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Abstract

Approval-based multiwinner voting rules have recently received much attention in the
Computational Social Choice literature. Such rules aggregate approval ballots and determine
a winning committee of alternatives. To assess effectiveness, we propose to employ new noise
models that are specifically tailored for approval votes and committees. These models take
as input a ground truth committee and return random approval votes to be thought of as
noisy estimates of the ground truth. A minimum robustness requirement for an approval-
based multiwinner voting rule is to return the ground truth when applied to profiles with
sufficiently many noisy votes. Our results indicate that approval-based multiwinner voting
is always robust to reasonable noise. We further refine this finding by presenting a hierarchy
of rules in terms of how robust to noise they are.

1 Introduction

Voting has received much attention by the Al community recently, mostly due to its suitability
for simple and effective decision making. One popular line of research, that originates from
Arrow [1], has aimed to characterize voting rules in terms of the social choice azioms they satisfy.
Another approach views voting rules as estimators. It assumes that there is an objectively
correct choice, a ground truth, and votes are noisy estimates of it. Then, the main criterion for
evaluating a voting rule is whether it can determine the ground truth as outcome when applied
to noisy votes.

A typical scenario in studies that follow the second approach employs a hypothetical noise
model that uses the ground truth as input and produces random votes. Then, a voting rule
is applied on profiles of such random votes and is considered effective if it acts as a mazimum
likelihood estimator [10, 24] or if it has low sample complexity [8]. As such evaluations are heavily
dependent on the specifics of the noise model, relaxed effectiveness requirements, such as the
accuracy in the limit, sought in broad classes of noise models [8] can be more informative.
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Figure 1: Our evaluation framework.

We restrict our attention to approval voting, where ballots are simply sets of alternatives
that are approved by the voters [17]. Furthermore, we consider multiwinner voting rules [13],
which determine committees of alternatives as outcomes [14, 2]. And, in particular, we focus
on approval-based counting choice rules (or, simply, ABC rules), which were defined recently
by Lackner and Skowron [15]. A famous rule in this category is known as multiwinner approval
voting (AV). Each alternative gets a point every time it appears in an approval vote and the
outcome consists of a fixed number of alternatives with the highest scores.

We consider noise models that are particularly tailored for approval votes and committees.
These models use a committee as ground truth and produce random sets of alternatives as votes.
We construct broad classes of noise models that share a particular structure, parameterized by
distance metrics defined over sets of alternatives. In this way, we adapt to approval-based
multiwinner voting the approach of Caragiannis et al. [8] for voting rules over rankings.

Figure 1 illustrates our evaluation framework. The noise model is depicted at the left. It
takes as input the ground truth committee and its probability distribution over approval votes
is consistent to a distance metric d. Repeated executions of the noise model produce a profile
of random approval votes. The ABC rule (defined using a bivariate function f; see Section 2)
is then applied on this profile and returns a winning committee. Qur requirement for the ABC
rule is to be accurate in the limit, not only for a single noise model, but for all models that
belong to a sufficiently broad class. The breadth of this class quantifies the robustness of the
ABC rule to noise.

The details of our framework are presented in Section 2. Our results indicate that it indeed
allows for a classification of ABC rules in terms of their robustness to noise. In particular, we
identify (in Section 3) the modal committee rule (MC) as the ultimately robust ABC rule: MC
is robust against all kinds of reasonable noise. AV follows in terms of robustness and seems
to outperform other known ABC rules (see Section 4). In contrast, the well-known approval
Chamberlin-Courant (CC) rule is the least robust. On the other hand, all ABC rules are robust
if we restrict noise sufficiently (see Section 5). We conclude with a discussion on open problems
in Section 6.

1.1 Further related work

Approval-based multiwinner voting rules have been studied in terms of their computational
complexity [3, 22], axiomatic properties [21, 15, 2], as well as their applications [5]. In particular,
axiomatic work has focused on two different principles that govern multiwinner rules: diversity
and individual excellence. Lackner and Skowron [16] attempt a quantification of how close an
approval-based multiwinner voting rule is to these two principles. We remark that the primary
focus of the current paper is on individual excellence.

