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Abstract

The voting rules proposed by Dodgson and Young are both designed to find an alternative closest
to being a Condorcet winner, according to two different notions of proximity; the score of a given
alternative is known to be hard to compute under either rule. In this paper, we put forward two
algorithms for approximating the Dodgson score: a combinatorial, greedy algorithm and an LP-based
algorithm, both of which yield an approximation ratio of Hm−1, where m is the number of alternatives
and Hm−1 is the (m − 1)st harmonic number. We also prove that our algorithms are optimal within a
factor of 2, unless problems in NP have quasi-polynomial time algorithms. Despite the intuitive appeal
of the greedy algorithm, we argue that the LP-based algorithm has an advantage from a social choice
point of view. Further, we demonstrate that computing any reasonable approximation of the ranking
produced by Dodgson’s rule is NP-hard. This result provides a complexity-theoretic explanation of
sharp discrepancies that have been observed in the social choice theory literature when comparing
Dodgson elections with simpler voting rules. Finally, we show that the problem of calculating the Young
score is NP-hard to approximate by any factor. This leads to an inapproximability result for the Young
ranking.
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1 Introduction

The discipline of voting theory deals with the following setting: there is a group of n agents and each of
them ranks a set of m alternatives; one alternative is to be elected. The big question is: which alternative
best reflects the social good?

This question is fundamental to the study of multiagent systems, because the agents of such a system
often need to combine their individual objectives into a single output or decision that best reflects the ag-
gregate needs of all the agents in the system. For instance, web meta-search engines [13] and recommender
systems [23] have used methods based on voting theory.

Reflecting on this question, the French philosopher and mathematician Marie Jean Antoine Nicolas
de Caritat, marquis de Condorcet, suggested the following intuitive criterion: the winner should be an
alternative that beats every other alternative in a pairwise election, i.e., an alternative that a (strict) majority
of the agents prefers over any other alternative. Sadly, it is fairly easy to see that the preferences of the
majority may be cyclic, hence a Condorcet winner does not necessarily exist. This unfortunate phenomenon
is known as the Condorcet paradox (see Black [5]).

In order to circumvent this result, several researchers have proposed choosing an alternative that is “as
close as possible” to a Condorcet winner. Different notions of proximity can be considered, and yield
different voting rules. One such suggestion was advocated by Charles Dodgson, better known by his pen
name Lewis Carroll, author of “Alice’s Adventures in Wonderland.” The Dodgson score [5] of an alternative,
with respect to a given set of agents’ preferences, is the minimum number of exchanges between adjacent
alternatives in the agents’ rankings one has to introduce in order to make the given alternative a Condorcet
winner. A Dodgson winner is any alternative with a minimum Dodgson score.

Young [49] raised a second option: measuring the distance by agents. Specifically, the Young score of
an alternative is the size of the largest subset of agents such that, if only these ballots are taken into account,
the given alternative becomes a Condorcet winner. A Young winner is any alternative with the maximum
Young score. Alternatively, one can perceive a Young winner as the alternative that becomes a Condorcet
winner by removing the fewest agents.

Though these two voting rules sound appealing and straightforward, they have been criticized because
they fail to meet several well-studied classical fairness criteria [20, 6]. However, impossibility results tell us
that every voting rule likewise fails to satisfy some such criterion. Thus, there is no hope of finding a voting
rule that is perfect for all situations. Instead, social choice theory has advanced our understanding of an
ever-increasing body of voting rules, each of which has unique features, virtues, and vices. Practitioners can
choose from this body whichever rules best apply to their particular situations. Dodgson and Young voting
are two such rules, as are the two approximation algorithms introduced later in this article.

A less ambigous drawback of Dodgson and Young voting is that they are notoriously complicated to
resolve. As early as 1989, Bartholdi, Tovey and Trick [2] showed that the Dodgson score decision problem
is NP-complete, and that pinpointing a Dodgson winner is NP-hard. This important paper was one of
the first to introduce complexity-theoretic considerations to social choice theory. Hemaspaandra et al. [25]
refined the aforementioned result by showing that the Dodgson winner decision problem is complete for Θp

2,
the class of problems that can be solved by O(log n) queries to an NP set. Subsequently, Rothe et al. [43]
proved that the Young winner problem is also complete for Θp

2.
These complexity-theoretic results give rise to the agenda of approximately calculating an alternative’s

score, under the Dodgson and Young schemes. This is clearly an interesting computational problem, as an
application area of algorithmic techniques.

However, from the point of view of social choice theory, it is not immediately apparent that an
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approximation of a voting rule is satisfactory, since an “incorrect” alternative—in our case, one that is not
closest to a Condorcet winner—might be elected. The key insight is that an approximation of a voting rule
is a voting rule in its own right, and in some cases one can argue that this new voting rule has desirable
properties. We discuss this point at length, and justify our approach, in Section 7.

Our results. In the context of approximating the Dodgson score, we devise a greedy algorithm for the
Dodgson score which has an approximation ratio of Hm−1, where m is the number of alternatives and
Hm−1 is the (m − 1)st harmonic number. We then propose a second algorithm that is based on solving a
linear programming relaxation of the Dodgson score and has the same approximation ratio. Although the
former algorithm gives us a better intuition into the combinatorial structure of the problem, we show that the
latter has the advantage of being score monotonic, which is a desirable property from a social choice point
of view. We further observe that it follows from the work of McCabe-Dansted [32] that the Dodgson score
cannot be approximated within sublogarithmic factors by polynomial-time algorithms unless P = NP . We
prove a more explicit inapproximability result of (1/2− ε) lnm, under the assumption that problems inNP
do not have algorithms running in quasi-polynomial time; this implies that the approximation ratio achieved
by our algorithms is optimal up to a factor of 2.

A number of recent papers [40, 41, 29, 30, 31] have established that there are sharp discrepancies be-
tween the Dodgson ranking and the rankings produced by other rank aggregation rules. Some of these rules
(e.g., Borda and Copeland) are polynomial-time computable, so the corresponding results can be viewed as
negative results regarding the approximability of the Dodgson ranking by polynomial-time algorithms. We
show that the problem of distinguishing between whether a given alternative is the unique Dodgson winner
or in the last O(

√
m) positions in any Dodgson ranking is NP-hard. This theorem provides a complexity-

theoretic explanation for some of the observed discrepancies, but in fact is much wider in scope as it applies
to any efficiently computable rank aggregation rule.

At first glance, the problem of calculating the Young score seems simple compared with the Dodgson
score (we discuss in Section 6 why this seems so). Therefore, we found the following result quite surprising:
it is NP-hard to approximate the Young score within any factor. Specifically, we show that it is NP-hard
to distinguish between the case where the Young score of a given alternative is 0, and the case where the
score is greater than 0. As a corollary we obtain an inapproximability result for the Young ranking. We also
show that it is NP-hard to approximate the dual Young score within O(n1−ε), for any constant ε > 0. We
define the dual Young score below in the preliminaries section.

Related work. The agenda of approximating voting rules was recently pursued by Ailon et al. [1], Cop-
persmith et al. [11], and Kenyon-Mathieu and Schudy [28]. These papers deal, directly or indirectly, with
the Kemeny rank aggregation rule, which chooses a ranking of the alternatives instead of a single win-
ning alternative. The Kemeny rule picks the ranking that has the maximum number of agreements with
the agents’ individual rankings regarding the correct order of pairs of alternatives. Ailon et al. improve the
trivial 2-approximation algorithm to an involved, randomized algorithm that gives an 11/7-approximation;
Kenyon-Mathieu and Schudy further improve the approximation, and obtain a polynomial-time approxima-
tion scheme (PTAS).

Two recent papers study the approximability of Dodgson elections; both papers appeared after the con-
ference version of the current paper. Faliszewski, Hemaspaandra, and Hemaspaandra show that minimax as
a scoring rule is an m2 approximation of the Dodgson score [18]. Caragiannis et al. [7] give a number of
algorithms that approximate to Dodgson score and also have nice fairness properties, such as homogeneity
and monotoniticy, but whose approximations are either asymptotically worse than ours or not polynomial
time computable. Moreover, their approximation algorithms are much more complex, both descriptionally
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and in running time. They also provide upper bounds such that any score-based voting rule whose scoring
rule approximates Dodgson scoring to within the bounds fails to meet certain fairness criteria. In Section 4
we discuss further the latter results.

