear weights which reflect some sort of cost
required for their establishment. Weights can reflect physical or conceptual distance, time, budget and
so on. Trees are special cases of graphs which are acyclic and connected. A Spanning Tree for a
given graph is a tree containing all vertices of this graph. When weights are assigned to the edges of a
graph, a Minimum Spanning Tree (MST) for this graph is a spanning tree of minimum total edge-cost.
The MST problem aims at finding spanning trees of minimum total (edge) cost for given (connected)
graphs and has many practical applications. Imagine for example that graph vertices correspond to
houses, airports, close by islands, gates, and we seek for minimum-cost solutions for keeping all of
them connected. Given a connected graph, we can efficiently compute a Minimum Spanning Tree for
this graph using two well-known algorithms from the literature, one suggested initially by Vojtéch
Jarnik and later by Robert Prim and one suggested by Joseph Kruskal, which return similar results
though in a slightly different fashion.

In "Find the Way", players can either create or are presented with a newly created village where
pavements must be constructed so that all houses are connected with the lowest possible budget.
Only the minimum-cost proposals are qualified for funding. Players can engineer their proposal about
which houses must be connected with a pavement so that all houses are eventually connected at a
minimum total budget using one of two available methods, Prim's algorithm or Kruskal's algorithm.
According to the method suggested by Prim, players are given the house where the work will start and
the cost for all individual pavements between any two houses in the village. Then, players build their
proposal by gradually adding houses connected by minimum-cost pavements to houses already
included in their solution so far until all houses are connected. According to the method suggested by
Kruskal, players are given the cost for all individual pavements between any two houses in the village.
Then, players build their proposal by gradually adding to their proposal minimum-cost pavements until
all houses are connected. Player scores are calculated for each method taking into account elapsed
time until the submission of their proposal, village size (i.e., number of vertices in the given graph) and
possible pavements (i.e., number of edges in the given graph) and appear under player profiles.

"Find the Way" is a responsive application, currently supporting greek and english; it was developed
using state-of-the art web technologies and software including html, css and javascript for the front-
end as well as the node.js run time environment and the express.js framework for the back-end.

Keywords: Serious game, educational web app, responsive, Minimum Spanning Tree (MST) problem,
Prim's algorithm, Kruskal's algorithm, node, js, express, js, html, css, javascript.

1 INTRODUCTION

Optimization problems, especially those related to networks and efficient connectivity, are fundamental
in both theoretical studies and practical applications. Among these, the Minimum Spanning Tree
(MST) problem [2] has a prominent place due to its widespread application across many fields such as
logistics, telecommunications, electrical networks, and urban planning. The MST problem involves

finding the most cost-efficient way to connect a set of points or nodes, minimizing the total cost of the
connections.

Despite its relevance and practical importance, the MST problem and its algorithmic solutions can
often be considered as challenging and abstract by university students and novices in algorithmic
theory. This complexity underscores the need for innovative educational methods to simplify and
effectively communicate these concepts, making them accessible and engaging to learners.

Serious games [1], defined as games designed primarily for educational purposes rather than mere
entertainment, have proven highly effective in facilitating active learning and deeper understanding of
complex concepts. Properly designed serious games provide interactive and immersive experiences,
making them ideal educational tools to address topics traditionally considered complex or inaccessible
to beginners. Through interactive gameplay, serious games encourage critical thinking, problem-
solving skills, and sustained engagement.

Some notable serious game examples include "DragonBox Algebra” [10], an intuitive and engaging
approach to algebra, with a goal to excite young learners about math and maximize exposure to pre-
algebraic concepts. Also "Foldit" [12] is a revolutionary crowdsourcing computer game enabling
players to contribute to scientific research. It uses gamification to advance research in protein folding.
"Lightbot" [13] is a puzzle game based on coding which teaches the players programming logic as
they play. “Fair ‘n Square” [7] is a serious game for fair division algorithms focusing on “the bankruptcy
problem” and “the problem of sealed bids”.