The robustness of approval voting has been previously evaluated against noise models, using
either the MLE [20] or the sample complexity [6] approach. These papers assume a ranking of



the alternatives as ground truth, generate approval votes that consist of the top alternatives in
rankings produced according to the noise model of Mallows [18], and assess how well approval
voting recovers the ground truth ranking. We believe that our framework is fairer to approval
votes, as recovering an underlying ranking when voters have very limited power to rank is very
demanding. The robustness of multiwinner voting against noise has been studied by Procaccia
et al. [19].

Additional references related to specific ABC rules are given in the next section. We remark
that the modal committee (MC) rule is similar in spirit to the modal ranking rule considered
by Caragiannis et al. [7].

2 Preliminaries

Throughout the paper, we denote by A the set of alternatives. We use m = |A| and denote the
committee size by k. The term committee refers to a set of exactly k alternatives.

Approval-based multiwinner voting. An approval vote is simply a subset of the alter-
natives (of any size). An approval-based multiwinner voting rule takes as input a profile of
approval votes and returns one or more winning committees.

We particularly consider voting rules that belong to the class of approval-based counting
choice rules (or, simply, ABC rules), introduced by Lackner and Skowron [15]. Such a rule is
defined by a bivariate function f, with f(z,y) indicating a non-negative score a committee gets
from an approval vote containing y alternatives, x of which are common with the committee.
f is non-decreasing in its first argument. Formally, f is defined on the set A}, ., which consists
of all pairs (z,y) of possible values of |U N S| and |S|, given that U is k-sized and S can be any
subset of the m alternatives of A. Le., &}, ;. is the set

{(z,y):y=0,1,....m,z = max{k +y — m,0},...,y}.

The score of a committee is simply the total score it gets from all approval votes in a
profile. Winning committees are those that have maximum score. We extensively use “the
ABC rule f” to refer to the ABC rule that uses the bivariate function f. We denote the score
that an ABC rule f assigns to the committee U given a profile II = (S;);c[,) of n votes by
scp(UI) = >0, f(JUNS,|,]S]). With some abuse of notation, we use scy(U, S;) to refer to
the score U gets from vote S;. Hence, scy(U,II) =" scy(U, S;).

Well-known ABC rules include:

e Multiwinner approval voting (AV), which uses the function fav(z,y) = z.

e Approval Chamberlin-Courant (CC), which uses the function fcc(z,y) = min{1,z}. The
rule falls within a more general context considered by Chamberlin and Courant [9].

e Proportional approval voting (PAV), which uses the function fpav(z,y) = ;_;1/i.

These rules belong to the class of rules that originate from the work of Thiele [23]. A Thiele
rule uses a vector (wy,ws, ..., wi) of non-negative weights to define f(z,y) = > 7, w;. Other
known Thiele rules include the p-Geometric rule [22] and Sainte Lagué approval voting [16].

A well-known non-Thiele rule is the satisfaction approval voting (SAV) rule that uses
fsav(z,y) = x/y for y > 0 and f(x,y) = 0 otherwise [4]. Let us also introduce the modal
committee (MC) rule which returns the committee that has maximum number of appearances
as approval votes in the profile. MC is also non-Thiele; it uses f(k,k) = 1 and f(z,y) = 0
otherwise.
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Noise models. We employ noise models to generate approval votes, assuming that the ground
truth is a committee. Denoting the ground truth by U C A, a noise model M produces random
approval votes according to a particular distribution that defines the probability Pra[S|U] to
generate the set S C A when the ground truth is U.

Let us give the following noise model M, as an example. M, uses a parameter p € (1/2,1].
Given a ground truth committee U, M, generates a random set S C A by selecting each alter-
native of U with probability p and each alternative in A\ U with probability 1 — p. Intuitively,
the probability that a set will be generated depends on its “distance” from the ground truth:
the higher this distance, the smaller this probability. To make this formal, we will need the set
difference distance metric da : 24 — R>q defined as da(X,Y) = |X \ Y| + [V \ X].

da(U,S)
Claim 1. For S C A, Pryy, [S|U] = p™ (%P) .

