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Abstract
Approval-based multiwinner voting rules have recently received much attention in the 
Computational Social Choice literature. Such rules aggregate approval ballots and deter-
mine a winning committee of alternatives. To assess effectiveness, we propose to employ 
new noise models that are specifically tailored for approval votes and committees. These 
models take as input a ground truth committee and return random approval votes to be 
thought of as noisy estimates of the ground truth. A minimum robustness requirement for 
an approval-based multiwinner voting rule is to return the ground truth when applied to 
profiles with sufficiently many noisy votes. Our results indicate that approval-based mul-
tiwinner voting can indeed be robust to reasonable noise. We further refine this finding by 
presenting a hierarchy of rules in terms of how robust to noise they are.
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1 Introduction

Voting has received much attention from the AI and Multiagent Systems community 
recently, mostly due to its suitability for simple and effective decision making. One pop-
ular line of research, that originates from Arrow [1], has aimed to characterize voting 
rules in terms of the social choice axioms they satisfy. Another approach views voting 
rules as estimators. It assumes that there is an objectively correct choice, a ground truth, 
and votes are noisy estimates of it. Then, the main criterion for evaluating a voting rule 
is whether it can determine the ground truth as outcome when applied to noisy votes.

A typical scenario in studies that follow the second approach employs a hypothetical 
noise model that uses the ground truth as input and produces random votes. Then, a vot-
ing rule is applied on profiles of such random votes and is considered effective if it acts 
as a maximum likelihood estimator [11, 31] or if it has low sample complexity [9]. Since 
such evaluations are heavily dependent on the specifics of the noise model, it is often 
more informative to use relaxed effectiveness requirements. For example, the require-
ment for accuracy in the limit is sought after in a broad class of noise models [9].

We restrict our attention to approval voting, where ballots are simply sets of alterna-
tives that are approved by the voters [21]. Furthermore, we consider multiwinner voting 
rules [14], which determine committees of alternatives as outcomes [3, 18]. In particu-
lar, we focus on approval-based counting choice rules (or, simply, ABCC rules), which 
were defined recently by Lackner and Skowron [20]. A famous rule in this category is 
known as multiwinner approval voting (AV). Each alternative gets a point every time it 
appears in an approval vote and the outcome consists of a fixed number of alternatives 
with the highest scores.

We consider noise models that are particularly tailored for approval votes and com-
mittees. These models use a committee as ground truth and produce random sets of 
alternatives as votes. We construct broad classes of noise models that share a particular 
structure, parameterized by distance metrics defined over sets of alternatives. In this 
way, we adapt to approval-based multiwinner voting the approach of Caragiannis et al. 
[9] for voting rules over rankings.

Figure  1 illustrates our evaluation framework. The noise model is depicted at the 
left. It takes as input the ground truth committee and its probability distribution over 
approval votes which is consistent to a distance metric d. Repeated executions of the 
noise model produce a profile of random approval votes. The ABCC rule (defined using 
a bivariate function f; see Sect. 2) is then applied on this profile and returns one or more 
winning committees. Our requirement for the ABCC rule is to be accurate in the limit 
(informally, on profiles with infinitely many votes, it must return the ground truth as the 
unique winning committee), not only for a single noise model, but for all models that 

Fig. 1  Our evaluation framework
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belong to a sufficiently broad class. The breadth of this class quantifies the robustness of 
the ABCC rule to noise.

The details of our framework are presented in Sect. 2. Our results indicate that it indeed 
allows for a classification of ABCC rules in terms of their robustness to noise. In particu-
lar, we identify (in Sect. 3) the modal committee rule (MC) as the ultimately robust ABCC 
rule: MC is robust against all kinds of reasonable noise. AV follows in terms of robust-
ness and seems to outperform other known ABCC rules (see Sect. 4). In contrast, the well-
known approval Chamberlin-Courant (CC) rule is the least robust. On the other hand, all 
ABCC rules are robust if we restrict noise sufficiently (see Sect. 5). We conclude with a 
discussion on extensions and open problems in Sect. 6.

1.1  Further related work

Approval-based multiwinner voting rules have been studied in terms of their computational 
complexity [2, 29], axiomatic properties [3, 20, 27], as well as their applications [6]. In 
particular, axiomatic work has focused on three different principles that govern multiwin-
ner rules: proportionality, diversity and individual excellence [14]. Lackner and Skowron 
[19] attempt a quantification of how close an approval-based multiwinner voting rule is 
to diversity and individual excellence. We remark that the primary focus of the current 
paper is on individual excellence, since a ground truth committee can be interpreted as the 
“excellent” choice in a very natural way.

The robustness of approval voting has been previously evaluated against noise models, 
using either the MLE [25] or the sample complexity [7] approach. These papers assume a 
ranking of the alternatives as ground truth, generate approval votes that consist of the top 
alternatives in rankings produced according to the noise model of Mallows [23], and assess 
how well approval voting recovers the ground truth ranking. We believe that our frame-
work is fairer to approval votes, as recovering an underlying ranking when voters have very 
limited power to rank is very demanding. The robustness of (non-approval) multiwinner 
voting against noise has been studied by Procaccia et al. [26].

A different notion of robustness has been considered in a series of papers, starting with 
the work of Shiryaev et al. [28], who focused on single-winner voting. The main questions 
there are related to quantifying how small changes in the profile affect the voting outcome. 
Follow-up work in this direction studies the robustness of multi-winner voting rules, using 
the concept of the robustness-radius [5, 24]. Gawron and Faliszewski [16] adapt this con-
cept to approval-based multiwinner voting, studying several ABCC rules.

Additional references related to specific ABCC rules are given in the next section. We 
remark that the modal committee (MC) rule is similar in spirit to the modal ranking rule 
considered by Caragiannis et al. [8] and the Perfectionist rule considered by Faliszewski 
et al. [15].

2  Preliminaries

Throughout the paper, we denote by A the set of alternatives. We use m = |A| and denote 
the committee size by k. The term committee refers to a set of exactly k alternatives. We 
use n to denote the number of votes in a profile. We often use [n] to represent the set of 
integers {1,… , n}.
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2.1  Approval‑based multiwinner voting

An approval vote is a subset Si ⊆ A of any size. An approval-based multiwinner voting rule 
takes as input a profile � = (Si)i∈[n] of n votes and returns one or more winning commit-
tees. We particularly consider voting rules that belong to the class of approval-based count-
ing choice rules (or, simply, ABCC rules), introduced by Lackner and Skowron [20]. When 
applied on a profile of approval votes, such a rule computes a score for each committee 
(i.e., for every set of k alternatives). Then, winning committees are those having maximum 
score. ABCC rules compute the score of a committee as the sum of contributions of each 
approval vote. The contribution of an approval vote to the score of a committee depends on 
the size of the approval vote and the number of common alternatives between the approval 
vote and the committee. This is the general template that every ABCC rule follows.

More specifically, an ABCC rule is defined by a bivariate function f which defines the 
contribution of each approval vote to the committee score. For the ABCC rule f, f(x, y) 
indicates the non-negative score a committee gets from an approval vote containing y alter-
natives, x of which are common with the committee. f is non-decreasing in its first argu-
ment. Formally, f is defined on the set Xm,k , which consists of all pairs (x, y) of possible 
values of |U ∩ S| and |S|, given that U is k-sized (as a committee) and S can be any subset 
of the m alternatives of A (as an approval vote). Hence, Xm,k is the set consisting of the 
pairs of integers (x,  y) with y = 0, 1,… ,m (the possible sizes of an approval vote) and 
x = max{k + y − m, 0},… , min{y, k} (the possible sizes of the intersection of an approval 
vote with y alternatives with a committee), i.e.,

We extensively use the term “the ABCC rule f” to refer to the ABCC rule that uses the 
bivariate function f. We denote the score that an ABCC rule f assigns to the committee U 
given a profile � = (Si)i∈[n] of n votes by sc f (U,�) =

∑n

i=1
f (�U ∩ Si�, �Si�) . With some 

abuse of notation, we often use sc f (U, Si) = f (|U ∩ Si|, |Si|) to refer to the score U gets 
from vote Si . The set

denotes the set of winning committees when applying the ABCC rule f on profile �.
Well-known ABCC rules include:

• Multiwinner approval voting (AV), which uses the function fAV (x, y) = x.
• Approval Chamberlin-Courant (CC), which uses the function fCC (x, y) = min{1, x} . 