Two recent papers have directly put forward algorithms for the Dodgson winner problem [26, 34]. Both
papers independently build upon the same basic idea: if the number of agents is significantly larger than
the number of alternatives, and one looks at a uniform distribution over the preferences of the agents, with
high probability one obtains an instance on which it is trivial to compute the Dodgson score of a given
alternative. This directly gives rise to an algorithm that can usually compute the Dodgson score (under the
assumption on the number of agents and alternatives). However, this is not an approximation algorithm
in the usual sense, since the algorithm a priori gives up on certain instances,1 whereas an approximation
algorithm is judged by its worst-case guarantees. In addition, this algorithm would be useless if the number
of alternatives is not small compared with the number of agents.2

In a similar vein, McCabe-Dansted [33] suggested several new variations on Dodgson’s rule. These rules
are shown to give an additive approximation to the Dodgson score. Specifically, they can underestimate the
score by an additive term of at most (m− 1)!(m− 1)e, where m is the number of alternatives. We note that
this result would only be meaningful if there are very few alternatives, and in addition it does not provide
the tight worst-case multiplicative guarantees that we achieve in this paper. McCabe-Dansted further shows
that, similarly to the rules discussed above, the new rules usually select the Dodgson winner under certain
distributions.

Betzler et al. [4] have investigated the parameterized computational complexity of the Dodgson and
Young rules. The authors have devised a fixed parameter algorithm for exact computation of the Dodgson
score, where the fixed parameter is the “edit distance,” i.e., the number of exchanges. Specifically, if k is an
upper bound on the Dodgson score of a given alternative, n is the number of agents, and m the number of
alternatives, the algorithm runs in timeO(2k ·nk+nm). Notice that in general it may hold that k = Ω(nm).
In contrast, the Young score decision problem is W [2]-complete; this implies that there is no algorithm that
computes the Young score exactly, and whose running time is polynomial in nm and only exponential in k,
where the parameter k is the number of remaining votes. These results complement ours nicely, as we shall
also demonstrate that computing the Dodgson score is in a sense easier than computing the Young score,
albeit in the context of approximation.

Putting computational complexity aside, some research by social choice theorists has considered com-
paring the ranking produced by Dodgson, i.e., the ordering of the alternatives by nondecreasing Dodgson
score, with elections based on simpler voting rules. Such comparisons have always revealed sharp discrep-
ancies. For example, the Dodgson winner can appear in any position in the Kemeny ranking [40] and in
the ranking of any positional scoring rule [41] (e.g., Borda or Plurality), Dodgson rankings can be exactly
the opposite of Borda [31] and Copeland rankings [29], while the winner of Kemeny or Slater elections can
appear in any position of the Dodgson ranking [30].

More distantly related to our work is research that is concerned with exactly resolving hard-to-compute
voting rules by heuristic methods. Typical examples include papers regarding the Kemeny rule [10] and
the Slater rule [8]. Another more remotely related field of research is concerned with finding approximate,

1Technically speaking, this algorithm correctly computes the Dodgson score in worst-case polynomial time, but only when the
domain is restricted to those instances on which the algorithm does not give up, and there does not seem to be a characterization
of this domain restriction that does not refer in a fairly direct way back to the algorithm itself. Thus, in many natural settings one
cannot before an election is held guarantee that the algorithm will work.

2This would normally not happen in political elections, but can certainly be the case in many other settings. For instance,
consider a group of agents trying to reach an agreement on a joint plan, when multiple alternative plans are available. Specifically,
think of a group of investors deciding which company to invest in.
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efficient representations of voting rules, by eliciting as little information as possible; this line of research
employs techniques from learning theory [38].

Structure of the paper. In Section 2, we introduce some notations and definitions. In Section 3, we
present our upper bounds for approximating the Dodgson score. We study the monotonicity properties of
our algorithms in Section 4. In Section 5, we present our lower bounds for approximating the Dodgson
score and ranking. In Section 6, we prove that the Young score, dual Young score, and Young ranking are
inapproximable. Finally, we discuss our approach in Section 7.

2 Preliminaries

Let N = {1, . . . , n} be a set of agents, and let A be a set of alternatives. We denote |A| by m, and denote
the alternatives themselves by letters, such as a ∈ A. Indices referring to agents appear in superscript.
Each agent i ∈ N holds a binary relation Ri over A that satisfies antisymmetry, transitivity and totality.
Informally, Ri is a ranking of the alternatives. Let L = L(A) be the set of all rankings over A; we have that
each Ri ∈ L. We denote RN = 〈R1, . . . , Rn〉 ∈ LN , and refer to this vector as a preference profile. We
may also use Qi to denote the preferences of agent i, in cases where we want to distinguish between two
different rankings Ri and Qi. For sets of alternatives B1, B2 ⊆ A, we write B1R

iB2 if for all a ∈ B1 and
b ∈ B2, aRib. If B1 = {a} (respectively, B2 = {a}) for some a, we sometimes write aRiB2 (respectively,
B1R

ia) instead of {a}RiB2 (respectively, B1R
i{a}).

Let a, b ∈ A. Denote P (a, b) = {i ∈ N : aRib}. We say that a beats b in a pairwise election if
|P (a, b)| > n/2, that is, a is preferred to b by a majority of agents. A Condorcet winner is an alternative
that beats every other alternative in a pairwise election.

The Dodgson score of a given alternative a∗, with respect to a given preference profile RN , is the least
number of exchanges between adjacent alternatives in RN needed to make a∗ a Condorcet winner. For
instance, let N = {1, 2, 3}, A = {a, b, c}, and let RN be given by:

R1 R2 R3

a b a
b a c
c c b

where the top alternative in each column is the most preferred one.
In this example, the Dodgson score of a is 0 (a is a Condorcet winner), the Dodgson score of b is 1, and

the Dodgson score of c is 3. Bartholdi et al. [2] have shown that the Dodgson score decision problem—the
problem of determining, for a given preference profile RN , alternative a, and natural number k, whether the
Dodgson score of a in RN is at most k—is NP-complete.

The Young score of a∗ with respect to RN is the size of a largest subset of agents for whom a∗ is a
Condorcet winner. This is the definition given by Young himself [49], and used in subsequent articles [43].
If, for every nonempty subset of agents, a∗ is not a Condorcet winner, its Young score is 0. In the above
example, the Young score of a is 3, the Young score of b is 1, and the Young score of c is 0.

Equivalently, a Young winner is an alternative such that one has to remove the minimum number of
agents in order to make it a Condorcet winner. We call this number the dual Young score. Note that, in
the context of approximation, these two definitions are not equivalent; we employ the former (original,
prevalent) definition, but touch on the latter as well.
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As the decision problem version of the Young winner problem (the decision problem is to determine,
given a preference profile and an alternative a, whether a is the Young winner in that profile) is known to
be ΘP

2 -complete [43], and thusNP-hard, the Young score problem must also be hard; otherwise, we would
be able to calculate the scores of all the alternatives efficiently, and identify the alternatives with minimum
score.

Linear and integer programs are fundamental tools for solving optimization problems. See Cormen et
al. [12] for a nice introduction to the subject from a computer science perspective, which we summerize
here. A linear program in its canonical form consists of, for some p, q ∈ N, a p× q matrix M , a p-vector A
and a q-vector B, and seeks to find a q-vector that maximizes BX (called the objective function) subject to
the constraints MX ≤ A, where any X satifisying the constraints (though which may not necessarily be a
maximum) is called feasible. An integer linear program is a linear program with the additional restriction
that X may only take integral values. As is commonly done, we will often write the linear programs we use
as seeking to minimize rather than maximize the objective function, and express some of the constraints as
lower rather than upper bounds. Through simple algebraic manipulation, these expressions can always be
translated into equivalent ones that are in the canonical form defined above.