There are several web applications that deal with the MST problem. “Prim’s Algorithm” [6][22] and
“Kruskal’s Algorithm” [5][20] are applications developed at “Technische Universitat Minchen” [16],
where the MST problem is formulated as a game where the goal is to connect houses with cables at
the lower possible cost. “Minimum Spanning Tree Calculator” [21] is a web application that lets users
upload or draw a graph and then computes a Minimum Spanning Tree for this graph using Prim's or
Kruskal's algorithm. The application returns the resulting MST visually so that users can see the
optimized connections. The “GraphOnline” [18] tool lets users create graphs manually and then finds a
Minimum Spanning Tree for these graphs using Prim’s algorithm. The application highlights the MST
directly on the graph for easy visualization.

"Find the Way" is designed to bridge the gap between graph theory and games, providing learners
with an interactive platform to visualize, explore, and practically apply MST algorithms. "Find the Way"
is a serious game developed with the intention to help with understanding the Minimum Spanning Tree
(MST) problem and familiarizing with the application of the algorithms suggested by R. Prim and J.
Kruskal. Through gameplay that simulates a real-world scenario, students gain hands-on experience
in algorithmic thinking and practical problem-solving, significantly enhancing their understanding and
retention of the MST problem.

The rest of the paper is structured as follows. In Section 2, we provide background information and
present practical applications of MST, including a comparative overview of Kruskal's and Prim's
algorithms and the introduction of Erdés—Rényi random graphs. Section 3 outlines the detailed design,
user interface, functionalities, software, and technologies used in the development of the "Find the
Way" game. Finally, Section 4 concludes with a summary of the work conducted and presents future
directions and potential enhancements for the game.

2 THE MINIMUM SPANNING TREE PROBLEM

In the context of Graph Theory a graph is a collection of vertices (i.e., points) and edges (i.e., lines
connecting points). Vertices correspond to entities. An edge between two vertices implies that the
corresponding entities are somehow related or associated. Usually edges are assigned weights which
reflect some sort of cost required for their establishment. Weights can reflect physical or conceptual
distance, time, budget and so on. Trees are special cases of graphs which are acyclic and connected.
A Spanning Tree for a given graph is a tree containing all vertices of this graph. When weights are
assigned to the edges of a graph, a Minimum Spanning Tree (MST) for this graph is a spanning tree of
minimum total edge-cost for this graph. For example, for the weighted graph G depicted on the left of
Fig. 1, the subgraph containing the edges marked in blue is a spanning tree of weight 26 for G, while
the subgraph containing the edges marked in green is a spanning tree of minimum weight 18 for G

Figure 1. A edge-weighted graph G (left), a spanning tree for G (middle) and a minimum spanning tree for G
(right).

The MST problem aims at finding spanning trees of minimum total (edge) cost for given (connected)
graphs and has many practical applications. Imagine for example that graph vertices correspond to
houses, airports, close-by islands, gates, and we seek for minimum-cost solutions for keeping all of
them connected, i.e., for guaranteeing the existence of a (not necessarily direct) connection between
any two of them at a minimum total cost. For instance, MST solutions enable effective planning and
cost minimization for road construction, power grid layouts, water distribution networks,
telecommunications, and logistical routing.

Given a connected graph, we can efficiently (i.e., fast) compute a Minimum Spanning Tree for this
graph using two well-known algorithms from the literature: Prim's algorithm and Kruskal's algorithm,
which return similar results though in a slightly different fashion, Prim's algorithm starts from a
particular vertex and computes a Minimum Spanning Tree by gradually augmenting a partial spanning
tree by adding vertices at minimum additional cost. Kruskal's algorithm computes a Minimum
Spanning Tree by gradually adding minimum-cost edges to in principle disconnected
components/subtrees until all are connected.

2.1 Prim's algorithm

Prim’s algorithm [6], originally suggested by Vojtéch Jarnik in 1930 [4] and then independently by
Robert Prim in 1957, constructs the MST incrementally starting from a single vertex. At each step,
Prim’s algorithm adds the lowest-weight edge connecting the current MST to a new vertex,
continuously expanding the MST until all vertices are included. The input of Prim’s algorithm is a
connected graph with weighted edges and a selected starting vertex. The output is a set of edges
forming the MST. Prim's algorithm evolves as follows. Starting from an arbitrary (or indicated) vertex,
an MST under-construction is initiated. Then, all edges connecting the vertices in the current MST to
vertices outside the MST are identified. The edge with the minimal weight is added to the MST. This
process is repeated until all vertices of the given graph are included in the MST. Prim's algorithm
typically employs a priority queue, leading to a computational complexity of O(|E| log |V|), where V is
the set of vertices and E is the set of edges of the initial graph. Prim’ algorithm performs efficiently on
dense graphs with numerous edges.