The rule falls within a more general context considered by Chamberlin and Courant 
[10].

• Proportional approval voting (PAV), which uses the function fPAV (x, y) =
∑x

i=1
1∕i.

These rules belong to the class of rules that originate from the work of Thiele [30]. A Thiele 
rule uses a vector ⟨w1,w2,… ,wk⟩ of non-negative weights to define f (x, y) =

∑x

i=1
wi . 

Other known Thiele rules include the p-Geometric rule [29] and Sainte Laguë approval 
voting [19].

A well-known non-Thiele rule is the satisfaction approval voting (SAV) rule that uses 
f SAV (x, y) = x∕y for y > 0 and f (x, y) = 0 otherwise [4]. Let us also introduce the modal 
committee (MC) rule which returns the committee (or committees) that has maximum 

Xm,k = {(x, y) ∶ y = 0, 1,… ,m, x = max{k + y − m, 0},… , min{y, k}}.

argmax
U⊆A∶|U|=k

sc f (U,𝛱)
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number of appearances as approval votes in the profile. Recall that k is the commit-
tee size. Then, MC uses the bivariate function f defined by f (k, k) = 1 and f (x, y) = 0 
for (x, y) ≠ (k, k) . In words, a committee U gets one point from each approval vote that 
is identical to U. Clearly, MC is non-Thiele. Sometimes, we use the term trivial ABCC 
rule to refer to an ABCC rule that uses the fixed bivariate function f (x, y) = c for every 
(x, y) ∈ Xm,k . Clearly, in any profile, any k-sized set of alternatives is a winning committee 
under the trivial ABCC rule.

We remark that, formally, an ABCC rule is defined for a given number of alternatives 
m and a given committee size k. However, most of the ABCC rules we consider later in 
the paper, such as MC, AV, CC, or the trivial rule, are essentially families of rules defined 
for the whole range of m and k such that 1 ≤ k < m . Our positive statements hold for gen-
eral values of these parameters and, as such, they hold for families of ABCC rules. Some 
of our negative statements involving counter-examples are proved for specific values of 
m and k (this is enough to show that some statement is not true; e.g., see Example 1 and 
Theorem 5).

2.2  Noise models

We employ noise models to generate approval votes, assuming that the ground truth is 
a committee. Denoting the ground truth by U ⊆ A , a noise model M produces random 
approval votes according to a particular distribution that defines the probability PrM[S|U] 
to generate the set S ⊆ A when the ground truth is U.

Let us give the following noise model Mp as an example. Mp uses a parameter 
p ∈ (1∕2, 1] . Given a ground truth committee U, Mp generates a random set S ⊆ A by 
selecting each alternative of U with probability p and each alternative in A⧵U with prob-
ability 1 − p.1 Intuitively, the probability that a set will be generated depends on its “dis-
tance” from the ground truth: the higher this distance, the smaller this probability. To make 
this formal, let us define the notion of a distance metric over sets of alternatives.

Definition 1 A function d ∶ 2A × 2A → ℝ≥0 is a distance metric over subsets of the set of 
alternatives A if

• d(X, Y) = 0 if and only if X = Y  (identity of indiscernibles),
• d(X, Y) = d(Y ,X) for every pair of sets of alternatives X, Y ⊆ A (symmetry), and
• d(X, Y) ≤ d(X, Z) + d(Z,Y) for every three sets of alternatives X, Y , Z ⊆ A (triangle ine-

quality).

1 Even though it might look as a toy example of a noise model, a more careful look will reveal that Mp 
can be seen as the analog of the famous Mallows noise model [23] in the classical social choice setting 
when each voter provides a strict ranking of the alternatives instead of an approval set. Like in the Mal-
lows model, the parameter p is the probability of “getting it right”, i.e., of including in the random set 
alternatives of the gound truth committee, and leaving out alternatives not belonging to it. Interestingly, 
the ABCC rule AV turns out to be a maximum likelihood estimator for Mp (analogously to the fact that the 
well-known Kemeny rule is an MLE for Mallows; e.g., see [31]). As this is beyond the scope of the current 
paper, we present a proof in “Appendix”.
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Our first example of a distance metric is the set difference2 distance metric d� , defined 
as d�(X, Y) = |X⧵Y| + |Y⧵X| . The next lemma provides a strong relation between set dif-
ference d� and the noise model Mp.

Lemma 1 For S ⊆ A , PrMp
[S|U] = pm ⋅

(
1−p

p

)d�(U,S)

.

Proof Let U be a set of k alternatives. By the definition of the noise model Mp , the set S 
is generated by the noise model Mp with ground truth committee U when each alternative 
in S ∩ U is selected (this happens with probability p, independently for each alternative of 
the set), each alternative in S⧵U is selected (probability 1 − p each), each alternative in U⧵S 
is not selected (probability 1 − p each), and each alternative in A⧵(S ∪ U) is not selected 
(probability p each). Overall,

as desired.   ◻

So, since p > 1∕2 , the probability PrMp
[S|U] is decreasing in d�(U, S) and gets its max-

imum value when S = U . We will consider general noise models M with PrM[S|U] 
depending on d(U, S), where d is a distance metric defined over subsets of A.

Definition 2 Let d be a distance metric over sets of alternatives. A noise model M is 
called d-monotonic if for any two sets S1, S2 ⊆ A , it holds PrM[S1|U] > PrM[S2|U] if and 
only if d(U, S1) < d(U, S2).

Thus, the notion of d-monotonicity requires that sets of alternatives that are closer to 
the ground truth according to the distance metric d have higher probability to be gener-
ated. Definition 2 implies that PrM[S1|U] = PrM[S2|U] if and only if d(U, S1) = d(U, S2) . 
Also, together with Definition  1 (and, in particular, using the identity of indiscernibles 
property), we have that PrM[U|U] > PrM[S|U] , for every set S ⊆ A different than U.

Besides the set difference metric used by Mp , other well-known distance metrics (see 
[12]) are:

• the normalized set difference or Jaccard distance metric dJ , defined as dJ(X, Y) =
d�(X,Y)

|X∪Y| ,
• the maximum difference or Zelinka metric dZ , defined as 

dZ(X, Y) = max{|X⧵Y|, |Y⧵X|} , and
• the normalized maximum difference or Bunke-Shearer metric dBS , defined as 

dBS(X, Y) =
dZ (X,Y)

max{|X|,|Y|}.

PrMp
[S|U] = p|S∩U|

⋅ (1 − p)|S⧵U|
⋅ (1 − p)|U⧵S|

⋅ p|A⧵(S∪U)|

= pm−d�(U,S)
⋅ (1 − p)d�(U,S) = pm ⋅

(
1 − p

p

)d�(U,S)

2 Viewing sets as binary strings, the distance metric d� is equivalent to the Hamming distance; see Deza 
and Deza [12].
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The interested reader may verify that they (as well as set difference) are indeed distance 
metrics. Among them, the set difference and the Jaccard distance metrics are the most 
popular ones, with many applications in statistics and data analysis; e.g., see Sect. 3 in 
the book by Leskovec et al. [22].