For a linear program in the form given above, its dual is the the linear program defined as the problem
of finding a p-vector Y ≥ 0 that minimizes AY subject to the constraints MTY ≥ B (where MT is the
transpose of M ). It is easy to see that BX of any feasible solution X to the original problem (known as
the primal linear program) is a lower bound on AY of any feasible solution Y to its dual (or vice versa if
the primal is expressed as a minimization problem), so X and Y are optimal solutions to their respective
problems wheneverAY = BX . The converse is also true, though not as easy to see, and plays a fundamental
role in the analysis of algorithms for solving linear programs. We will use this fact in the paper.

Linear programs are widely used by engineers and computer scientists to solve a wide range of problems.
They can be solved in polynomial time, though the degrees of these polynomials are so high that in practice
worst-case superpolynomial time algorithms are used instead.

3 Approximability of Dodgson Scores

We begin by presenting our approximation algorithms for the Dodgson score. Let us first introduce some
notation.

Let a∗ ∈ A be a distinguished alternative, whose Dodgson score we wish to compute. Define the deficit
of a∗ with respect to a ∈ A, simply denoted def(a) when the identity of a∗ is clear, as the number of
additional agents i whose ranking relation Ri must be changed from to aRia∗ to a∗Ria in order for a∗ to
beat a in a pairwise election. Equivalently,

def(a) = max{0, 1 + bn/2c − P (a∗, a)} .

For instance, if four agents prefer a to a∗ and only one agent prefers a∗ to a, then def(a) = 2. If a∗ beats
a in a pairwise election (namely a∗ is preferred to a by a majority of agents) then def(a) = 0. We say that
alternatives a ∈ A with def(a) > 0 are alive. Alternatives that are not alive, i.e., those with def(a) = 0, are
dead.

3.1 A Greedy Algorithm

In this section we present a combinatorial, greedy algorithm for approximating the Dodgson score of a
given alternative. Consider, once again, a special alternative a∗, and recall that a live alternative is one with
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a positive deficit. In each step, the algorithm selects an optimally cost-effective push of alternative a∗ in the
preference of some agent. The cost-effectiveness of pushing a∗ in the preference of an agent i ∈ N is the
ratio between the total number of positions a∗ is moved upwards in the preference of i compared with the
original profile RN , and the number of currently live alternatives that a∗ overtakes as a result of this push.

After selecting an optimally cost-effective push, i.e., the push with the lowest cost-effectiveness, the
algorithm decreases def(a) by one for each live alternative a that a∗ overtakes. Alternatives a ∈ A with
def(a) = 0 become dead. The algorithm terminates when no live alternatives remain. The output of the al-
gorithm is the total number of positions that alternative a∗ is pushed upwards in the preferences of all agents.

Greedy Algorithm:

1. Let A′ be the set of live alternatives, namely those alternatives a ∈ A with def(a) > 0.

2. While A′ 6= ∅:

• Perform an optimally cost-effective push, namely push a∗ in the preferences of agent i ∈ N in
a way that minimizes the ratio between the total number of positions that a∗ moves upwards in
the preferences of i and the number of currently live alternatives that a∗ overtakes as a result of
this push.

• Recalculate A′.

3. Return the number of exchanges performed.

An example of the execution of the algorithm is depicted in Figure 1 (see also Figure 2 and the related
discussion in Section 4). In the initial profile of this example, alternative a∗ has deficits def(b) = 2, def(c) =
1, and def(di) = 0. Hence, alternatives b and c are alive and alternatives d1, ..., d8 are dead. At the first
step of the algorithm, there are several different ways of pushing alternative a∗ upwards in order to overtake
one of the live alternatives b and c or both. Among them, the one with the smallest cost-effectiveness is to
push a∗ upwards in the preference R1. In this way, a∗ moves two positions upwards and overtakes the live
alternative c for a cost-effectiveness of 2. Any other push of a∗ in the initial profile has cost-effectiveness at
least 2.5 since a∗ has to be pushed at least three positions upwards in order to overtake one live alternative
and at least five positions upwards in order to overtake both b and c. After step 1, alternative c is dead. Then,
in step 2, there are three ways to push alternative a∗ upwards so that it overtakes the live alternative b: either
pushing it at the top of R1 (this has cost effectiveness 5 because a∗ would have moved five positions in total
compared to the initial profile in R1), or pushing it at the top of R2 (with cost-effectiveness 3), or pushing
it four positions upwards in R3 (with cost-effectiveness 4). The algorithm picks the second option. Then,
in step 3, the algorithm can either push alternative a∗ at the top position of R1 or push it four positions
upwards in R3. The former has a cost-effectiveness of 5 (recall that cost-effectiveness is defined using the
total number of positions a∗ would move compared to its position at the initial profile) while the latter has
a cost-effectiveness of 4 and is the push the algorithm picks. After step 3, all alternatives are dead and the
algorithm terminates by returning the total number of positions a∗ is pushed upwards, i.e., 9.

By the definition of the algorithm, it is clear that it produces a profile where a∗ is a Condorcet winner. It
is important to notice that if a∗ is initially a Condorcet winner then the algorithm calculates a score of zero,
so as a voting rule the algorithm satisfies the Condorcet criterion. Also, during each iteration of line 2 an
optimally cost-effective push may not be unique, in which case the algorithm chooses, in a manner that does
not affect our approximation results, exactly one of these optimally cost-effective pushes.
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R1 R2 R3

b b c
d1 d4 b
d2 d5 d6

c a∗ d7

d3 c d8

a∗ d1 a∗

d4 d2 d1

d5 d3 d2

d6 d6 d3

d7 d7 d4

d8 d8 d5
(a) Initial profile.

R1 R2 R3

b b c
d1 d4 b
d2 d5 d6

a∗ a∗ d7

c c d8

d3 d1 a∗

d4 d2 d1

d5 d3 d2

d6 d6 d3

d7 d7 d4

d8 d8 d5
(b) After step 1.

R1 R2 R3

b a∗ c
d1 b b
d2 d4 d6

a∗ d5 d7

c c d8

d3 d1 a∗

d4 d2 d1

d5 d3 d2

d6 d6 d3

d7 d7 d4

d8 d8 d5
(c) After step 2.

R1 R2 R3

b a∗ c
d1 b a∗

d2 d4 b
a∗ d5 d6

c c d7

d3 d1 d8

d4 d2 d1

d5 d3 d2

d6 d6 d3

d7 d7 d4

d8 d8 d5
(d) After step 3.

Figure 1: An example of the execution of the greedy algorithm.

Theorem 3.1. For any input a∗ and RN with m alternatives, the greedy algorithm returns an Hm−1-
approximation of the Dodgson score of a∗, where for all natural numbers k, Hk =

∑k
i=1

1
k is the k-th

harmonic number.

Proof. We base our proof on the connection between our problem and the CONSTRAINED SET MULTI-
COVER problem, for which Rajagopalan and Vazirani [39] give an approximation algorithm and use the
dual fitting technique to prove its approximation ratio (see also [46, pp. 112–116]).

CONSTRAINED SET MULTICOVER

Instance: A ground set A, a set of integers {ra}a∈A, one for each element of a ∈ A, representing the
covering requirement for a, an indexed collection S = {Sj | Sj ⊆ A} of subsets of A (crucially, the same
subset may occur more than once in this collection, as long as each copy has a distinct index), and a set of
integers {cSj}, one for each member of S, representing the cost of that member.
Question: What is the smallest number c̄ for which there is a subcollection C of S such that

1. c̄ =
∑

Sj∈C cSj ,

2. each member of S appears at most once in C, and

3. each element a ∈ A appears in at least ra members of C?