So, the probability Prag,[S|U] is decreasing in da(U,S). We will consider general noise
models M with Pra[S|U] depending on d(U,S), where d is a distance metric defined over
subsets of A.

Definition 1. Let d be a distance metric over sets of alternatives. A noise model M is called
d-monotonic if for any two sets S1,S2 C A, it holds Pry[S1|U] > Pray[S2|U] if and only if
d(U, S1) < d(U, SQ).

Definition 1 implies that Pra[S1|U] = Praq[S2|U] when d(U, S1) = d(U, S2).
Besides the set difference metric used by M, other well-known distance metrics! (see Deza
and Deza [11]) are:

da(X)Y)

e the normalized set difference or Jaccard metric d s, defined as d;(X,Y) = X

e the maximum difference or Zelinka metric dz, defined as dz(X,Y) = max{| X \Y|,|Y\ X},
and

e the normalized maximum difference or Bunke-Shearer metric dpg, defined as dpg(X,Y) =
dz(X)Y)
max{| X[V}

Evaluating ABC rules against noise models. We aim to evaluate the effectiveness of
ABC rules when applied to random profiles generated by large classes of noise models. To this
end, we use accuracy in the limit as a measure.

Definition 2 (accuracy in the limit). An ABC rule f is called accurate in the limit for a noise
model M if there exists ng such that, for every profile of n > ng approval votes produced by M
with ground truth U, f returns U as the unique winning committee with certainty.

Then, ABC rules are evaluated in terms of robustness using the next definition.

Definition 3 (robustness). Let d be a distance metric over sets of alternatives. An ABC rule
f is monotone robust against d (or d-monotone robust) if it is accurate in the limit for all
d-monotonic noise models.

!Notice that d(X,Y) for the four specific distance metrics defined here depends only on |X \ Y|, |Y \ X|, | X]|,
and |Y]. In a sense, these distance metrics are alternative-independent. Our results apply to the most general
definition of distance, where d(X,Y) can also depend on the contents of X \ Y, Y\ X, X, and Y.



3 MC is a uniquely robust ABC rule

We begin our technical exposition by identifying the unique ABC rule that is monotone robust
against all distance metrics. Our proofs, in the current and subsequent sections, make extensive
use of the following lemma. The notation S ~ M(U) indicates that the random set S is drawn
from the noise model M with ground truth U.

Lemma 2. An ABC rule f is accurate in the limit for a noise model M if and only if
Es~m@)lser (U, S) —scy(V,S)] > 0 for every two different sets of alternatives U,V C A with
Ul =V]=Fk.

Proof. Let U be a k-sized set of alternatives. For integer n > 1, let II,, be the profile that
consists of approval votes S1, So, ..., Sy, that have been produced independently from the noise
model M with ground truth U. We will show that, as n tends to infinity, U is a winning
committee under f in II,, with probability 1 if and only if Eg.rqn[scy (U, S) —scy(V, S)] > 0.

Let V be any k-sized set of alternatives different from U. Fori = 1,2, ..., let X; = scy(U, S;)—
sct(V,S;). Now, for n = 1,2, .., define

n

1 « 1
n — P = sy D7) s D
Y - ;21 X - ;21 (scf(U, S;) —scp(V,S:))

1
= (scy(U,1I,) —scy(V,11,,)) .
IL.e., a positive Y,, implies that the committee U is superior to V for profile II,, according to the
ABC rule f. By the law of large numbers, we have
Jm Yy = Egom) lser (U, 5) —scp(V, 5)]. (1)

If the RHS of (1) is positive, then there is ng such that Y;, > 0 for every n > ng and,
consequently, scg(U,II,) > scy(V,II,). We conclude that, as n tends to infinity, U is (with
certainty) the unique winning committee for IT,, according to f.