In our proofs (e.g., in the proof of Theorem  1 and in Example  2), we often define 
simple distance metrics d by making sure that d(X, Y) = 0 if and only if X = Y  , 
d(X, Y) = d(Y ,X) for every pair of sets of alternatives X, Y ⊆ A , and setting d(X,  Y) 
(arbitrarily) to either 1 or 2 if X ≠ Y  . To verify that d is always a distance metric, we 
need to verify that the triangle inequality d(X, Y) ≤ d(X, Z) + d(Z,Y) holds. This is obvi-
ous if X = Y  . If Z = X or Z = Y  , the inequality holds with equality. If the three sets X, 
Y, and Z are different, the RHS of the inequality has value at least 2, while d(X, Y) ≤ 2 
by definition.

We remark that such a distance metric may satisfy, e.g., 
d({a, b}, {a, c}) ≠ d({b, c}, {b, d}) for four alternatives a, b, c, and d. This cannot happen 
with the following class of distance metrics, where renaming the alternatives does not 
change the distance.

Definition 3 A distance metric d is called alternative-independent if d(X,  Y) depends 
only on the sizes of the sets X, Y, X⧵Y  , and Y⧵X.

It can be easily seen that the four metric distances defined above are all alternative-
independent. Our results apply to the most general definition of alternative-dependent 
distances, where d(X, Y) can also depend on the contents of sets X⧵Y  , Y⧵X , X, and Y.

2.3  Evaluating ABCC rules against noise models

We aim to evaluate the effectiveness of ABCC rules when applied to random profiles 
generated by large classes of noise models. To this end, we use accuracy in the limit as 
a measure.

Definition 4 (accuracy in the limit) An ABCC rule f is called accurate in the limit for a 
noise model M if for every 𝜀 > 0 there exists n� such that, for every profile with at least 
n� approval votes produced by M with ground truth U, f returns U as the unique winning 
committee with probability at least 1 − �.

Then, ABCC rules are evaluated in terms of robustness using the next definition.

Definition 5 (robustness) Let d be a distance metric over sets of alternatives. An ABCC 
rule f is monotone robust against d (or d-monotone robust) if it is accurate in the limit for 
all d-monotonic noise models.

We remark that even though we follow the standard definition according to which an 
ABCC rule may return more than one winning committees (see [20]), our definition of 
the accuracy in the limit (Definition 4) is particularly demanding and requires from the 
ABCC rule to return a unique committee with high probability. Our purpose here is to 
guarantee the maximum level of robustness.
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3  MC is a uniquely robust ABCC rule

We begin our technical exposition by identifying the unique ABCC rule that is mono-
tone robust against all distance metrics. Our proofs, in the current and subsequent sec-
tions, make extensive use of Lemma 3 below. In its proof, we use the following variant 
of the Hoeffding inequality.

Lemma 2 (Hoeffding [17]) Let X1 , X2,..., X�
 be i.i.d. random variables with �[Xi] = � and 

Xi ∈ [a, b] for i = 1,… ,� , and X =
∑

i∈[�] Xi . Then, for every t > 0,

We remark that the notation S ∼ M(U) indicates that the random set S is drawn from 
the noise model M with ground truth U.

Lemma 3 Let M be a noise model. An ABCC rule f is

a. accurate in the limit for M if �S∼M(U)[ sc f (U, S) − sc f (V , S)] > 0 for every two different 
committees U and V.

b. not accurate in the limit for M if �S∼M(U)[ sc f (U, S) − sc f (V , S)] < 0 for some pair of 
committees U and V.

Proof We will need some additional general notation. Denote by a′ and b′ the minimum 
and maximum values of the quantity f (x1, y) − f (x2, y) over all triplets of integers x1 , x2 , 
and y that define pairs (x1, y), (x2, y) ∈ Xm,k . Also, for two k-sized sets of alternatives U and 
V, define �(U,V) = �S∼M(U)[ sc f (U, S) − sc f (V , S)].

Part (a). Define �min as the minimum among all values �(U,V) for all pairs of different 
k-sized sets of alternatives U and V. By the assumption of part (a) of the lemma, we have 
𝜇min > 0 . Let 𝜀 > 0 and

We will prove part (a) by showing that for every profile � = (Si)i∈[n] with at least n� 
approval votes (i.e., n ≥ n� ) from the noise model M with ground truth U, the probability 
that rule f returns U as the unique winner is at least 1 − �.

First observe that

for every k-sized set of alternatives V. The quantity sc f (U, Si) − sc f (V , Si) is a random 
variable following the distribution of sc f (U, S) − sc f (V , S) , where the set S is drawn 
randomly from the noise model M with ground truth U. Also, observe that the ran-
dom variable sc f (U, S) − sc f (V , S) takes values in [a�, b�] . Hence, the score difference 
sc f (U,�) − sc f (V ,�) is a sum of i.i.d random variables, each with expectation �(U,V) 
and taking values in [a�, b�].

Pr [|X − ��| ≥ t] ≤ 2 exp

(
−

2t2

�(b − a)2

)
.

n� =
(b� − a�)2

2�2
min

ln
2mk

�
.

sc f (U,�) − sc f (V ,�) =
∑

i∈[n]

(
sc f (U, Si) − sc f (V , Si)

)
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Hence, we can apply Hoeffding inequality (Lemma 2) with X = sc f (U,�) − sc f (V ,�) , 
� = n , a = a� , b = b� , � = �(U,V) , and t = n�(U,V) to get that the probability that 
sc f (U,�) ≤ sc f (V ,�) is

The second to last inequality follows since n ≥ n� and �(U,V) ≥ �min and the last one by 
the definition of n�.

So far, we have proved that the probability that the score of the k-sized set of alterna-
tives U is not higher than the score of the k-sized set of alternatives V under f is at most 
�∕mk . Hence, by applying a union bound, we have that the probability that the score of U 
is not higher than the score of any of the other at most mk k-sized sets of alternatives is at 
most � . In other words, U is the unique winning committee under f with probability at least 
1 − � as the definition of the accuracy in the limit (Definition 4) requires. This completes 
the proof of part (a).

Part (b). We will again consider a profile � = (Si)i∈[n] of n approval votes from the noise 
model M with ground truth U, and show that, as n approaches infinity, the probability that 
the score of U under the ABCC rule f is at least as high as that of the k-sized set of alterna-
tives V, with a probability that approaches 0. This is enough to show that f is not accurate 
in the limit for the noise model M with ground truth U. To see why, notice the following 
implication that clearly violates Definition 4: for � = 1∕2 and any definition of n� , there 
exist profiles with at least n� approval votes, so that the probability that U is the unique 
winning committee is strictly less than 1/2.

Indeed, by applying the Hoeffding inequality for the random variable 
X = sc f (U,�) − sc f (V ,�) , using � = n , a = a� , b = b� , � = �(U,V) , and t = −n�(U,V) 
(notice that 𝜇(U,V) < 0 now), we get

which approaches 0 as n approaches infinity.   ◻

We are ready to present our first application of Lemma 3.

Theorem  1 MC is the only ABCC rule that is monotone robust against any distance 
metric.

Proof Let M be a noise model that is d-monotonic for some distance metric d. Let 
U,V ⊆ A be any two different k-sized sets of alternatives. By the definition of MC, we have

By Lemma 3a, we obtain that MC is d-monotone robust.

Pr [ sc f (U,�) ≤ sc f (V ,�)] = Pr [ sc f (U,�) − sc f (V ,�) ≤ 0]

≤ Pr [| sc f (U,�) − sc f (V ,�) − n�(U,V)| ≥ n�(U,V)]

≤ 2 exp

(
−
2n�(U,V)2

(b� − a�)2

)
≤ 2 exp

(
−

2n��
2
min

(b� − a�)2

)
≤

�

mk
.