We may view the problem of approximating the Dodgson score as a variation of CONSTRAINED SET

MULTICOVER. The ground set is the set of live alternatives. For each live alternative a ∈ A \ {a∗}, its
deficit def(a) is in fact its covering requirement, i.e., the number of different sets it has to belong to in the
final cover. For each agent i ∈ N that ranks a∗ in place ri, we have a group Si consisting of the sets Sik for
k = 1, . . . , ri − 1, where the set Sik contains the (initially) live alternatives that appear in positions ri − k
to ri − 1 in the preference of agent i. The set Sik has cost k. Now, the covering problem to be solved is
the following. We wish to select at most one set from each of the different groups so that each alternative
a ∈ A \ {a∗} appears in at least def(a) sets and the total cost of the selected sets is minimized. The optimal
cost is the Dodgson score of a∗ and, hence, the cost of any approximate cover that satisfies the covering
requirements and the constraints is an upper bound on the Dodgson score.
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We can thus define this covering problem as:

SET MULTICOVER WITH GROUP CONSTRAINTS

Instance: A ground set A, a set of integers {ra}a∈A, one for each element of a ∈ A, a collection S =
{Sj | Sj ⊆ A} of subsets of A, a set of integers {cSj}, and a partitioning of S into groups Si for i ∈ N .
Question: What is the smallest number c̄ for which there is a subcollection C of S such that

1. c̄ =
∑

Sj∈C cSj ,

2. each member of S appears at most once in C,

3. each element a ∈ A appears in at least ra members of C, and

4. at most one member from each group Si appears in C?

In terms of this covering problem, the greedy algorithm mentioned above can be thought of as follows.
In each step, it selects an optimally cost-effective set where the cost-effectiveness of a set is defined as the
ratio between the cost of the set and the number of live alternatives it covers that have not been previously
covered by sets belonging to the same group. For these live alternatives, the algorithm decreases their
covering requirements at the end of the step. The algorithm terminates when all alternatives have died (i.e.,
their covering requirement has become zero). The output of the algorithm consists of the maximum-cost
sets that were picked from each group.

We find it convenient to formulate the Dodgson score problem as the following integer linear program.

minimize
∑
i∈N

ri−1∑
k=1

k · xSi
k

subject to ∀a ∈ A \ {a∗},
∑
i∈N

∑
S∈Si:a∈S

xS ≥ def(a)

∀i ∈ N,
∑
S∈Si

xS ≤ 1

x ∈ {0, 1} .

The variable xS associated with a set S denotes whether S is included in the solution (xS = 1) or not
(xS = 0). We relax the integrality constraint in order to obtain a linear programming relaxation and we
compute its dual linear program.

maximize
∑

a∈A\{a∗}

def(a) · ya −
∑
i∈N

zi

subject to ∀i ∈ N, k = 1, . . . , ri − 1,
∑
a∈Si

k

ya − zi ≤ k

∀i ∈ N, zi ≥ 0

∀a ∈ A \ {a∗}, ya ≥ 0 .

For a set S that is picked by the algorithm to cover alternative a ∈ A \ {a∗} for the j-th time (the
j-th copy of a), we set p(a, j) to be equal to the cost-effectiveness of S when it is picked. Informally, p
distributes equally the cost of S among the copies of the live alternatives it covers. When the algorithm
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covers a live alternative a by picking a set S that belongs to group Si, we use the notation ji(a) to denote
the index of the copy of a the algorithm covers by picking this set. Denote by T i the set of live alternatives
covered by the sets of group Si that are picked by the algorithm throughout its execution.

Now, we shall show that by setting

ya =
p(a, def(a))

Hm−1

for each alternative a ∈ A \ {a∗} and

zi =
1

Hm−1

∑
a∈T i

(p(a, def(a))− p(a, ji(a)))

for each agent i ∈ N , the constraints of the dual linear program are satisfied. The variables ya are
clearly non-negative. Since the algorithm picks a set of optimal cost-effectiveness at each step, the cost-
effectiveness of the set picked does not decrease with time. Hence, p(a, def(a)) ≥ p(a, j) for every alterna-
tive a with def(a) > 0 and j ≤ def(a). This implies that zi is non-negative as well.

In order to show that the first constraint of the dual linear program is also satisfied, consider an agent
i ∈ N and integer k such that 1 ≤ k ≤ ri − 1. We have

∑
a∈Si

k

ya − zi =
1

Hm−1

∑
a∈Si

k

p(a, def(a))−
∑
a∈T i

(p(a, def(a))− p(a, ji(a)))


≤ 1

Hm−1

∑
a∈Si

k

p(a, def(a))−
∑

a∈Si
k∩T i

(p(a, def(a))− p(a, ji(a)))


=

1

Hm−1

 ∑
a∈Si

k\T i

p(a, def(a)) +
∑

a∈Si
k∩T i

p(a, ji(a))

 . (1)

Now, for each alternative a ∈ Sik, we define ν(a) as follows. If a ∈ Sik∩T i, ν(a) is the time step in which
the algorithm covered alternative a by picking a set of group Si. Otherwise, if a ∈ Sik \ T i, ν(a) is the time
step in which alternative a died. Now, number the alternatives in Sik in non-decreasing order of ν(·), breaking
ties arbitrarily. Let a1, a2, ..., a|Si

k|
be this order. Consider alternative at with 1 ≤ t ≤ |Sik|. Observe

that, due to the definition of the order of alternatives in Sik, after step ν(at) is performed, the alternatives
at, at+1, ..., a|Si

k|
have not died yet and the sets of group Si that have been picked by the algorithm so far (if

any) do not contain any of them. Hence, at step ν(at), the algorithm has the option to pick set Sik of cost k
in order to cover at least these |Sik| − t+ 1 alternatives. So, the cost-effectiveness of the set that is actually
picked by the algorithm at step ν(at) is at most k

|Si
k|−t+1

. This argument implies that

p(at, ji(at)) ≤
k

|Sik| − t+ 1
(2)

if at ∈ Sik ∩ T i, and

p(at, def(at)) ≤
k

|Sik| − t+ 1
(3)

10



otherwise (if at ∈ Sik \ T i).
Using (2) and (3) together with (1), we obtain that

∑
a∈Si

k

ya − zi ≤
1

Hm−1

|Si
k|∑

t=1

k

|Sik| − t+ 1
=
kH|Si

k|

Hm−1
≤ k ,

implying that the constraints of the dual linear program are always satisfied. The last inequality follows
since, obviously, |Sik| ≤ m− 1.

Now, denote by OPT the optimal objective value of the integer linear program. By duality, we have
that any feasible solution to the dual of its linear programming relaxation has objective value at most OPT.
Hence,

Hm−1 · OPT ≥ Hm−1

 ∑
a∈A\{a∗}

def(a) · ya −
∑
i∈N

zi


=

∑
a∈A\{a∗}

def(a) · p(a, def(a))−
∑
i∈N

∑
a∈T i

(p(a, def(a))− p(a, ji(a)))

=
∑
i∈N

∑
a∈T i

p(a, ji(a)) .

The theorem follows since the last expression is equal to the total cost of the sets picked at all steps of the
algorithm and clearly upper-bounds the cost of the final solution.

3.2 An LP-based Algorithm

The analysis of the greedy algorithm suggests an LP-based algorithm for approximating the Dodgson score
of an alternative a∗ without explicitly providing a way to push a∗ upwards in the preference of some agents
so that a∗ becomes the Condorcet winner. This algorithm uses the same LP relaxation of the Dodgson score
that was used in the analysis of the greedy algorithm. The algorithm computes the optimal objective value,
and returns this value multiplied by Hm−1 as a score of the alternative a∗. The idea that the relaxation of
the ILP for the Dodgson score induces a rule that is similar to Dodgson is not new (see, e.g., [32]).

For completeness, we reformulate the LP in a more detailed form that takes the preference profile as a
parameter as well; this shall be useful in the following section, where we discuss the monotonicity properties
of the algorithm. Given a profileR = RN with a set of agentsN and a set ofm alternativesA, we denote by
ri(R) the rank of alternative a∗ in the preference of agent i. We use the notation def(a,R) for the deficit of
a∗ against an alternative a in the profile R. Recall that alternatives a ∈ A\{a∗} such that def(a,R) > 0 are
said to be alive. For every agent i ∈ N that ranks a∗ in place ri(R), we denote by Si(R) the subcollection
that consists of the sets Sik(R) for k = 1, ..., ri(R) − 1, where the set Sik(R) contains the live alternatives
that appear in positions ri(R)− k to ri(R)− 1 in the preference of agent i. We denote by S(R) the union
of the subcollections Si(R) for i ∈ N .