If the RHS of (1) is non-positive, linearity of expectation yields E[Y;,,] < 0 for every n > 1.
This implies that

Priscy(U,1I,) <scy(V,11,)] = PrY,, <0] >0

and the probability that U is the unique winning committee for II,, according to f is strictly
smaller than 1. O

We are ready to present our first application of Lemma 2.
Theorem 3. MC is the only ABC rule that is monotone robust against any distance metric.

Proof. Let M be a noise model that is d-monotonic for some distance metric d. Let U,V C A
be any two different k-sized sets of alternatives. By the definition of MC, we have

ESNM(U)[SCMC(U7 S) — SCMc(V, S)] = PI‘M[U|U} — PI‘M[V’U] > 0.

By Lemma 2, we obtain that MC is d-monotone robust.

We will now show that MC is the only ABC rule f that has this property. Let f be
an ABC rule that is different than MC. This means that there exist integers x* and y* with
(x* =1L, y*), (%, y*) € X, (@%,y") # (k, k), and f(z*,y*) > f(z* —1,y*). We will construct
a distance metric d and a d-monotonic noise model for which f is not accurate in the limit.



Rename the alternatives of A as ay,ag, ..., a, and let U = {a1, ag, ...,ar}, V = {ag, ..., ax+1},
and W = {ar_z=+2, ..., Gy +k—a+1}. Notice that, by the definition of &y, 5, (z* — 1,4%) € X i
implies that 1+ max{y* + k —m,0} < 2* and, equivalently, y* + k — z* + 1 < m; hence, the set
W is well-defined. Clearly, x* > 1; so sets V' and W share at least one alternative.

We define a distance metric between subsets of A that has d(X,Y) =0if X =Y, d(X,Y) €
{1,2}, otherwise, and in particular d(U, V) = d(U,W) = 1 and d(U, S) = 2 for every S different
than U, V, or W.

We are ready to define the d-monotonic noise model M. For simplicity, we use py =
Pru[U|U], p1 = Prm[VI|U] = Prymy[WIU], and py = Pray[S|U] for every other set S C A
different than U, V', or W. For 6 > 0 (to be specified shortly), we set pg = 1/3, p1 = 1/3 =,
and py = 525

We now compute the quantity Eg. o [scy(U, S) — scy(V;,S)]; observe that scy(U,U) =
scy(V,V) = f(k,k), scp(U, V) = scy(V,U) = f(k —1,k), scy(UW) = f(z* —1,y*), and
f(V,W) = f(z*,y*). We obtain

Es~m)lser (U, S) —scp(V, S)]
= f(k, k)pO + f(k - 17 k)pl + f(x* - 17y*)p1

+ Z f(‘UﬂS|,|S|)p2—f(k—1,k3)p0
SAU,V,W
— f(k k)py — @y pl = Y F(IV N S|, |S)pe
SAU,V,W
< (po —p1)(f(k, k) = f(k = 1LE)) = po(f (=", y%) = f(z" = 1,97))

—p Y AV ASLIS)

SAUV,W
= 5(F (k. K) — F(k— LK) ~ (13 = ) (e ") — F(& ~ 1y")
b Y (vaslis) )
SAUV,W

Observe that the RHS of (2) is increasing in § and approaches —%(f(:v*, y*)— fz*—1,y")) <0
as § approaches 0. Hence, for a sufficiently small positive §, we have

Esmuylscr (U, S) —scp(V, 5)] < 0.

By Lemma 2, f is not accurate in the limit for M. O

4 A characterization for AV

In this section, we identify the class of distance metrics against which AV is monotone robust.
Before defining this class, let us fix some notation; this will be useful in several proofs.

For a distance metric d and a set of alternatives U, let span(d,U) be the number of different
non-zero values the quantity d(U,-) can take. We denote these different distance values by
61(d,U), d2(d,U), ..., dspan(a,v)(d,U). We also use do(d,U) = 0. For t =0, 1, ...,span(d, U) and
alternatives a,b € A, we denote by Né|b(d, U) the class of sets of alternatives S that contain
alternative a but not alternative b and satisfy d(U, S) < 6:(d,U).