As an example, we are given the graph depicted on the left of Fig. 2 and we are requested to compute
an MST for this graph by applying the Prim’s algorithm starting at vertex A. First, vertex A is included
in the MST under construction. Then, from the 2 edges incident to A, AB of a weight of 2 and AC of a
weight of 1, the one of minimum weight (ties are broken arbitrarily), i.e., AC, is added to the MST.
Next, from the not yet selected edges incident to vertices A and C, which are currently included in the
MST, namely AB of a weight of 2, CB of a weight of 3 and CD of a weight of 4, the one of minimum
weight, i.e., AB, is added to the MST. Next, from the not yet selected edges incident to vertices A, B
and C, which are currently included in the MST, namely BD of a weight of 1 and CD of a weight of 4,
the one of minimum weight, i.e., BD, is added to the MST; BC is ignored because its addition would
cause a cycle (ABC) to form. Since all vertices of the graph have been included in the MST the
algorithm terminates returning an MST of total weight of 4 for the given graph. The procedure
described above is depicted in Fig. 2.

Figure 2. Prim’s algorithm: example.

2.2 Kruskal' s algorithm

Introduced by Joseph Kruskal in 1956, Kruskal's algorithm [5] solves the MST problem by
systematically selecting edges based on ascending weight values. The algorithm starts with an empty
edge set, progressively adding the smallest available edges that do not create cycles until all vertices
are connected. The input of this algorithm is a connected graph with weighted edges. The output is a
set of edges forming an MST for the given graph. Kruskal's algorithm evolves as follows. First all
edges are sorted in ascending order according to their weights. Then, an empty edge-set is initialized
for the MST under-construction. Iterating through the sorted edges, each edge is either added to the
MST set or discarded if its addition would create a cycle. This process continues until all graph
vertices are included in the MST. Kruskal's algorithm has a computational complexity of O(|E| log |E|),
where E is the set of edges of the initial graph. It performs optimally in sparse graphs where the
number of edges is relatively low.

As an example, we are given again the graph of Fig. 2 with 4 vertices labeled A, B, C, D, and 5 edges
which are AB (of a weight of 2), AC (of a weight of 1), BC (of a weight of 3), BD (of a weight of 1), CD
(of a weight of 4). We are now requested to compute an MST for this graph by applying the Kruskal’s
algorithm. We first sort the edges of the graph according to their weight in ascending order, obtain the
sorted list AC, BD, AB, BC, CD. Now, starting from the top of this list, we examine each edge and
include it to the MST as long as it does not cause a cycle to form until all vertices of the graph are
included in the MST. In particular, adding the edges AC, BD and AB results in the formation of an MST
of total weight of 4 for the given graph. The procedure described above is depicted in Fig. 3.

T
©

Figure 3. Kruskal’s algorithm: example.

Note that the same MST is computed by both Kruskal’s and Prim’s algorithms for the simple graph in
our example. However, the MST is constructed in a slightly different fashion by each of the two
algorithms, with one prevailing detail being that the final MST is computed by Kruskal’s algorithm via
joining initially disconnected components while the final MST is computed by Prim’s algorithm via
gradually augmenting a single connected component.

2.3 Erdés—Rényi random graphs

Erdés—Rényi random graphs [3], introduced by mathematicians Paul Erdés and Alfréd Rényi in 1959,
constitute a fundamental model in random graph theory for the generation of random graphs. In the
relevant literature, the definition of the Erd6s-Rényi model can be found in two variants, G(n,p) or
G(n,m). According to the G(n,p) variant (Fig.4, left), for generating a random graph, we start with n
vertices and generate an edge between each pair of vertices with a probability p, independently of all
other pairs. According to the G(n,m) variant (Fig. 4, right), which is suitable for generating graphs with
a particular number of edges, for generating a random graph, we start with n vertices and randomly
select m from all possible edges to connect the vertices.