Pr [ sc f (U,�) ≥ sc f (V ,�)] = Pr [ sc f (U,�) − sc f (V ,�) ≥ 0]

≤ Pr [| sc f (U,�) − sc f (V ,�) − n�(U,V)| ≥ −n�(U,V)]

≤ 2 exp

(
−
2n�(U,V)2

(b� − a�)2

)
,

�S∼M(U)[ sc MC (U, S) − sc MC (V , S)] = PrM[U|U] − PrM[V|U] > 0.
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We will now show that MC is the only ABCC rule that has this property. Clearly, the 
trivial ABCC rule is not monotone robust against any distance metric since, by its defini-
tion, it never returns a unique winning committee. The bivariate function f of any non-
trivial ABCC rule can be assumed to be normalized. I.e., it can be assumed to satisfy 
f (max{k + y − m, 0}, y) = 0 (recall that max{k + y − m, 0} is the smallest x so that (x, y) 
belongs to Xm,k ) for every integer y = 0, 1,… ,m and, furthermore,

This normalization assumption is valid due to the fact that for every constant c > 0 and uni-
variate function e(⋅) defined over the integers 0, 1,… ,m , the ABCC rule defined

for (x, y) ∈ Xm,k is equivalent to the ABCC rule f, in the sense that both f and g return the 
same set of winning committees on every profile of approval votes [20]. Clearly, our defini-
tion of the ABCC rule MC uses a normalized bivariate function.

Now, let f be the normalized bivariate function of a non-trivial ABCC rule that is differ-
ent than MC. This means that there exist integers x∗ and y∗ with (x∗ − 1, y∗), (x∗, y∗) ∈ Xm,k , 
(x∗, y∗) ≠ (k, k) , and f (x∗, y∗) > f (x∗ − 1, y∗) . We will construct a distance metric d and a 
d-monotonic noise model for which f is not accurate in the limit.3

Rename the alternatives of A as a1, a2,… , am and let U = {a1, a2,… , ak} , 
V = {a2,… , ak+1} , and W = {ak−x∗+2,… , ay∗+k−x∗+1} . Notice that, by the defini-
tion of Xm,k , (x∗ − 1, y∗) ∈ Xm,k implies that max{y∗ + k − m, 0} ≤ x∗ − 1 and, 
hence, y∗ + k − x∗ + 1 ≤ m . Furthermore, x∗ ≥ 1 . Also, (x∗, y∗) ∈ Xm,k implies that 
x∗ ≤ max{k, y∗} and, hence, k − x∗ + 2 ≥ 2 and x∗ ≤ y∗ . Consequently, the set W is well-
defined and has the following structure: It contains y∗ alternatives. The x∗ alternatives 
ak−x∗+2,… , ak+1 appear also in set V and the x∗ − 1 alternatives ak−x∗+2,… , ak appear also 
in set U.

We define a distance metric d between subsets of A that has d(X, Y) = 0 if X = Y  , 
d(X, Y) ∈ {1, 2} , otherwise, and in particular d(U,V) = d(U,W) = 1 and d(U, S) = 2 for 
every set of alternatives S ⊆ A different than U, V, or W.

We are ready to define the d-monotonic noise model M . For simplicity, we use 
p0 = PrM[U|U] , p1 = PrM[V|U] = PrM[W|U] , and p2 = PrM[S|U] for every other set 
S ⊆ A different than U, V, or W. For 0 < 𝛿 <

1

3(2m−1)
 , we set p0 = 1∕3 , p1 = 1∕3 − � , and 

p2 =
2�

2m−3
 . The particular value of � will be specified shortly; for the moment, the range of 

� guarantees that p0 > p1 > p2 so that M is indeed d-monotonic.
We now compute the quantity �S∼M(U)[ sc f (U, S) − sc f (V , S)] ; observe 

that sc f (U,U) = sc f (V ,V) = f (k, k) , sc f (U,V) = sc f (V ,U) = f (k − 1, k) , 
sc f (U,W) = f (x∗ − 1, y∗) , and sc f (V ,W) = f (x∗, y∗) . We obtain

max
(x,y)∈Xm,k

f (x, y) = 1.

g(x, y) = c ⋅ f (x, y) + e(y)

3 We remark that the distance metric d in the second part of the proof of Theorem 1 is alternative-depend-
ent. This is necessary; see the discussion in Sect. 6.
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Observe that the RHS of (1) is increasing in � and approaches 
−

1

3
(f (x∗, y∗) − f (x∗ − 1, y∗)) < 0 as � approaches 0. Hence, for a sufficiently small positive 

� , we have

By Lemma 3b, f is not accurate in the limit for M and, hence, not monotone robust against 
the distance metric d. This completes the proof of the theorem.   ◻

4  A characterization for AV

In this section, we identify the class of distance metrics against which AV is monotone 
robust. We will need some additional notation that will be useful in several proofs.

For a distance metric d and a set of alternatives U, let span (d,U) be the num-
ber of different non-zero values the quantity d(U, ⋅) can take. We denote these dif-
ferent distance values by �1(d,U) , �2(d,U),..., � span (d,U)(d,U) and assume that 
𝛿1(d,U) < 𝛿2(d,U) < … < 𝛿 span (d,U)(d,U) . We also use �0(d,U) = 0 . For 
t = 0, 1,… , span (d,U) and alternatives a, b ∈ A , we denote by Nt

a|b(d,U) the class of sets S 
of alternatives that contain alternative a but not alternative b and satisfy d(U, S) ≤ �t(d,U).

Definition 6 (majority-concentricity) A distance metric d is called majority-concentric if 
for every k-sized set of alternatives U, it holds |Nt

a|b(d,U)| ≥ |Nt
b|a(d,U)| for all alternatives 

a ∈ U and b ∉ U and t = 0, 1,… , span (d,U).

Majority-concentricity is similar in spirit with a property of distance metrics over rank-
ings with the same name in [9]. Similarly to that paper, the term “concentric” comes from 
a visualization of the sets of alternatives as lying in concentric circles, with committee U at 
their center, and with the t-th circle from the center hosting the sets of alternatives at dis-
tance exactly �t(d,U) from U, for t = 1, 2,… , span (d,U).

We are ready to prove our characterization for AV.

(1)

�S∼M(U)[ sc f (U, S) − sc f (V , S)]

= sc f (U,U) ⋅ p0 + sc f (U,V) ⋅ p1 + sc f (U,W) ⋅ p1 +
∑

S≠U,V ,W

sc f (U, S) ⋅ p2

− sc f (V ,U) ⋅ p0 − sc f (V ,V) ⋅ p1 − sc f (V ,W) ⋅ p1 −
∑

S≠U,V ,W

sc f (V , S) ⋅ p2

= f (k, k) ⋅ p0 + f (k − 1, k) ⋅ p1 + f (x∗ − 1, y∗) ⋅ p1 +
∑

S≠U,V ,W

f (|U ∩ S|, |S|) ⋅ p2

− f (k − 1, k) ⋅ p0 − f (k, k) ⋅ p1 − f (x∗, y∗) ⋅ p1 −
∑

S≠U,V ,W

f (|V ∩ S|, |S|) ⋅ p2

≤ (p0 − p1) ⋅ (f (k, k) − f (k − 1, k)) − p1 ⋅ (f (x
∗, y∗) − f (x∗ − 1, y∗)) + p2 ⋅

∑

S≠U,V ,W

f (|U ∩ S|, |S|)

= � ⋅ (f (k, k) − f (k − 1, k)) − (1∕3 − �) ⋅ (f (x∗, y∗) − f (x∗ − 1, y∗))

+
2�

2m − 3
⋅

∑

S≠U,V ,W

f (|U ∩ S|, |S|).