Definition 4 (majority-concentricity). A distance metric d is called majority-concentric® if for

2Majority-concentricity is similar in spirit with a property of distance metrics over rankings with the same
name in [8].



every k-sized set of alternatives U, it holds Nélb(d’ U)> | (d,U) for every alternatives a € U
and b€ U and t =0,1,...,span(d,U).

We are ready to prove our characterization for AV.

Theorem 4. AV is d-monotone robust if and only if the distance metric d is majority-
concentric.

Proof. Let M be a d-monotonic noise model for a majority concentric distance metric d. Let
U and V be two different sets with k alternatives each. By Lemma 2, in order to show that AV
is accurate in the limit for M (and, consequently, d-monotone robust), it suffices to show that
ESNM(U)[SCAV<U7 S) —SCA\/(V, S)] > 0. -

We will need some additional notation. For t = 0,1, ...,span(d, U), we denote by N'(d,U))
the class of sets of alternatives S that satisfy d(U,S) = 6:(d,U). For alternatives a,b € A, we
denote N!(d,U)) the subclass of N'(d,U) consisting of sets of alternatives that include a and
by NCtL'b(d, U) the subclass of N(d,U) consisting of sets do not contain alternative b.

To simplify notation, we set s = span(d,U). Also, we drop (d,U) (e.g., we use Né‘b instead
of N t|b(d, U)) from notation since it is clear from context. We have

Espmnlscav (U, 9)] = > seav(U, S) - Pra[SIU] = > [UN S| - Proy(S|U]

SCA SCA
=> > PruSiUI=) > > Pruls|UL (3)
aclU SCA:aeS aelU t=0 SeNt

Now, observe that the probability Praq [S|U] is the same for all sets S € N'. In the following,
we use p; = Pry[S|U] for all S € Nt for t =0,1,...,s. Hence, (3) becomes

Es~muylscav (U, )] ZZ\Nt\ ‘Pt
acU t=0
Similarly, we have
Es~mlscav(V.8)] = ) Z [Nal - pr,
acV t=0
and, by linearity of expectation,
S
Esm)lscav(U, ) —scav(V, 8)] = Y Z|Nt| pe— Y. Y INI-p (4)
acU\V t=0 acV\U t=0

Let u: V\U — U\ V be a bijection that maps each alternative of V'\ U to a distinct alternative
of U\ V. Then, (4) becomes

ESNM(U) [SCA\/(U, S) - SCA\/(V S)]

D LI S DL NI S ot (I ) P

acU\V =0 acU\V t=0 acU\V =0
0 1 1
=D (|Na|u(a)|*|N a>|a) pot Y ZO — N = Vi \aHINﬁ(anaD'Pt
acU\V acU\V t=1

7
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S—

Z ( )|—|Nﬁ(a)\a\> (pt — pr41) + (I alu(@ | = 1V, )|a|> - Ps (5)

acU\V t=0

> 2 ( |Ng(a)|a|> - (po — p1) > 0.

acU\V

and Nt

The third equality follows since N 0| @ = N alu(a) = Ném(a) \

0 A0 _ 0
alu@) NVu@la = Ny@)la

t—1 _ Nt t—1 _ . : .
Nam( ) and N! w(@)a = N,u(a)|a \ Nﬂ(a”a for t = 1,...,s. The first inequality follows since d is
majority concentric and since p; > pi4+1 and, thus, all differences in (5) are non-negative. The
last inequality follows after observing that since |N? 1 a)| =1 and |N \ =0foracU\V

and since py > p1. This completes the “if” part of the proof.
Let us now consider a non-majority concentric distance metric d that satisfies Nérb(d, U) <

N, t‘* (d,U) for the k-sized set of alternatives U, some alternatives a € U and b ¢ U, and some

t* € {1,2,...,span(d,U)}. We show the “only if” part of the theorem by constructing a noise
model M that satisfies Eg.rq)[scav(U, S) —scav(V, 9)] <0 for V =U\ {a} U {b}.