The LP-based algorithm uses the following LP relaxation of the Dodgson score of alternative a∗ in the
profile R:
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minimize
∑
i∈N

ri(R)−1∑
k=1

k · xSi
k(R)

subject to ∀a ∈ A \ {a∗},
∑
i∈N

∑
S∈Si(R):a∈S

xS ≥ def(a,R)

∀i ∈ N,
∑

S∈Si(R)

xS ≤ 1

∀S ∈ S(R), 0 ≤ xS ≤ 1 .

We remark that, as it is the case with the greedy algorithm, if a∗ is initially a Condorcet winner then
the algorithm calculates a score of zero. In any other case, we can easily show that the score returned by
the algorithm is between the Dodgson score of alternative a∗ and its Dodgson score multiplied by Hm−1.
Indeed, by the analysis in the proof of Theorem 3.1 (see the last derivation), we know that the score returned
by the greedy algorithm and, consequently, the Dodgson score of a∗ is not higher than the optimal objective
value of the LP relaxation multiplied by Hm−1. Furthermore, since the optimal objective value of the LP
relaxation is a lower bound on the Dodgson score of a∗, the LP-based algorithm returns a score that is an
Hm−1-approximation of the Dodgson score. This is formalized in the following theorem.

Theorem 3.2. For any input a∗ and RN with m alternatives, the LP-based algorithm returns an Hm−1-
approximation of the Dodgson score of a∗.

4 Interlude: On the Desirability of Approximation Algorithms as Voting
Rules

So far we have looked at Dodgson approximations through the algorithmic lens. We now wish to briefly
explore the social choice point of view. We argue that a Dodgson approximation is equivalent to a new voting
rule, which is guaranteed to elect an alternative that is not far from being a Condorcet winner. In other words,
a perfectly sensible definition of a “socially good” winner, given the circumstances, is simply the alternative
chosen by the approximation algorithm. Note that the approximation algorithm can be designed to satisfy
the Condorcet criterion, i.e., always elect a Condorcet winner if one exists. Since the Dodgson score of
a Condorcet winner is zero, choosing such a winner when one exists has no impact on the approximation
ratio.

Our approximation algorithms should therefore be compared according to two conceptually different,
but not orthogonal, dimensions: their algorithmic properties and their social choice properties. From an
algorithmic point of view, the greedy algorithm gives us a better sense of the combinatorial structure of the
problem. In the sequel we suggest, however, that the LP-based algorithm has some desirable properties from
the social choice point of view.

In most algorithmic mechanism design settings [36], such as combinatorial auctions or scheduling, one
usually seeks approximation algorithms that are truthful, i.e., the agents cannot benefit by lying. However,
the well-known Gibbard-Satterthwaite Theorem [24, 44] precludes voting rules that are both truthful and
reasonable, in a sense. Therefore, other desiderata are looked for in voting rules. (Of course, other social
choice properties are interesting to look at in their own right, independent of the Gibbard-Satterthwaite
Theorem).
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Let us reiterate that both the greedy algorithm and the LP-based algorithm satisfy the Condorcet prop-
erty. Let us now consider the monotonicity property, one of the major desiderata on the basis of which voting
rules are compared. Many different notions of monotonicity can be found in the literature; for our purposes,
a (score-based) voting rule is score monotonic if and only if making an alternative more preferable in the
rankings of some agent cannot worsen the score of the alternative, that is, increase it when a lower score is
desirable (as in Dodgson), or decrease it when a higher score is desirable. All prominent score-based voting
rules (e.g., positional scoring rules, Copeland, Maximin) are score monotonic; it is straightforward to see
that the Dodgson and Young rules are score monotonic as well.

We first claim that our LP-based algorithm is score monotonic.

Theorem 4.1. The LP-based algorithm is score monotonic.

Proof. We will consider two different inputs to the LP-based algorithm for computing the score of an al-
ternative a∗: one with a profile R = RN and another with a profile R̄ that is obtained from R by pushing
alternative a∗ upwards in the preferences of some of the agents (abusing notation somewhat, we will some-
times let R, respectively R̄, denote the input having profile R, respectively R̄). Given an optimal solution x
for R, we will construct a feasible solution x̄ for R̄ that does not exceed x. This is a sufficient condition for
the assertion of the theorem.

By the definition of profile R̄, it holds that ri(R) ≥ ri(R̄) for every i ∈ N . We partition the subcollec-
tion Si(R) into the following two disjoint subcollections:

Si,1(R) = {Sik(R) : k = ri(R)− ri(R̄) + 1, ..., ri(R)− 1}

and
Si,2(R) = {Sik(R) : k = 1, ..., ri(R)− ri(R̄)} .

For every i ∈ N , there is a one-to-one and onto correspondence between the sets in Si(R̄) and the sets
in Si,1(R), where for k ∈ {1, ..., ri(R̄)} the set Sik(R̄) of Si(R̄) corresponds to the set Si

k+ri(R)−ri(R̄)
(R)

of Si,1(R) and vice versa. The solution x̄ for the second input is constructed by simply setting

x̄Si
k(R̄) = xSi

k+ri(R)−ri(R̄)
(R)

for i ∈ N and k ∈ {1, ..., ri(R̄)− 1}.
We will first prove that the solution x̄ is a feasible solution for R̄. The definition of the x̄-variables

clearly implies that the second and third sets of constraints are satisfied (since the solution x is feasible).
Also, the first set of constraints is trivially satisfied for each alternative a with def(a, R̄) = 0. Assume now
that alternative a has def(a, R̄) > 0. Let eia be 1 if agent i ranks alternative a above a∗ in R and below it in
R̄; otherwise let eia be 0. Then, it can be easily seen that def(a,R) = def(a, R̄) +

∑
i∈N e

i
a > 0. Hence, by

the correspondence between the sets in Si(R̄) and the sets in Si,1(R), it follows that for every set S ∈ Si(R̄)
that contains alternative a, its corresponding set in Si,1(R) also contains a. Using this observation and the
definition of the solution x̄, we obtain that∑

i∈N

∑
S∈Si(R̄):a∈S

x̄S =
∑
i∈N

∑
S∈Si,1(R):a∈S

xS

=
∑
i∈N

 ∑
S∈Si(R):a∈S

xS −
∑

S∈Si,2(R):a∈S

xS

 .
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Let α =
∑

S∈Si,2(R):a∈S xS . Observe that if eia = 0, then no set S ∈ Si,2(R) contains a, thus α = 0.
Otherwise, if eia = 1, then the second constraint in the LP implies that α ≤ 1. In other words, in any case
α is upper-bounded by eia. Using this observation and, additionally, the fact that def(a,R) = def(a, R̄) +∑

i∈N e
i
a, we conclude that∑
i∈N

∑
S∈Si(R̄):a∈S

x̄S ≥
∑
i∈N

∑
S∈Si(R):a∈S

xS −
∑
i∈N

eia ≥ def(a,R)−
∑
i∈N

eia = def(a, R̄) ,

as desired.
It is not hard to see that the objective of R̄ is upper bounded by the objective of R. Indeed, the coef-

ficient of each x̄-variable in the objective of R̄ is at most equal to the coefficient of the x-variable of the
corresponding set in Si,1(R) in R, i.e., the variable x̄Si

k(R̄) is multiplied by k in the objective of R̄ while the
variable xSi

k+ri(R)−ri(R̄)
(R) is multiplied by k + ri(R)− ri(R̄) ≥ k in R.

In contrast, let us now consider the greedy algorithm. We design a preference profile and a push of a∗

that demonstrate that the algorithm is not score monotonic. Agents 1 through 6 vote according to the profile
RN given in Figure 2(a). The positions marked by “.” are placeholders for the rest of the alternatives, in
some arbitrary order. Let A′ = {a1, . . . , a4} and A′′ = {b1, . . . , b17}. Notice that def(a) = 1 for all a ∈ A′
and def(b) = 0 for all b ∈ A′′. The optimal sequence of exchanges moves a∗ all the way to the top of the
preferences of agent 2, with a cost of seven. The greedy algorithm, given this preference profile, indeed
chooses this sequence.