�S∼M(U)[ sc f (U, S) − sc f (V , S)] < 0.
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Theorem  2 AV is d-monotone robust if and only if the distance metric d is 
majority-concentric.

Proof Let M be a d-monotonic noise model for a majority concentric distance metric d. 
Let U and V be two different sets with k alternatives each. By Lemma 3a, in order to show 
that AV is accurate in the limit for M (and, consequently, d-monotone robust), it suffices to 
show that �S∼M(U)[ sc AV (U, S) − sc AV (V , S)] > 0.

We will need some additional notation. For t = 0, 1,… , span (d,U) , we denote by 
N̄t(d,U) the class of sets of alternatives S that satisfy d(U, S) = �t(d,U) . For alternatives 
a, b ∈ A , we denote by N̄t

a
(d,U) the subclass of N̄t(d,U) consisting of sets of alternatives 

that include a and by N̄t
a|b(d,U) the subclass of N̄t

a
(d,U) consisting of sets that do not con-

tain alternative b.
To simplify notation, we set s = span (d,U) . Also, we drop (d, U) from notation (e.g., 

we use Nt
a|b instead of Nt

a|b(d,U) ) since it is clear from context. We have

Now, observe that the probability PrM[S|U] is the same for all sets S ∈ N̄t , since all of 
them have the same distance �t(d,U) from U. In the following, we use pt = PrM[S|U] for 
all S ∈ N̄t , for t = 0, 1,… , s . Hence, (2) becomes

Similarly, we have

and, by linearity of expectation,

Let � be a bijection that maps each alternative of U⧵V  to a distinct alternative of V⧵U . 
Then, (3) becomes

(2)

�S∼M(U)[ sc AV (U, S)] =
∑

S⊆A

sc AV (U, S) ⋅ PrM[S|U] =
∑

S⊆A

|U ∩ S| ⋅ PrM[S|U]

=
∑

a∈U

∑

S⊆A∶a∈S

PrM[S|U] =
∑

a∈U

s∑

t=0

∑

S∈N̄t
a

PrM[S|U].

�S∼M(U)[ sc AV (U, S)] =
∑

a∈U

s∑

t=0

|N̄t
a
| ⋅ pt.

�S∼M(U)[ sc AV (V , S)] =
∑

a∈V

s∑

t=0

|N̄t
a
| ⋅ pt,

(3)�S∼M(U)[ sc AV (U, S) − sc AV (V , S)] =
∑

a∈U⧵V

s∑

t=0

|N̄t
a
| ⋅ pt −

∑

a∈V⧵U

s∑

t=0

|N̄t
a
| ⋅ pt.
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The third equality follows since N̄0
a|𝜇(a) = N0

a|𝜇(a) , N̄0
𝜇(a)|a = N0

𝜇(a)|a , and 
N̄t
a|𝜇(a) = Nt

a|𝜇(a)⧵N
t−1
a|𝜇(a) and N̄t

𝜇(a)|a = Nt
𝜇(a)|a⧵N

t−1
𝜇(a)|a for t = 1,… , s . The first inequality fol-

lows since d is majority concentric and since pt > pt+1 and, thus, all differences in (4) are 
non-negative. The last inequality follows after observing that |N0

a|�(a)| = 1 and |N0
�(a)|a| = 0 

for a ∈ U⧵V  and since p0 > p1 . This completes the “if” part of the proof.
Let us now consider a non-majority concentric distance metric d that satisfies 

|Nt∗

a|b(d,U)| < |Nt∗

b|a(d,U)| for the k-sized set of alternatives U, some alternatives a ∈ U and 
b ∉ U , and some t∗ ∈ {1, 2,… , span (d,U) − 1} . We show the “only if” part of the theo-
rem by constructing a noise model M that satisfies �S∼M(U)[ sc AV (U, S) − sc AV (V , S)]<0 
for V = (U⧵{a}) ∪ {b}.

Again, we use pt = PrM[S|U] for every set of alternatives S ∈ N̄t(d,U) for 
t = 0, 1,… , span (d,U) , s = span (d,U) , and drop (d,  U) from notation. We define the 
model probabilities so that 𝜏 = p0 > p1 > … > pt∗ = 𝜏 − 𝜖 and 2𝜖 = pt∗+1 > … > ps = 𝜖 . 
Notice that such a noise model exists for any arbitrarily small 𝜖 > 0 . Since there are 2m 
sets of alternatives and � is the probability that M returns the ground truth ranking, it must 
be 𝜏 > 1∕2m . We now apply equality (4). Observe that, since V = (U⧵{a}) ∪ {b} , we have 
�(a) = b . We obtain

Now, observe that for t ≠ t∗ , it holds |Nt
a|b| − |Nt

b|a| ≤ 2m (the total number of sets of alter-
natives) and pt − pt+1 ≤ � . Also, |Nt∗

a|b| − |Nt∗

b|a| ≤ −1 and pt∗ − pt∗+1 = � − 3� . Setting spe-
cifically � = 1

s8m
 , we obtain that

which is negative for m ≥ 2 since s ≥ 1 . The proof of the “only if” part of Theorem 2 now 
follows by Lemma 3b.   ◻

(4)

�S∼M(U)[ sc AV (U, S) − sc AV (V , S)]

=
∑

a∈U⧵V

s∑

t=0

|N̄t
a
| ⋅ pt −

∑

a∈U⧵V

s∑

t=0

|N̄t
𝜇(a)

| ⋅ pt =
∑

a∈U⧵V

s∑

t=0

(
|N̄t

a|𝜇(a)| − |N̄t
𝜇(a)|a|

)
⋅ pt

=
∑

a∈U⧵V

(
|N0

a|𝜇(a)| − |N0
𝜇(a)|a|

)
⋅ p0 +

∑

a∈U⧵V

s∑

t=1

(
|Nt

a|𝜇(a)| − |Nt−1
a|𝜇(a)| − |Nt

𝜇(a)|a| + |Nt−1
𝜇(a)|a|

)
⋅ pt

=
∑

a∈U⧵V

(
s−1∑

t=0

(
|Nt

a|𝜇(a)| − |Nt
𝜇(a)|a|

)
⋅ (pt − pt+1) +

(
|Ns

a|𝜇(a)| − |Ns
𝜇(a)|a|

)
⋅ ps

)

≥
∑

a∈U⧵V

(
|N0

a|𝜇(a)| − |N0
𝜇(a)|a|

)
⋅ (p0 − p1) > 0.

�S∼M(U)[ sc AV (U, S) − sc AV (V , S)] =

s−1∑

t=0

(
|Nt

a|b| − |Nt
b|a|

)
⋅ (pt − pt+1) +

(
|Ns

a|b| − |Ns
b|a|

)
⋅ ps

=

t∗−1∑

t=0

(
|Nt

a|b| − |Nt
b|a|

)
⋅ (pt − pt+1) +

(
|Nt∗

a|b| − |Nt∗

b|a|
)
⋅ (pt∗ − pt∗+1)

+

s−1∑

t=t∗+1

(
|Nt

a|b| − |Nt
b|a|

)
⋅ (pt − pt+1) +

(
|Ns

a|b| − |Ns
b|a|

)
⋅ ps.

�S∼M(U)[ sc AV (U, S) − sc AV (V , S)] ≤ s2m� − (� − 3�) ≤
1

4m
−

1

2m
+

3

s ⋅ 8m
,
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It is tempting to conjecture that AV and MC are the only ABCC rules that are monotone 
robust against all majority concentric distance metrics. However, this is not true as the next 
example, which uses a different ABCC rule, shows.

Example 1 Let A = {a, b, c} and k = 2 . Consider the ABCC rule f with f (1, 1) = 1 , 
f (2, 2) = 2 , and f (x, y) = 0 otherwise. Despite its similarity with AV, the rule f is different 
since f (1, 2) = 0 . Clearly, f is different than MC as well.