Again, we use p; = Pry[S|U] for every set of alternatives S € N'(d,U), s = span(d,U), and
drop (d,U) from notation. We define the model probabilities so that 7 = pg > p1 > ... > ppx =
7T —¢€ and 2¢ = pp=41 > ... > ps = €. Notice that such a noise model exists for any arbitrarily
small € > 0. Since there are 2™ sets of alternatives and 7 is the probability that M returns the
ground truth ranking, it must be 7 > 1/2™. We now apply equality (5). Observe that, since
V =U\{a} U{b}, pu(a) = b. We obtain

ESNM( )[SCA\/(U, S) — SCA\/(V, S)]

albl — |N§\a’>'(Pt—Pt+1) (| alpl — |sz|a|)'Ps
t_

*

|b’ |le|a’> “(pt — pr+1) + (\

(r
(r
Z <‘Né|b‘ - ‘Nl§|a‘) (Pt — pr41) + <| \b’ |le|a’> " Ps
t=t*+1

‘Nb| ‘) (Pt — prey1)

t
+
Now, observe that for ¢ # t*, it holds \Né |—|N; | | < 2™ (the total number of sets of alternatives)
and py — prr1 < €. Also, |N(§Tb| — |N£|*a| < —1 and p — p=41 = T — 3e. Setting specifically

€= we obtain that

1
S8M s

1 1 3
Es~m@)ylscav (U, S) —scay(V, 5)] < s2™e — (1 — 3¢) < " om + P

which is negative for m > 2 since s > 1. The proof of the “only if” part of the theorem now
follows by Lemma 2. O

It is tempting to conjecture that AV and MC are the only ABC rules that are monotone
robust against all majority concentric distance metrics. However, this is not true as the next
example, which uses a different ABC rule, shows.

Example 1. Let A = {a,b,c} and k = 2. Consider the majority concentric distance metric
d and the ABC rule f that has f(1,1) = 1, f(2,2) = 2, and f(xz,y) = 0 otherwise. We will
show that f is d-monotone robust against any majority concentric distance metric d. Without
loss of generality, let us assume that U = {a,b} and V = {a,c}. Observe that the quantity



sct(U,S) —scp(V,S) is equal to O when S = 0,{a},{b,c},{a,b,c}, 1 when S = {b}, —1 when
S = {c}, 2 when S = {a,b}, and —2 when S = {a,c}. Hence, for the d-monotonic noise model
M, we have Eg.. pqury[scr (U, S) —scp(V, S)] = 2pab — 2Pac+pb—De, where pap, Pac, Py, and pe are
abbreviations for the probabilities Pra[S|U]| for S = {a,b}, {a,c}, {b}, and {c}, respectively.

In order to have le‘c > N(flb fort=0,1,...,span(d,U) as the definition of majority concen-
tricity requires, it must be either pay > Dby Pe = Pac OT Pab > Pby Pac = Pe- In the first case, we
have By lscr (U, S) —scp(V,8)] = (Pab — Pac) + (Pab — Pe) + (Pb — Pac) > 0. In the second
case, we have Eg aqnlscyp(U, S) —scp(V,S)] = 2(pab — Pac) + (Pb — pe) > 0. Accuracy in the
limit of the ABC rule f for the noise model M follows by Lemma 2.

5 Robustness of other ABC rules

Our results for other ABC rules (besides MC and AV) involve two classes of distance metrics.
We define the first one here.

Definition 5 (natural distance metric). A distance metric d is called natural if for every three

sets U, V, and S with |U| = |V| such that [U N S| > |V N S|, it holds that d(U,S) < d(V,S).
The next observation follows easily by the definitions.
Claim 5. Any natural distance metric is magjority-concentric.

Proof. Let d be a natural distance, U a k-sized set of alternatives, and a,b € A with a € U and
b ¢ U. We will show that |Né|b(d, U)| > \le'a(d, U)| for t = 0,1,...,span(d,U). For t = 0, this
is clearly true since Ng‘b(d, U)={U} and Nﬁa(d, U) = 0.