R1 R2 R3 R4 R5 R6

a4 a4 a4 a3 a2 a1

a3 a3 b4 b9 b13 b16

a2 a2 b5 b10 b14 b17

a1 a1 b6 b11 b15 a∗

. b1 b7 b12 a∗ .

. b2 b8 a∗ . .

. b3 a∗ . . .

. a∗ . . . .

. . . . . .
a∗ . . . . .

(a) Original Profile.

R1 R2 Q3 Q4 Q5 Q6

a4 a4 a4 a3 a2 a1

a3 a3 b4 b9 b13 a∗

a2 a2 b5 b10 a∗ b16

a1 a1 b6 a∗ b14 b17

. b1 a∗ b11 b15 .

. b2 b7 b12 . .

. b3 b8 . . .

. a∗ . . . .

. . . . . .
a∗ . . . . .

(b) Improvement of a∗.

Figure 2: The voting rule corresponding to the greedy algorithm is not score monotonic: an example.

On the other hand, consider the profile (R1, R2, Q3, Q4, Q5, Q6) given in Figure 2(b) (where the position
of a∗ was improved by two positions in the preferences of agents 3 through 6). First notice that the deficits
have not changed compared to the profile RN . The greedy algorithm would in fact push a∗ to the top of the
preferences of agents 6, 5, 4, and 3 (in this order), with a total cost of ten. Note that the optimal solution
still has a cost of seven. In conclusion, the greedy algorithm is not score monotonic while the LP-based
algorithm is score monotonic.

It should be mentioned that the following stronger notion of monotonicity is often considered in the
literature: pushing a winning alternative in the preferences of the agents cannot harm it, that is, cannot
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make it lose the election. We say that a voting rule that satisfies this property is monotonic. Interestingly,
Dodgson itself is not monotonic [6, 21], a fact that is considered by many to be a serious flaw. However,
this does not preclude the existence of an approximation algorithm for the Dodgson score that is monotonic
as a voting rule. Additionally, there are other prominent social choice properties that are often considered,
e.g., homogeneity: a voting rule is said to be homogeneous if duplicating the electorate does not change the
outcome of the election.

The existence of algorithms that approximate the Dodgson score well and also satisfy additional social
choice properties is addressed by Caragiannis et al. [7]. Among other results, Caragiannis et al. show that
a monotonic approximation algorithm for the Dodgson score cannot have an approximation ratio smaller
than 2, and complement this result by designing a monotonic exponential-time 2-approximation algorithm.
Building on the results in this paper, they are able to construct a monotonic polynomial-time O(logm)-
approximation algorithm. We nevertheless feel that our more preliminary discussion of score monotonicity
is worthwhile: in this setting approximation algorithms should also be compared by their social choice
properties.

With respect to our approximations, Caragiannis et al., provide the following results (see [7, 45] for
definitions of the properties discussed below).

Theorem 4.2. [7] Any homogeneous Dodgson approximation has approximation ratio at least Ω(m logm).

Theorem 4.3. [7] Let V be a Dodgson approximation. If V satisfies combinativity or Smith consistency,
then its approximation ratio is at least Ω(nm). If V satisfies mutual majority consistency, invariant loss
consistency, or independence of closes, then its approximation ratio is at least Ω(n).

As a corollary, we get the following result for our Dodgson approximations

Theorem 4.4. Neither the greedy Dodgson approximation nor the linear programming Dodgson approxi-
mation rule satisfies homogeneity, combinativity, Smith consistency, mutual majority consistency, invariant
loss consistency, or independence of clones.

Caragiannis et al. [7] do propose a homogeneous Dodgson approximation (that is also monotonic), but
its approximation ratio of O(m logm) is inevitably worse than the ratio provided by the Dodgson approxi-
mations considered above.

5 Lower Bounds for the Dodgson Rule

McCabe-Dansted [32] gives a polynomial-time reduction from the Minimum Dominating Set problem to
the Dodgson score problem with the following property: given a graph G with k vertices, the reduction
creates a preference profile with n = Θ(k) agents and m = Θ(k4) alternatives, such that the size of the
minimum dominating set of G is bk−2scD(a∗)c, where scD(a∗) is the Dodgson score of a distinguished
alternative a∗ ∈ A. We observe that since the Minimum Dominating Set problem is known to be NP-hard
to approximate to within logarithmic factors [42], it follows that the Dodgson score problem is also hard
to approximate to a factor of Ω(logm). Due to the relation of Minimum Dominating Set to Minimum Set
Cover, using an inapproximability result due to Feige [19], the explicit inapproximability bound can become(

1
4 − ε

)
lnm under the assumption that problems in NP do not have quasi-polynomial-time algorithms.

This means that our algorithms are asymptotically optimal.
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5.1 Inapproximability of the Dodgson Score

In the following, we present an alternative and more natural reduction directly from Minimum Set Cover that
allows us to obtain a better explicit inapproximability bound. This bound implies that our greedy algorithm
is optimal up to a factor of 2.

Theorem 5.1. There exists a β > 0 such that it is NP-hard to approximate the Dodgson score of a given
alternative in an election with m alternatives to within a factor of β lnm. Furthermore, for any ε > 0, there
is no polynomial-time

(
1
2 − ε

)
lnm-approximation for the Dodgson score of a given alternative unless all

problems in NP have algorithms running in time kO(log log k), where k is the input size.

Proof. We use a reduction from Minimum Set Cover (defined formally below, when we present our reduc-
tion) and the following well-known statements of its inapproximability.

Theorem 5.2 (Raz and Safra [42]). There exists a constant α > 0 such that, given an instance (U,S) of
Minimum Set Cover with |U | = n and an integerK ≤ n, it isNP-hard to distinguish between the following
two cases:

• (U,S) has a cover of size at most K.

• Any cover of (U,S) has size at least αK lnn.

Theorem 5.3 (Feige [19]). For any constant ε > 0, given an instance (U,S) of Minimum Set Cover with
|U | = n and an integer K ≤ n, there is no polynomial-time algorithm that distinguishes between the
following two cases:

• (U,S) has a cover of size at most K, and

• Any cover of (U,S) has size at least (1− ε)K lnn,

unless NP ⊆ DTIME(nO(log logn)).

The known inapproximability results for the problems that we use in our proofs are better understood
by considering their relation to a generic NP-hard problem such as Satisfiability (see [46], Chapter 29). For
example, what Theorem 5.2 essentially states is that there exists a polynomial-time reduction which, on
input an instance φ of Satisfiability, constructs an instance (U,S) of Minimum Set Cover with the following
properties: if φ is satisfiable, (U,S) has a cover of size at most K, and if φ is not satisfiable, any cover
of (U,S) has size at least αK lnn. This reduction implies that it is NP-hard to approximate Minimum Set
Cover within a factor of α lnn. The interpretation of the remaining inapproximability results that are used
or proved in the paper is similar.

Given an instance of Minimum Set Cover consisting of a set of n elements, a collection of sets over these
elements and an integer K ≤ n, we construct a preference profile with m = (1 + ζ)n + dαζKn lnne + 1
alternatives and a specific alternative a∗ in which we show that if we could distinguish in polynomial time
between the following two cases:

• a∗ has Dodgson score at most (1 + ζ)Kn, and

• a∗ has Dodgson score at least αζKn lnn,
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then we could have distinguished between the two cases of Theorems 5.2 and 5.3 for the original Minimum
Set Cover instance, contradicting the above inapproximability statements. Here, α is the inapproximability
constant in Theorem 5.2 or 5.3 (in the latter α = 1 − ε), and ζ is an arbitrarily large positive constant. In
this way, we obtain an inapproximability bound of αζ

1+ζ lnn. Since m = (1 + ζ)n + dαζKn lnne + 1, it
holds that lnn ≥ 1

2 lnm − O(ln lnm), and hence the inapproximability bound for Dodgson score can be
expressed in terms of the number of alternatives m as stated in Theorem 5.1.