We will show that f is d-monotone robust against any majority-concentric distance met-
ric d. To do so, by Lemma 3a, it suffices to show that �S∼M(U)[ sc f (U, S) − sc f (V , S)] > 0 
for every majority-concentric distance metric d, any d-monotonic noise model M , and any 
pair of k-sized sets of alternatives U and V.

Without loss of generality, let us assume that U = {a, b} and V = {a, c} . Observe that, 
by the definition of the ABCC rule f, the quantity sc f (U, S) − sc f (V , S) is equal to 0 when 
S = �, {a}, {b, c}, {a, b, c} , 1 when S = {b} , −1 when S = {c} , 2 when S = {a, b} , and −2 
when S = {a, c} . Let pab , pac , pb , and pc be abbreviations for the probabilities PrM[S|U] 
for S = {a, b} , {a, c} , {b} , and {c} , respectively. Then, for the noise model M , we have

Clearly, pab > max{pac, pc} implying that the two leftmost parentheses above are positive. 
We will show that majority-concentricity implies that pb ≥ min{pac, pb} and the third paren-
thesis is non-negative; this will immediately yield �S∼M(U)[ sc f (U, S) − sc f (V , S)] > 0 and 
d-monotone robustness of f will follow using Lemma 3a.

It remains to show that majority-concentricity implies pb ≥ min{pac, pb} . 
Assume otherwise that pb < min{pac, pb} . Equivalently, we would 
have d(U, {b}) > max{d(U, {a, c}), d(U, {c})} . Setting t such that 
�t(d,U) = max{d(U, {a, c}), d(U, {c})} , we get that Nt

b|c(d,U) consists only of the set of 
alternatives {a, b} and Nt

c|b(d,U) contains the sets of alternatives {a, c} and {c} . Hence, 
|Nt

b|c(d,U)| < |Nt
c|b(d,U)| , contradicting the majority-concentricity of d.   ◻

5  Robustness of other ABCC rules

Before presenting the results in this section, let us give some context. In Sect. 3, we charac-
terized the ABCC rules that are monotone robust against all distance metrics and concluded 
that MC is the only such rule. In Sect. 4, we characterized the class of majority-concentric 
distance metrics for which AV is monotone robust. However, this is not a characterization 
of the ABCC rules that are monotone robust against all majority-concentric distance met-
rics though; Example 1 indicates that there are other ABCC rules besides AV and MC that 
have this property.

In this section, we present characterization results for two large subclasses of majority 
concentric distance metrics, called natural and similarity distances. The characterization of 
the former excludes some well-known ABCC rules such as the CC rule, while the charac-
terization of the latter involves all non-trivial ABCC rules. Interestingly, even the (narrow-
est among the two) class of similarity metrics contains the four prominent distance metrics 
presented in Sect. 2.

�S∼M(U)[ sc f (U, S) − sc f (V , S)] = 2pab − 2pac + pb − pc

= (pab − pac) + (pab −max{pac, pc}) + (pb −min{pac, pc}).
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The definitions, statements, and proofs that we present in this section use appropri-
ately defined bijections on sets of alternatives.

Definition 7 Given two different sets of alternatives U and V with |U| = |V| , a (U, V)-
bijection � ∶ 2A → 2A is defined as �(S) = {��(a) ∶ a ∈ S} , where �� ∶ A → A is such that 
��(a) = a for every alternative a ∈ U ∩ V  or a ∉ U ∪ V  , ��(a) is a distinct alternative in 
V⧵U for a ∈ U⧵V  , and ��(a) is a distinct alternative in U⧵V  for a ∈ V⧵U.

It is easy to see that a (U, V)-bijection � has the following properties.

Lemma 4 Let U,V ⊆ A with |U| = |V| and let � be a (U, V)-bijection. For every S ⊆ A , it 
holds |S| = |�(S)| , |U ∩ S| = |V ∩ �(S)| , and |U ∩ �(S)| = |V ∩ S|.

Proof The proof follows easily by the definition of the (U,  V)-bijection � . The equality 
|S| = |�(S)| holds because the function �′ maps each alternative of S to a distinct alterna-
tive. To prove the second equality, observe that the function �′ maps each alternative in 
U ∩ V  to itself, each alternative in U⧵V  to a distinct alternative in V⧵U , and each alterna-
tive not belonging to U to an alternative not belonging to V. Hence, the alternatives in 
U ∩ S (and no other alternative in S) are mapped to distinct alternatives of V and, hence, 
|U ∩ S| = |V ∩ �(S)| . The proof of the third equality is symmetric.   ◻

We are now ready to proceed with the presentation of our last set of results. In par-
ticular, our results for ABCC rules different than MC and AV involve two classes of 
distance metrics. We define the first one here.

Definition 8 (natural distance) A distance metric d is called natural if for every three 
sets of alternatives U, V, and S with |U| = |V| such that |U ∩ S| > |V ∩ S| , it holds that 
d(U, S) ≤ d(V , S).

The next observation follows easily by the definitions.

Lemma 5 Every natural distance metric is majority-concentric.

Proof Let d be a natural distance, U a k-sized set of alternatives, and a, b ∈ A with a ∈ U 
and b ∉ U . We will show that |Nt

a|b(d,U)| ≥ |Nt
b|a(d,U)| for t = 0, 1,… , span (d,U) . For 

t = 0 , this is clearly true since N0
a|b(d,U) = {U} and N0

b|a(d,U) = �.
Let V = (U⧵{a}) ∪ {b} and � be any (U, V)-bijection on sets of alternatives. For t ≥ 1 , 

let S ∈ Nt
b|a(d,U) . By the definition of the sets U and V and of the bijection � , we have 

�(S) = (S⧵{b}) ∪ {a} . Then, |𝜇(S) ∩ U| = |S ∩ U| + 1 > |S ∩ U| . Due to the naturality of 
d, we get d(�(S),U) ≤ d(S,U) ; this follows by applying Definition 8 with sets S and �(S) 
playing the role of U and V and set U playing the role of S there. By this inequality on 
distances and by the fact that �(S) contains alternative a but not alternative b, we conclude 
that �(S) ∈ Nt

a|b(d,U) . Since � is a bijection (the sets of Nt
b|a(d,U) are mapped to distinct 

sets in Nt
a|b(d,U) ), we get |Nt

a|b(d,U)| ≥ |Nt
b|a(d,U)| , as desired.   ◻

The opposite is not true as the next example illustrates.
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Example 2 Let A = {a, b, c} and consider the distance metric with d(X, Y) = 0 for 
every pair of sets with X = Y  , d(X, Y) = 1 if Y = A⧵X , and d(X, Y) = 2 , otherwise. 
It can be easily seen that the distance is majority-concentric; it suffices to observe that, 
within distance 1 from any set, each alternative appears in exactly one set. To see that 
is not natural, consider U = {a, b} , V = {a, c} and S = {b} . We have |U ∩ S| > |V ∩ S| but 
d(U, S) = 2 > 1 = d(V , S) .   ◻

The next lemma provides a sufficient condition so that an ABCC rule is monotone 
robust against a natural distance metric. It will play a crucial role later in proving our 
characterizations.

Lemma 6 An ABCC rule f is d-monotone robust against a natural distance metric d if for 
every two different committees U and V there exists a (U, V)-bijection � on sets of alterna-
tives and a set S ⊆ A with sc f (U, S) > sc f (V , S) and d(U, S) < d(U,𝜇(S)).

Proof Let U and V be two different sets with k alternatives each. Let S+ , S− , and S0 
be the classes of sets of alternatives S with |U ∩ S| > |V ∩ S| , |U ∩ S| < |V ∩ S| , and 
|U ∩ S| = |V ∩ S| , respectively. Also, let M be a d-monotonic noise model for the natural 
distance metric d. Using this notation, we have

We will now transform the third sum in the RHS of (5) to one running over the sets of S+ 
like the first sum.