The Erd6s—Rényi model is extensively used to simulate and analyze the properties of random
networks affecting algorithmic performance, network robustness, or network connectivity which can be
tested against real-world scenaria in the context of communication, social or even biological networks.
In the context of our "Find the Way" game, we exploit a combination of the two variants of Erdés—
Rényi random graphs in order to provide a versatile and realistic approach to generating diverse
problem scenarios. They simulate real-world uncertainties and complexities, enabling players to test
and enhance their understanding of MST algorithms under varying conditions. By exposing players to
randomly generated graphs, the game effectively illustrates algorithm behavior across multiple
practical scenarios, significantly reinforcing educational outcomes. Overall, the inclusion of Erd&s—
Rényi random graphs in the game design expands the educational scope, allowing users to gain
insight into algorithmic efficiency and effectiveness within realistic and unpredictable environments.

Figure 4. Erd6s—Rényi random graphs: G(n,p) for n=15, p=0.2 (left) and G(n.m) for n=20, m=35 (right) [17].

3 OUR “FIND THE WAY” GAME

“Find the Way” is an educational serious game developed with the intention to help mainly university
students but also all interested persons to understand the Minimum Spanning Tree (MST) problem
and familiarize with the application of the algorithms suggested by R. Prim and J. Kruskal. Both
algorithms are discussed in the context of courses on Introduction to Algorithms as typical part of their
curriculum and are used in a wide range of practical real-world applications.

The “Find the Way” game is currently available in greek and english and can be freely accessed online
at https://findtheway-app-553a38324d72.herokuapp.com. The scenario implemented in the context of
the game is as follows. Players are presented with a newly created village (Fig. 5) where pavements
must be created so that all houses are connected with the lower possible budget. Only the minimum-
cost proposals qualify for funding. In order to help the residents to obtain support for improving their
village, players can engineer their proposal about which houses must be connected with a pavement
so that all houses are connected at a minimum total budget using one of two available methods: one
suggested initially by Vojtéch Jarnik and later by Robert Prim and one suggested by Joseph Kruskal.

According to the method suggested initially by Vojtéch Jarnik and later by Robert Prim, players are
given the house where the work will start and the cost for all individual pavements between any two
houses in the village (Fig. 5, left). Then, players build their proposal by gradually adding houses
connected by minimum-cost pavements to houses they have already included in their solution so far
until all houses are connected. According to the method suggested by Joseph Kruskal, players are
given the cost for all individual pavements between any two houses in the village (Fig. 5, right). Then,
players build their proposal by gradually adding to their proposal minimum-cost pavements until all
houses are connected.

!] - 2 R
P O 2)
O

L7y

Figure 5. Initial instances of the game for Prim’s (left) and Kruskal’s (right) algorithms.

3.1 Design

Our “Find the Way” game follows a clear and rather intuitive design. Houses and pavements have
been used as graphical representations for vertices and edges, respectively. Visualizing instances of
the MST problem makes it easier to understand even by learners unfamiliar with graph theory
concepts. It provides real-time feedback, while the general styling idea makes it a modern and
pleasant game, able to target not only students. The application is fully responsive (Fig. 6), meaning
that the players can play through any device and screen dimension, like computer, tablet and
smartphone.

® 2

Game has started!

Figure 6. “Find the Way” on various devices.

3.1.1 User Interface

Our game features a simple and easy-to-follow user interface. As depicted in the left part of Fig. 7, the
start screen of the game is composed of a header and its main body. The header, which remains
visible on all screens of the game, contains the logo of the game which also serves as a home button
and a language selector. Currently, our game supports the greek and english languages. The main
body of the start screen contains the logo of the game, and 3 buttons: Signup and Login as well as an
Information button through which a short description of the game is provided. For signing up, users
must give a username, a nickname and a password. Then, users can use their username and
password as credentials for signing in (Fig. 7, middle). After logging in, players are presented with a
menu containing 3 items depicted on the right part of Fig. 7: a box entitled "Pick an algorithm" with 2
options in the form of buttons labeled “Prim's” and “Kruskal's”, a button labeled “Scores” and a logout
button.

Hello tester1!

Pick an algorithm

Figure 7. Starting the game.