We now present our reduction. Given an instance (U,S) of Minimum Set Cover consisting of a set U
of n elements, a collection S of sets S1, S2, . . . , S|S| and an integer K ≤ n, we construct the following
preference profile. There are the following alternatives:

• A set of n basic alternatives, each corresponding to an element of U . Abusing notation, we also call
this set U .

• A set Z of ζn alternatives where ζ is a positive constant.

• A set F of dαζKn lnne alternatives, where α is the constant from Theorem 5.2.

• A specific alternative a∗.

There are the following 2|S|+ 1 agents:

• A critical agent `i for each set Si ∈ S.

• An indifferent agent ri for each set Si ∈ S.

• A special agent v∗.

The preferences of the agents are defined as follows:

• The special agent v∗ ranks a∗ in the first position of its preferences and the rest of the alternatives
occupy the remaining positions in arbitrary order (i.e., a∗Rv

∗
(U ∪ Z ∪ F )).

• The critical agent `i ranks the basic alternatives corresponding to the elements of Si in the first posi-
tions of its preference (in arbitrary order), next the alternatives of Z, next a∗, next the alternatives of
F , and, in the last positions of its preference, the basic alternatives corresponding to the elements in
U\Si (i.e., SiR`

i
Z R`

i
a∗R`

i
F R`

i
(U\Si)).

• We construct the ranking of the indifferent agents as follows. Initialize S′1, S
′
2, . . . , S

′
|S| as S′1 ←

S1, S
′
2 ← S2, . . . , S

′
|S| ← S|S|. For each element u of U , choose arbitrarily j ∈ {1, 2, . . . , |S|}

such that u ∈ S′j and set S′j ← S′j \ {u}. Denote by S ′ the collection S′1, S
′
2, . . . , S

′
|S| resulting

after each u ∈ U has been processed in this way. The indifferent agent ri ranks the basic alternatives
corresponding to the elements in U \S′i in the first positions of its preference, followed the alternatives
of F , then a∗, then the alternatives of Z, and then in the last positions of its preference the basic
alternatives corresponding to elements in S′i (if any)—i.e., (U \ S′i)Rr

i
F Rr

i
a∗Rr

i
Z Rr

i
S′i.

Clearly, a∗ is preferred to any alternative in Z by the special agent and by the |S| indifferent agents, i.e.,
by a majority of agents. Similarly, a∗ is preferred to any alternative in F by the special agent and by the |S|
critical agents. Now, for each element of U , denote by fu the number of sets in S that contain u. Then, a∗

is preferred to u by the special agent, by the |S| − fu critical agents corresponding to sets in S that do not
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contain u, and by the fu − 1 indifferent agents corresponding to sets in S ′ that contain u (i.e., by |S| agents
in total). Hence, a∗ has a deficit of exactly 1 with respect to each of the alternatives in U .

Theorem 5.1 follows by the next two lemmas that give bounds on the Dodgson score of alternative a∗

in the two cases of interest: when (U,S) has a cover of size at most K (Lemma 5.4) and when any cover of
(U,S) has size at least αK lnn (Lemma 5.5).

Lemma 5.4. If (U,S) has a cover of size K, then a∗ has Dodgson score at most (1 + ζ)Kn.

Proof. Let H ⊆ S be a cover for (U,S) with |H| = K. By the definition of a cover, H covers all elements
of U . Hence, by pushing a∗ to the first position in the preference of the critical agent `i such that Si ∈ H ,
a∗ will decrease its deficit with respect to each of the basic alternatives by 1, and hence it will become a
Condorcet winner. The total number of positions a∗ rises is at most |H| · (|Z|+ n) = (1 + ζ)nK.

Lemma 5.5. If every cover of (U,S) has size at least αK lnn, then a∗ has Dodgson score at least
αζKn lnn.

Proof. We first assume that the minimum number of positions a∗ has to rise in order to beat the basic
alternatives and become a Condorcet winner includes raising a∗ by at least |F | positions in the ranking of
some indifferent agent ri. Hence, a∗ rises |F | positions in the preference of ri in order to reach position
|U\S′i| + 1 and at least n additional positions in order to beat the basic alternatives. Its Dodgson score is
thus at least |F |+ n ≥ αζKn lnn.

Now, assume that the minimum number of positions a∗ has to rise in order to beat the basic alternatives
does not include raising a∗ by at least |F | positions in the ranking of some indifferent agent. We will show
that if the Dodgson score of a∗ is less than αζKn lnn, then there exists a cover of (U,S) of size less than
αK lnn, contradicting the assumption of the lemma.

Let H be the set of critical agents in whose preferences a∗ is pushed at least |Z| positions higher. Over
all the preference lists of all the agents in H , a∗ rises a total of |H| · |Z| positions in order to reach position
|Si| + 1 in each list, plus at least n additional positions in order to decrease by 1 its deficit with respect to
each of the alternatives in U . So, recalling |Z| = ζn, a∗ rises at least ζ|H|n + n positions. Denoting the
Dodgson score of a∗ by scD(a∗), we thus have |H| ≤ 1

ζnscD(a∗)− 1
ζ < αK lnn. The proof is completed

by observing that the union of the sets Si for each critical agent `i belonging to H contains all the basic
alternatives, i.e., H corresponds to a cover for (U,S) of size less than αK lnn.

This completes the proof of Theorem 5.1

5.2 Inapproximability of Dodgson Rankings

A question related to the approximability of Dodgson scores is the approximability of the Dodgson ranking,
that is, the ranking of alternatives given by ordering them by nondecreasing Dodgson score. To the best of
our knowledge, no rank aggregation function, which maps preference profiles to rankings of the alternatives,
is known to provably produce rankings that are close to the Dodgson ranking [40, 41, 29, 30, 31] (see the
survey of related work in Section 1).

Our next result establishes that efficient approximation algorithms for Dodgson ranking are unlikely to
exist unless P = NP . It does so by proving that the problem of distinguishing between whether a given
alternative is the unique Dodgson winner or in the last O(

√
m) positions isNP-hard. This result provides a

complexity-theoretic explanation for the sharp discrepancies observed in the Social Choice Theory literature
when comparing Dodgson elections with simpler, efficiently computable, voting rules.
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Theorem 5.6. Given a preference profile withm alternatives and an alternative a∗, it isNP-hard to decide
whether a∗ is a Dodgson winner or has rank at least m− 6

√
m in any Dodgson ranking.

Proof. We use a reduction from Minimum Vertex Cover in 3-regular graphs, and exploit a result concerning
its inapproximability that follows from the work of Berman and Karpinski [3]. Our approach is similar to
the proof of Theorem 5.1, albeit considerably more involved. We use the following result.

Theorem 5.7 (Berman and Karpinski [3], see also [27]). Given a 3-regular graph G with n = 22t nodes
for some integer t > 0 and an integer K in [n/2, n− 6], it isNP-hard to distinguish between the following
two cases:

• G has a vertex cover of size at most K.

• Any vertex cover of G has size at least K + 6.

Given an instance of Minimum Vertex Cover consisting of a 3-regular graph G with n = 22t nodes
v0, v1, . . . , vn−1 and an integer K ∈ [n/2, n− 6], we construct in polynomial time a preference profile in
which if we could distinguish whether a particular alternative is a Dodgson winner or not very far from the
last position in any Dodgson ranking, then we could also distinguish between the two cases mentioned in
Theorem 5.7 for the original Minimum Vertex Cover instance. See page 23 for an example of the construc-
tion. The Dodgson election has the following sets of alternatives:

• A special alternative a∗.

• A set F of 4Kn/11 + 3n/2 alternatives. These alternatives are partitioned into n disjoint blocks F0,
F1, . . ., Fn−1 so that each block contains either d4K/11 + 3/2e or b4K/11 + 3/2c alternatives.

• A set A of n alternatives a0, a1, . . . , an−1.

• An alternative uj for each edge ej of G. Let U be the set of these 3n/2 alternatives. We denote by Si
the set of the three alternatives of U that correspond to the edges of G which are incident to node vi.