Let � be a (U, V)-bijection on sets of alternatives; by Lemma 4, � maps every set of S− 
to a set of S+ and vice-versa. Hence, instead of enumerating sets of S− , we could enumerate 
sets of S+ and apply the bijection � on them. The third sum in the RHS of (5) then becomes

The second equality follows since, by Lemma  4, sc f (U,�(S)) = f (|U ∩ �(S)|, |�(S)|)
= sc f (|V ∩ S|, |S|) = sc f (V , S) and, similarly, sc f (V ,�(S)) = sc f (U, S).

Now observe that sc f (U, S) = sc f (V , S) when S ∈ S0 . Hence, the second sum in the 
RHS of (5) is equal to 0. By combining (5) and (6), we get

(5)

�S∼M(U)[ sc f (U, S) − sc f (V , S)] =
∑

S⊆A

(
sc f (U, S) − sc f (V , S)

)
⋅ PrM[S|U]

=
∑

S∈S+

(
sc f (U, S) − sc f (V , S)

)
⋅ PrM[S|U]

+
∑

S∈S0

(
sc f (U, S) − sc f (V , S)

)
⋅ PrM[S|U]

+
∑

S∈S−

(
sc f (U, S) − sc f (V , S)

)
⋅ PrM[S|U]

(6)

∑

S∈S−

(
sc f (U, S) − sc f (V , S)

)
⋅ PrM[S|U] =

∑

S∈S+

(
sc f (U,�(S)) − sc f (V ,�(S))

)
⋅ PrM[�(S)|U]

=
∑

S∈S+

(
sc f (V , S) − sc f (U, S)

)
⋅ PrM[�(S)|U]

(7)

�S∼M(U)[ sc f (U, S) − sc f (V , S)] =
∑

S∈S+

(
sc f (U, S) − sc f (V , S)

)
⋅ (PrM[S|U] − PrM[�(S)|U]).
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Finally, observe that the RHS of (7) is always non-negative. This is due to the fact that 
S ∈ S+ which implies that sc f (U, S) = f (|U ∩ S|, |S|) ≥ f (|V ∩ S|, |S|) = sc f (V , S) 
since f is non-decreasing in its first argument and d(U, S) ≤ d(U,�(S)) (and, con-
sequently, PrM[S|U] ≥ PrM[�(S)|U] ) since d is natural and, by Lemma  4, 
|U ∩ S| > |V ∩ S| = |U ∩ 𝜇(S)| . The RHS of (7) is strictly positive if there 
exists a set S ∈ S+ that further satisfies d(U, S) < d(U,𝜇(S)) (and, consequently, 
PrM[S|U] > PrM[𝜇(S)|U] ) and sc f (U, S) > sc f (V , S) . The lemma then follows by 
Lemma 3a.   ◻

We now present two applications of Lemma 6.

Theorem 3 An ABCC rule f is monotone robust against any natural distance metric if 
and only if f (k, k) > f (k − 1, k).

Proof For the proof of the “if” part, we use Lemma 6. Let d be a natural distance metric. 
Consider any pair of different k-sized sets of alternatives U and V and any (U, V)-bijection � . 
For S = U , we have �(S) = V  and, hence, d(U,U) < d(U,V) = d(U,𝜇(S)) . Furthermore, by 
the definition of f, we have sc f (U,U) = f (k, k) > f (k − 1, k) ≥ f (|U ∩ V|, |V|) = sc f (U,V) . 
Hence, the conditions of Lemma 6 are satisfied, and f is d-monotone robust.

For the proof of the “only if” part, assume that f (k, k) = f (k − 1, k) and consider the nat-
ural distance metric d with d(X, Y) = 0 if X = Y  and d(X, Y) = 1 otherwise. Let U,V ⊆ A 
be different sets with k alternatives each such that |U ∩ V| = k − 1 . Let U⧵V = {a} and 
V⧵U = {b}.

Unfortunately, as we will see, we are in the case �S∼M(U)[ sc f (U, S) − sc f (V , S)] = 0 
and, hence, we cannot use Lemma  3 to complete the proof. We will instead 
prove that sc f (U, S) − sc f (V , S) follows a symmetric distribution (i.e., 
Pr S∼M(U)[ sc f (U, S) − sc f (V , S) = t] = Pr S∼M(U)[ sc f (U, S) − sc f (V , S) = −t] for every 
t > 0 ). Then, the random variable sc f (U,�) − sc f (V ,�) , where � is a random profile 
of approval votes drawn from the noisy model M with ground truth U will be symmetric 
with expectation zero as well. Hence, the probability that sc f (U,�) − sc f (V ,�) is strictly 
positive (which is a necessary condition so that U is the unique winner) is at most 1/2, and, 
hence, f is not accurate in the limit for M.

First observe that sc f (U, S) − sc f (V , S) = 0 when S is equal to U 
or V, or contains both alternatives a and b, or contains neither a nor b. 
Indeed, we have sc f (U,U) − sc f (V ,U) = f (k, k) − f (k − 1, k) = 0 and 
sc f (U,V) − sc f (V ,V) = f (k − 1, k) − f (k, k) = 0 , by our assumption. Furthermore, 
if S contains both a and b or none of them, we have that |U ∩ S| = |V ∩ S| and, hence, 
sc f (U, S) = sc f (V , S).

Denote by S the collection of the remaining sets of alternatives, i.e.,

and partition S into the subcollections Sa|b and Sb|a consisting of sets that include alterna-
tive a (but not alternative b) and alternative b (but not alternative a, respectively). Now, 
consider the (unique) (U, V)-bijection � and observe that for every set S in Sa|b , �(S) is a 
distinct set of Sb|a and vice-versa. Furthermore, notice that, by Lemma 4, we have

S = {S ∶ S ≠ U,V and |S ∩ {a, b}| = 1},
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The proof completes by observing that, by the definition of the distance metric d, the 
noise model M with ground truth U returns each set of S (and, consequently, S and �(S) ) 
equiprobably.   ◻

Notice that most popular ABCC rules from Sect. 2 satisfy the condition of Theorem 3. 
CC is an exception. The proof of Theorem 3 implies that CC is not monotone robust for the 
natural distance metric d defined as d(X, Y) = 0 if X = Y  and d(X, Y) = 1 , otherwise.

Our second application of Lemma 6 involves all non-trivial ABCC rules and an impor-
tant subclass of natural distances.

Definition 9 (similarity distance) A natural distance metric d is a similarity dis-
tance metric if for every three sets of alternatives U, V, and S with |U| = |V| such that 
|U ∩ S| > |V ∩ S| , it holds that d(U, S) < d(V , S).

We remark that the only difference between the definitions of natural and similarity dis-
tance metrics is in the inequality on distances which becomes strict for similarity distance 
metrics. Interestingly, this minor difference leads to a notable difference in our characteri-
zations in Theorems 3 and 4 .

Theorem  4 Any non-trivial ABCC rule is monotone robust against any similarity dis-
tance metric.

Proof We apply Lemma  6 assuming a non-trivial ABCC rule f and a similarity dis-
tance metric d. Non-triviality of f implies that for every two different sets U and V 
with k alternatives each, there is a set S such that sc f (U, S) > sc f (V , S) . This yields 
|U ∩ S| > |V ∩ S| = |U ∩ 𝜇(S)| , where � is any (U,  V)-bijection (see Lemma  4), and 
implies that d(U, S) < d(U,𝜇(S)) since d is a similarity distance.   ◻

We can easily show that the four distance metrics that we defined in Sect. 2 (namely, the 
set difference, Jaccard, Zelinka, and Bunke-Shearer distances) are all similarity distance 
metrics. Using this observation and Theorem 4, we obtain the next statement.