Using the "Scores" button, players are presented with a new screen which contains top 10 scores for
each algorithm in descending order, with nickname and total score for each top-player, summary of
their total individual scores for each algorithm and a back button (Fig. 8, left). "Prim's" and "Kruskal's
buttons serve as selectors for the player's preferred algorithm and lead to new screens of similar setup

(Fig. 8, middle). The screen for each algorithm contains a menu with 3 parts: upper, middle and lower.

The lower part of the menu contains a "Back" button. The middle part of the menu provides 3 options
for the difficulty level, Beginner, Intermediate and Expert, and a “Create custom level” option.

Scores
Prim's method Kruskal's method
Create custom level
B @ G o mmber o hosen o 112
1 fester! 14872 1 tester! 37637
2 - 261 2 ~ 1609 Number of houses: | &
3 a2 3 s 2. Number of pavements: 8
R e T R G T (Random numbet fom the vaid range)
75 =N P o | g =) 3. Give min and max weights you want. from 110 50
® userS %0 0 user0? w Min 5
e e o e ...with Prim's algorithm N —
L] user20 &8 L] user!s ”
PR e
Pick difficulty level
-

Figure 8. Overviewing scores and selecting a game level or setting up an instance.

The "Create custom level" button enables players to setup their own instance, i.e., players choose the
number of houses for the village and min/max values for the pavement cost which can range from 1 to
50 (Fig. 8, right). The upper part of the menu contains the buttons "About" and "How to play" (Fig. 9).
The "About" button enables players to view comprehensive information about the MST problem and
the algorithms suggested by Prim and Kruskal, as well as a short description of the game and its
objectives. The “How to play” button provides playing instructions.

The MST problem

How to play

of graph theory,
between two vertices implies teflect some sort of cost required
for their Hike for , time, mgn rees. acyclic and connected. A spanning tree fo a given graph s
s coneokiy o e virces of e raph. Wher el resseged o thesies of 8 gviuh,a Minimum Spanning Tree (MST) for that graph is a spanning tree
that has the minimum otal edge-cos

mres(€. poins) and edges (ie,
orsssociated. Ususl

The MST probiem hos manyreakwork appications.Imagine, for exsmple, that graph veries and we seck
lutions 1o connect af of th nY W points 8t the lowest possidle cost
presaiton graph, Prins aigorithm and Kruskals algorthm. Both
resaits, but fi pnnlculav vertex and Tree
<l cxp\mds e Kkodare y gradually adding dge:
y subtrees until

, airports of nearby

e i e i

The game

You 50 that all houses.

4 the lowest
minimum-cost proposals qualiy for funding

Only the

ind the cost for ber in the village. Your goalis 10 determine which houses must be
‘connected with pavemems 10 achieve full maciiy s ms al udge o meh apgcn iniially by Vojtéch Jarmik and later by Robert Prim,
that pavements to houses you have already included in your

you
Solaton, i ot houses i th vilage are ull mneclnd

00 your best 1o help the residents secure funding 1o improve their vilage.

Sperning Treo (ST) by selctn he chespestpovemarts o
:mumm; s while eveidng cycte:

Steps: Start the g

cycles > C
one of

of s > Clhok Subrit 10 veeify
your proposal

Buttons

Undo last edge: remcve last sshected pevement - atarmatively clicking on any selected pavement
deselects i

Pause: pouse the game and the time counter ot any desired time
Submit:verify proposal

Start agaia: start again with tha same vilage

New game: start a new gome.

Scores: see your scores and the tap players scores

How 1o play: sccess 1hs page

Quit: ext the geme

Figure 9. “About” and “How to play” buttons.

Reaching the main screen of the game (Fig. 10, left), users are presented with an instance of the
village, containing houses and pavements together with their cost. On this interactive image
component, players can select pavements by clicking with on the corresponding edges in order to
include them in the MST under construction. Below the village component, an "Undo last edge" button
enables players to unselect the most recently selected pavement, there is a timer and a "Total weight"
counter for the MST under construction, 3 control buttons, namely Pause, Submit and Quit. Pause and
Quit buttons allow players to temporarily stop or leave the game, respectively. Using the Submit
button, players are presented with a new screen (Fig. 10, right) where they receive an evaluation of
their solution, a comparison with an indicative correct solution and options for starting over or
proceeding with a new instance via corresponding buttons labelled respectively "Start again" and
"New game". Regarding the evaluation of submitted solutions, with an intent to enhance the learning
experience, colours have been exploited as a means to visualize whether pavements (i.e., edges)
have correctly been included in the solution. In particular, green indicates correct edge-choices while
red indicates errors. In addition, players can have access to instructions via the "How to play" button
and can also view the scores screen via the "Scores" button.