Fort > 1,1let V.=U \ {a} U{b} and p be any (U, V')-bijection on sets of alternatives. Let
S e le‘a(d, U). By the definition of u, 1(S5) contains alternative a but not b. Also |[U N u(S)| =
|[UNS|+1 and, due to naturality of d, d(U, u(S) < d(U, S). We conclude that p(S) € Né‘b(d, U).
Since p is a bijection (the sets of le‘a(d, U) are mapped to distinct sets in Né‘b(d, U)), we get
|N2|b(d, U)| > ]le‘a(d, U)|, as desired. O

The opposite is not true as the next example illustrates.

Example 2. Let A = {a,b,c} and consider the distance metric with d(X,Y) = 0 for every
pair of sets with X =Y, d(X,)Y) =1 XNY =0 and XUY = A, and d(X,Y) = 2,
otherwise. It can be easily seen that the distance is majority-concentric; it suffices to observe
that, within distance 1 from any set, each alternative appears in exactly one set. To see that
is not natural, consider U = {a,b}, V = {a,c} and S = {b}. We have [UNS| > |V N S| but
d(U,S)=2>1=4d(V,S).

Lemma 7 below identifies the class of ABC rules that are monotone robust against all natural
distance metrics. The condition uses an appropriately defined bijection on sets of alternatives.

Definition 6. Given two different sets U and V with |U| = |V|, a (U, V)-bijection p : 24 — 24
is defined as p(S) = {p'(a) : a € S}, where p/ : A — A is such that /(a) = a for every
alternative a € UNV ora g UUV, i/(a) is a distinct alternative in V\U fora € U\V, and
W' (a) is a distinct alternative in U\'V fora e V\U.

It is easy to see that a (U, V')-bijection u has the following properties.

Claim 6. Let U,V C A with |U| = |V| and let p be a (U,V)-bijection. For every S C A, it
holds |S| = [u()], U N8| = [V 1 ()], and [U N u(S)| = [V 5.



Lemma 7. An ABC rule is d-monotone robust against a natural distance metric d if and
only if for every two different sets of alternatives U,V C A with |[U| = |V| = k there exists
a (U,V)-bijection p on sets of alternatives and a set S C A with scp(U,S) > scy(V,S) and
d(U, S) < d(U, u(S)).

Proof. Let U and V' be two different sets with k alternatives each. Let S1, S_, and Sy be the
classes of sets of alternatives S with [UNS| > [V N S|, [UNS| < |VNS|,and [UNS|=|VNS]|,
respectively. Using this notation, we have

Esmw)lser(U, ) —scp(V,9)] = D (scp(U, S) = scp(V, 9)) - PraqlS|U]

SCA
= Y (scp(U,8) = scp(V, 8)) - Praq[S|U] + D (scp(U, S) = scp(V, 8)) - Pra[S|U]
SeSy SESy
+ ) (sep(U,S) = scp(V,S)) - Praq[S|U] (6)

Ses—

We will now transform the third sum in the RHS of (6) to one running over the sets of Sy like
the first sum.

Let u be a (U, V)-bijection on sets of alternatives; by Claim 6, u maps every set of S_ to a
set of S; and vice-versa. Hence, instead of enumerating sets of S_, we could enumerate sets of
S+ and apply the bijection g on them. The third sum in the RHS of (6) then becomes

D (sep(U,8) = scp(V,9)) - Praa[S|U] = > (scp(U, u(S)) = sep(V, u(S))) - Praalp(S)|U]
Ses_ SeSy

= > (scp(V,8) = scp(U,S)) - Praqlp(S)|U] (7)
SeS,

The second equality follows since, by Claim 6, sc¢(U, u(S)) = f(JU N u(S)], |n(S)]) = sce(|V N
S|, |S]) = scf(V, S) and, similarly, sc¢(V, u(S)) = scg(U, S).