Corollary 1 Any non-trivial ABCC rule is monotone robust against the set difference, 
Jaccard, Zelinka, and Bunke-Shearer distance metrics.

6  Discussion and open problems

We believe that our approach complements nicely the axiomatic and quantitative analysis 
of approval-based multiwinner voting. Our results define a hierarchy of the ABCC rules 
in terms of robustness, depending on the breadth of the class of distance metrics against 
which a rule is monotone robust. MC is at the top of this hierarchy and the trivial ABCC 
rule is at the bottom, with the rest of the ABCC rules lying in between. An important 

sc f (U, S) − sc f (V , S) = f (|U ∩ S|, |S|) − f (|V ∩ S|, |S|)
= f (|V ∩ �(S)|, |�(S)|) − f (|U ∩ �(S)|, |�(S)|)
= −( sc f (U,�(S)) − sc f (V ,�(S))).
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problem that we leave open is whether there are ABCC rules that lie between rules MC and 
AV in terms of robustness.

This question is related to a subtle issue that involves alternative-independent distance 
metrics. In Sect. 3, we showed that the ABCC rule MC is the only one that is monotone 
robust against any distance metric. In the second part of the proof of Theorem  1, we 
proved that for every ABCC rule f different than MC, there exists an alternative-dependent 
distance metric d and a d-monotonic noise model, against which f is not accurate in the 
limit. Would that part of the proof work using an alternative-independent distance metric 
instead? Or is alternative-dependence really necessary?

In the following we show that this is indeed the case by presenting an ABCC rule, 
which is different than MC, and is monotone robust against any alternative-independent 
distance metric. Consider the case with m = 4 , A = {a, b, c, d} , and k = 2 , and the ABCC 
rule fAV2 defined as follows: for (x, y) ∈ X4,2 , it is fAV2(x, y) = x if y = 2 and fAV2(x, y) = 0 
otherwise.

Theorem 5 The ABCC rule fAV2 is monotone robust against any alternative-independent 
distance metric.

Proof Let A = {a, b, c, d} . We consider an alternative-independent distance met-
ric d and the ground truth U = {a, b} . For a set of alternatives S ⊆ A , the dis-
tance d(U,  S) can be thought of as a function that depends only on |U ∩ S| and |S|. 
The d-monotonic noise model M produces the approval set S with probability 
PrM[S|U] = p(|U ∩ S|, |S|) when the ground truth U is used. The different probability 
values that the noise model uses correspond to those pairs (x,  y) that belong to the set 
X4,2 = {(0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2), (1, 3), (2, 3), (2, 4)}.

We will show that fAV2 is accurate in the limit for M . By Lemma  3 and due 
to the symmetry implied by alternative-independence, we need to show that 
�S∼M(U)[ sc AV2(U, S) − sc AV2(V , S)] > 0 for V = {a, c} and V = {c, d}.

For V = {a, c} , we have

In the second equality, we have used the fact that the contribution of all sets S of size dif-
ferent than 2 as well as of the sets {a, d} , {b, c} to the sum is zero. In addition, the contribu-
tion of the sets {a, b} , {a, c} , {b, d} , and {c, d} is p(2, 2), −p(1, 2) , p(1, 2), and −p(1, 2) . The 
inequality follows since p(2, 2) is the probability with which M returns the ground truth.

For V = {c, d} , we have

The contribution to the sum of all sets besides {a, b} and {c, d} is zero. The contribution of 
the sets {a, b} and {c, d} is 2 ⋅ p(2, 2) and −2 ⋅ p(0, 2) respectively. Again, the inequality fol-
lows since p(2, 2) is the probability with which M returns the ground truth.   ◻

�S∼M(U)[ sc AV2(U, S) − sc AV2(V , S)

=
∑

S⊂A

fAV2(|{a, b} ∩ S|, |S|) − fAV2(|{a, c} ∩ S|, |S|) ⋅ p(|{a, b} ∩ S|, |S|)

= p(2, 2) − p(1, 2) > 0.

�S∼M(U)[ sc AV2(U, S) − sc AV2(V , S)]

=
∑

S⊂A

fAV2(|{a, b} ∩ S|, |S|) − fAV2(|{c, d} ∩ S|, |S|) ⋅ p(|{a, b} ∩ S|, |S|)

= 2 ⋅ p(2, 2) − 2 ⋅ p(0, 2) > 0.
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Clearly, if we restrict our attention to alternative-independent distance metrics, the rule 
fAV2 is, in addition to MC, another ABCC rule that is strictly more robust than AV. We can 
furthermore show that there are rules with intermediate robustness. For example, in the 
same setting with m = 4 and k = 2 , one such rule fAV+ is defined as fAV+(x, y) = fAV (x, y) 
if y ≠ 2 and fAV+(x, 2) = 2fAV (x, 2) . It can be shown (the proof is omitted) to be strictly 
more robust than AV and strictly less robust than MC (and fAV2 ). It would be interesting 
to obtain general results (for general values of the parameters m and k) and characterize all 
ABCC rules that lie between MC and AV in terms of robustness in alternative-independent 
distance metrics only. Furthermore, applying our framework to non-ABCC rules deserves 
investigation.

Beyond assessing the effects of noise in the limit, studying the sample complexity of 
approval-based multiwinner voting is important. This will require the design of concrete 
noise models like the Mp model that we presented in Sect. 2. To make this problem con-
crete, consider the following question regarding AV and the noise model Mp . Given 𝜀 > 0 , 
determine an integer n� so that, when applied on a profile with at least n� votes generated 
by the noise model Mp with ground truth committee U, AV returns U as the unique winner 
with probability at least 1 − � . By slightly modifying our argument in the proof of 
Lemma 3, we can show that the sample complexity bound n� is at most O

(
k lnm + ln

1

�

)
 . Is 

this bound tight? What about the sample complexity of other ABCC rules for this noise 
model? And, more importantly, what about other noise models?

In particular, models that simulate user behaviour in crowdsourcing platforms will be 
useful for evaluating approval-based voting in such environments. Even though the Mp 
model is very simple, we expect that implementation issues will emerge for more elaborate 
noise models. For example, consider a noise model MZ

p
 that uses a parameter p ∈ (1∕2, 1] 

like the noise model Mp , but generates the approval vote S with probability proportional to 
(

1−p

p

)dZ (U,S)

 instead of 
(

1−p

p

)d�(U,S)

 when it uses the ground truth committee U. Can this 
random selection be implemented in polynomial time? Similar issues in the implementa-
tion of the Mallows ranking model [23] have triggered much non-trivial work; see, e.g., 
Doignon et al. [13].

Appendix

Theorem 6 The ABCC rule AV is a maximum likelihood estimator for the noise model Mp.

Proof Let � = (Si)i∈[n] be a profile with n approval votes. We need to show that the profile 
� has maximum probability to have been produced by the noise model Mp with a set of 
k alternatives of maximum AV score from the votes of � as the ground truth committee.

Indeed, the probability that � has been produced by the noise model Mp with ground 
truth committee U is

Since p > 1∕2 , the above expression is maximized by minimizing the quantity ∑
i∈[n] d�(Si,U) . Now, we can express this quantity in terms of the number of agents n, the 

�

i∈[n]

PrMp
[Si�U] =

�

i∈[n]

pm ⋅

�
1 − p

p

�d�(Si,U)

= pmn ⋅

�
1 − p

p

�∑
i∈[n] d�(Si,U)

.
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committtee size k, the total size of approval votes in profile � , and the AV score of com-
mittee U from the votes of � , using the following derivation:

Hence, the probability that the profile � is generated by a noise model Mp is maximized 
for the ground truth committee U of maximum score sc AV (U,�) .   ◻
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