- Your answer is not correct...
ﬁ Try again or visit the tutorial...
= 7 Score: 0

g]
- £
ﬁ : A % ‘ . /@ N\
{ ‘ &>
5 w
A\ - @2 N
£ 2\ !
! & ./ o
4 { SN
5 3
| 3
St
;};’\ : Indicative solution Your answer
#a [envioe coer Wonvenior cosr rarvs
g ﬁ, 67 2 67 2 oK
56 15 46 16 Mistake
45 5 45 5 oK
Game has started! 34 4 35 11 Mistake
23 6 23 6 oK
12 9 12 9 oK
Time: 0014 Total weight: 0 —
ey =
o200

Figure 10. Solution submission and evaluation.

3.1.2 Functionalities

“Find the way” is addressed to registered players. Thus, functionalities for signing up and signing in
are supported. Players must first create their account and then log in with their credentials, so that the
scores can be saved and compared to scores of other players. For signing up, players must provide a
nickname, username and password. The password is hashed, so that nobody can see their password
in the database, in case someone uses a personal password in many cases.

Available functionalities also include the selection of game mode and game level. In particular, after
connecting to the game, players must select the game mode, i.e., which of the two available
algorithms, Prim’s and Kruskal’s, they wish to play with. Then, players must select a difficulty level out
of three available options: beginner, intermediate and expert. After a game mode and difficulty level is
picked, the game begins and players build their MST solutions by progressively selecting pavements
that connect houses at minimal total cost. To this aim, a functionality for edge selection is provided.
After submitting a solution, an evaluation functionality has been implemented which rewards players
with a score using a custom point system that takes into account time spent for the MST computation
and the complexity of the initial instance in terms of total number of houses and pavements given.
Player performance is tracked and scored based on accuracy, efficiency, and the complexity of the
provided graphs. Scores are displayed on player profiles, motivating continuous learning and
improvement.

Player decisions are dynamically validated, and the game accommodates multiple correct MST
solutions, when edge-weight ties exist. From a technical point of view, the related functionality works
as follows. When a solution is submitted, a script runs having the original graph as an input. According
to the method/algorithm the player is training on, all the possible MST solutions are computed and
compared with the solution submitted by the player. If a match is found, the solution is correct and the
points are granted.

3.2 Development

“Find the Way” was developed using state-of-the-art web technologies to ensure broad accessibility,
responsiveness, and ease of maintenance. We have used HTML (HyperText Markup Language) [23]
as the markup language, which provides the structural backbone for web pages and interfaces,
facilitating clear content organization and readability. For styling the pages we used CSS (Cascading
Style Sheets) [15], which is used extensively for styling the game’s interface, ensuring aesthetic
appeal and responsive design across various devices. Functionality comes with JavaScript [19], which
powers interactive features, real-time feedback, and dynamic game logic. In the main game pages we
used Cytoscape.js (https://js.cytoscape.org) [9], an open-source JavaScript library specialized in graph
visualization. This technology was integral to visually representing interactive MST problems. The
back-end is handled by Node.js [14], an efficient runtime environment that handles server-side
operations, user authentication, and data processing in real-time. Also Express.js [11], which is a
minimalist web application framework used with Node.js to manage routing, request handling, and

server-side application logic effectively. Additionally, the application is deployed from Heroku
(https://www.heroku.com/) and also uses a Postgres Database which is hosted in Neon
(https://neon.tech/).

4 CONCLUSIONS AND FUTURE PLANS

"Find the Way" is a serious game we developed with the primary objective of providing an effective
educational tool for learning and understanding the Minimum Spanning Tree (MST) problem and its
associated algorithms, specifically Kruskal's and Prim's algorithms. Our intention was to bridge the gap
between theoretical algorithm concepts and practical application, facilitating an engaging, interactive,
and intuitive learning experience for university students and other interested learners. Through careful
design, user interface considerations, and robust technological implementation, the game has
successfully achieved its primary educational objectives. Players interactively engage with realistic
problem scenarios, allowing them to visually and practically understand the algorithmic procedures
and complexities involved in constructing optimal MST solutions. Dynamic feedback and interactive
gameplay have significantly enhanced user understanding, algorithmic proficiency, and sustained
interest in graph theory concepts.