Now observe that scs(U, S) = scy(V,S) when S € Sp. Hence, the second sum in the RHS of
(6) is equal to 0. By combining (6) and (7), we get

Es~m@)lscr (U, S) —scp(V,S)]

= 3 (scs(U,S) = s¢s(V..5)) - (PraglS|U] = Praglu(S)|U)). (8)
Ses,

Now observe that the RHS of (8) is always non-negative. This is due to the fact that
S € 8¢ which implies that scy(U,S) = f(|[UNS|,|S]) > f(]V NS, |S]) = scy(V,S) since f is
non-decreasing in its first argument and d(U, S) < d(U, u(S)) (and, consequently, Pra[S|U] >
Pr[(S5)|U]) since d is natural.

Clearly, the RHS of (8) is strictly positive if and only if there exists a set S € S, that further
satisfies d(U,S) < d(V,S) (and, consequently, Pra[S|U] > Pra[u(S)|U]) and scy(U,S) >
scf(V,S) (notice that sets that do not belong to Si cannot satisfy these conditions). The
theorem then follows by Lemma 2. O

We now present two applications of Lemma 7. The first one involves the natural distance
metrics.

Theorem 8. An ABC rule f is monotone robust against any natural distance metric if and
only if f(k,k) > f(k—1,k).
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Proof. For the proof of the “if” part, consider any pair of different k-sized sets alternatives U
and V and any (U, V)-bijection p. For S = U, it holds d(U,U) < d(U, u(U)) and sc¢(U,U) >
sc(V,U) by the definition of f.

For the proof of the “only if” part, assume that f(k,k) = f(k — 1,k) and consider the
natural distance metric d with d(X,Y) =0if X =Y and d(X,Y) = 1 otherwise. Let U,V C A
be different sets with k alternatives each such that U NV # (). Observe that the only set S C A
that satisfies d(U, S) < d(V,S) is U itself. But then (for S = U), it holds scf(U, S) = sc(V,S)
and the condition of Lemma 7 does not hold. Hence, f is not monotone robust against d. [

Notice that most popular ABC rules from Section 2 satisfy the condition of Theorem 8. CC
is an exception; Theorem 8 implies that CC is not monotone robust for some natural distance
metric.

Our second application of Lemma 7 involves all non-trivial ABC rules and an important
subclass of natural distances.

Definition 7 (similarity distance metric). A natural distance metric d is a similarity distance
metric if for every three sets U, V, and S with |U| = |V| such that [UNS| > |V N S|, it holds
that d(U,S) < d(V,S).

Theorem 9. Any non-trivial ABC rule is monotone robust against any similarity distance
metric.

Proof. We apply Lemma 7 assuming a non-trivial ABC rule f and a similarity distance metric
d. Non-triviality of f implies that for every two different sets U and V with k alternatives each,
there is a set S such that scf(U,S) > scg(V,S). This immediately yields [U N S| > [V NS,
which implies that d(U, S) < d(V,S) since d is a similarity distance. O

We can easily show that the four distance metrics set difference, Jaccard, Zelinka, and Bunke-
Shearer that we defined in Section 2 are all similarity distance metrics. Using this observation
and Theorem 9, we obtain the next statement.

Corollary 10. Any non-trivial ABC rule is monotone robust against the set difference, Jaccard,
Zelinka, and Bunke-Shearer distance metrics.

6 Epilogue

We believe that our approach complements nicely the axiomatic and quantitative analysis of
approval-based multiwinner voting. The current paper leaves many interesting open problems.
Besides identifying ABC rules that are at least as robust as AV, applying our framework to non-
ABC rules deserves investigation. Beyond assessing the effects of noise in the limit, studying
the sample complexity of approval-based multiwinner voting is important. This will require the
design of concrete noise models like the M), model that we presented in Section 2. In particular,
models that simulate user behaviour in crowdsourcing platforms will be useful for evaluating
approval-based voting in such environments. Even though the M, model is very simple, we
expect that implementation issues will emerge for more elaborate noise models. Similar issues
in the implementation of the Mallows [18] ranking model have triggered much non-trivial work;
see, e.g., [12].
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