Future directions and improvements of the "Find the Way" application include potential enhancements
to broaden its educational impact and usability. One of them is expanded translation. More languages
available would make the game attractive to a wider audience. The algorithm coverage can also be
expanded, introducing additional fundamental graph algorithms, such as Dijkstra's shortest-path
algorithm, Bellman-Ford algorithm, and network flow algorithms, enriching the learning scope. Also, by
developing advanced analytical and visual feedback tools we could help users evaluate their
experience and provide information and ideas that could lead to significant updates. Additionally,
multiplayer functionality could be considered, incorporating competitive and collaborative multiplayer
modes, allowing learners to engage with peers, promoting teamwork, and facilitating collaborative
problem-solving experiences. Also, conducting structured user surveys to systematically evaluate the
game’'s effectiveness in educational settings, could lead to gathering feedback, able to inform future
developments and improvements.

REFERENCES

[1] D. Chandross and E. DeCourcy, "Serious Educational Games in Education for Online Learning,"
International Journal on Innovations in Online Education, vol. 2, no. 3, pp. 1-27, 2019.

[2] T.H.Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 3rd ed.
Cambridge, MA: MIT Press, 2009.

[3] P. Erdés and A. Rényi, “On random graphs,” Publicationes Mathematicae, vol. 6, pp. 290-297,
1959.

[4] V. Jarnik, “O jistém problému minimalnim [About a certain minimal problem],” Prace Moravské
Prirodovédecké Spolecnosti, vol. 6, pp. 57-63, 1930.

[5] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman
problem,” Proceedings of the American Mathematical Society, vol. 7, no. 1, pp. 48-50, 1956.

[6] R.C. Prim, “Shortest connection networks and some generalizations,” Bell System Technical
Journal, vol. 36, no. 6, pp. 1389-1401, 1957.

[7] P. Stavropoulos, E. Papaioannou, C. Kaklamanis and D. Tsolis, “Fair ‘n Square: A serious
game for fair division,” Proceedings of the 16th Annual Int. Conf. Education, Research and
Innovation (ICERI 23), pp. 1190-1199, 2023.

[8] M. Zyda, “From visual simulation to virtual reality to games,” Computer, vol. 38, no. 9, pp. 25—
32, 2005.

[9] Cytoscape Consortium. (2023). Cytoscape.js. Retrieved from https://js.cytoscape.org
[10] DragonBox Algebra. (2023). Retrieved from https://dragonbox.com

[11] Express.js Framework. (2023). Express. Retrieved from https://expressjs.com

[12] Foldit. (2023). Retrieved from https://fold.it

[13]
[14]
[15]

[16]

[17]
[18]
[19]
[20]

[21]
[22]

[23]

Lightbot. (2023). Retrieved from https://lightbot.com
Node.js Foundation. (2023). Node.js. Retrieved from https://nodejs.org

CSS: Cascading Style Sheets. Retrieved from https://developer.mozilla.org/en-
US/docs/Web/CSS

Discrete Optimization, Department of Mathematics, Technische Universitat Minchen. Retrieved
from https://www.math.cit.tum.de/math/forschung/gruppen/discrete-optimization

Erd6s-Rényi Graph. Retrieved from https://python.igraph.org/en/main/tutorials/erdos_renyi.html
Graph Online. Retrieved from https://graphonline.ru/en/wiki/Help/FindMinimumSpanningTree
JavaScript. Retrieved from https://developer.mozilla.org/en-US/docs/Web/JavaScript

Kruskal's Algorithm. Retrieved from https://algorithms.discrete.ma.tum.de/graph-algorithms/mst-
kruskal/index_en.html

Minimum Spanning Tree Calculator. Retrieved from https://mst-calculator.vercel.app/

Prim's Algorithm. Retrieved from https://algorithms.discrete.ma.tum.de/graph-algorithms/mst-
prim/index_en.html

Structuring content with HTML. Retrieved from https://developer.mozilla.org/en-
US/docs/Learn_web_development/Core/Structuring_content