For each node vi of G, there are two agents: one left agent `i and one right agent ri. The preferences of
the left agent `i are as follows:

• The three alternatives of Si are ranked by agent `i in the first three positions of its preference (in
arbitrary order).

• From position 4 to position 4n/11 + 3, agent `i ranks the alternatives
ai, a(i+1) mod n, . . . , a(i+4n/11−1) mod n in this order.

• In position 4n/11 + 4, agent `i ranks a∗.

• From position 4n/11 + 5 to position 4Kn/11 + 41n/22 + 4, agent `i ranks the alternatives of F in
the following order. The alternatives of Fi are ranked in positions from 4n/11+5 to 4n/11+4+ |Fi|
(in arbitrary order). Next, agent `i ranks the alternatives of sets F0, . . . , Fi−1, Fi+1, . . . , Fn−1 in this
order (the relative order of the alternatives of the same block is arbitrary).

• From position 4Kn/11 + 41n/22 + 5 to position 4Kn/11 + 5n/2 + 4, agent `i ranks the alternatives
a(i+4n/11) mod n, a(i+4n/11+1) mod n, . . . , a(i−1) mod n in this order.

• In the last 3n/2− 3 positions, agent `i ranks the alternatives of U \ Si (in arbitrary order).
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The preferences of the right agent ri are as follows:

• In the first 3n/2− 3 positions, agent ri ranks the alternatives of U \ Si in reverse relative order to the
order `i ranks them.

• From position 3n/2 − 2 to position 4Kn/11 + 3n − |Fi| − 3, agent ri ranks the alternatives of the
blocks Fn−1, Fn−2, . . . , Fi+1, Fi−1, . . . , F0 in this order so that the alternatives of block Fj are ranked
in reverse relative order to the order `i ranks them.

• From position 4Kn/11 + 3n− |Fi| − 2 to position 4Kn/11 + 40n/11− |Fi| − 5, agent ri ranks the
alternatives a(n−i−1) mod n, a(n−i−2) mod n, . . . , a(4n/11−i+2) mod n in this order.

• In position 4Kn/11 + 40n/11− |Fi| − 4, agent ri ranks a∗.

• From position 4Kn/11 + 40n/11 − |Fi| − 3 to position 4Kn/11 + 40n/11 − 4, agent ri ranks the
alternatives of Fi in reverse relative order to the order `i ranks them.

• From position 4Kn/11 + 40n/11− 3 to position 4Kn/11 + 4n− 2, agent ri ranks the alternatives
a(4n/11−i+1) mod n, a(4n/11−i) mod n, . . ., a(n−i) mod n in this order.

• The three alternatives of Si are ranked in the last three positions in the preference of agent ri, in
reverse relative order to the order `i ranks them.

We observe that a∗ beats all alternatives but the alternatives of U . In particular, a∗ is preferred to
each alternative of F by n + 1 agents. Specifically, a∗ is ranked above an alternative belonging to the
block Fi by the n left agents and by the right agent ri. Also, the alternative ai is ranked below a∗ by
the 7n/11 left agents `(i+1) mod n, `(i+2) mod n, . . . , `(i+7n/11−1) mod n and by the 4n/11 + 2 right agents
r(i+7n/11−1) mod n, r(i+7n/11) mod n, . . . , ri. Hence, a∗ beats all alternatives in setA as well since it is ranked
above each of them by n + 2 agents. Also, a∗ is ranked above the alternative uj corresponding to the edge
ej of G by the left agents `i and `i

′
and by all right agents besides ri and ri

′
so that nodes vi and vi′ are the

endpoints of edge ej in G. Hence, a∗ has a deficit of 1 with respect to each of the alternatives in U .
We also observe that the alternatives in F beat each alternative in A. Note that each agent other than ri

who prefers a∗ to an alternative in A also prefers an alternative in block Fi to the alternative in A. Hence,
each alternative of F beats each alternative of A since it is ranked above it by n + 1 agents. Furthermore,
similarly to a∗, each alternative in F is preferred to each alternative of U by n agents. Also, when an
alternative f of F is ranked above another alternative f ′ of F by agent `i, f ′ is ranked above f by agent ri.
Hence, an alternative of F has a deficit of 1 with respect to U and each other alternative in F , and a deficit
of 2 with respect to a∗.

Furthermore, observe that each alternative in A is ranked above the alternative uj corresponding to the
edge ej of G by the left agents `i and `i

′
and by all right agents besides ri and ri

′
so that nodes vi and vi′

are the endpoints of edge ej in G, i.e., by n agents. Also, when an alternative a of A is preferred to another
alternative a′ of A by agent `i, a′ is preferred to a by agent ri. Hence, an alternative in A has a deficit of 1
with respect to each alternative in U and each remaining alternative in A, a deficit of 2 with respect to each
alternative in F , and a deficit of 3 with respect to a∗. This immediately yields that the Dodgson score of
each alternative in A is at least 8Kn/11 + 11n/2 + 2.

Similarly, when an alternative u ofU is preferred to another alternative u′ ofU by agent `i, u′ is preferred
to u by agent ri. Hence, an alternative in U has a deficit of 1 with respect to each of the alternatives inA and
F , each other alternative in U , and a∗. This immediately yields that the Dodgson score of each alternative in
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a∗ any alt. in F any alt. in A any alt. in U
a∗ - 0 0 1

any alt. in F 2 1 0 1
any alt. in A 3 2 1 1
any alt. in U 1 1 1 1

Table 1: The deficit of each alternative (rows) against any other alternative (columns).

U is at least 4Kn/11+4n. A summary of the deficit of each alternative with respect to any other alternative
is presented in Table 1.

The next lemma gives upper and lower bounds on the Dodgson score of the alternatives in F .

Lemma 5.8. Each alternative in F has Dodgson score between 4Kn/11+3n+1 and 4Kn/11+37n/11+
2K/11 + 3/4.

Proof. Since each alternative in F has a deficit of 1 with respect to each alternative in U and each other
alternative in F , and a deficit of 2 with respect to a∗, its Dodgson score is at least |U | + |F | − 1 + 2 =
4Kn/11 + 3n+ 1.

Now, consider an alternative f belonging to block Fi. f is at distance at most⌊
|Fi| − 1

2
+ 1

⌋
≤ |Fi|+ 1

2
≤ d4K/11 + 3/2e+ 1

2
≤ 2K/11 + 7/4

from a∗ in the preferences of either the left agent `i or the right agent ri. Hence, by raising f at most
2K/11 + 7/4 positions in the preferences of either `i or ri, its deficit with respect to a∗ decreases by 1.
Consider a left agent `i

′
with i′ 6= i and let F ′ be the subset of alternatives in F that are higher than f in the

preferences of `i
′
. By pushing f to the first position in the preferences of agent `i

′
(i.e., 4n/11 + 3 + |F ′|

positions in addition to the 2K/11 + 7/4 positions mentioned above), f decreases its deficit by 1 with
respect to each alternative of F ′ and a∗, as well as with respect to the three alternatives of Si′ in the first
three positions in the preferences of `i

′
. Now, consider the right agent ri

′
. In the preferences of ri

′
, f is

ranked higher than the alternatives in F ′ and lower than the alternatives in F\F ′ − {f}. Hence, by pushing
f to the first position in the preferences of agent ri

′
(i.e., |F\F ′ − {f}| + 3n/2 − 3 = 4Kn/11 − |F ′| +

3n − 4 additional positions), f decreases its deficit by 1 with respect to each alternative of F\F ′ − {f} as
well the alternatives of U\Si′ in the first 3n/2 − 3 positions in the preferences of ri. Hence, by pushing
4Kn/11 + 37n/11 + 2K/11 + 3/4 positions, f becomes a Condorcet winner.

The next two lemmas give bounds on the Dodgson score of alternative a∗ in the two cases of interest:
when G has a vertex cover of size at most K (Lemma 5.9), and when any vertex cover of G has size at least
K + 6 (Lemma 5.10).

Lemma 5.9. If G has a vertex cover of size at most K, then the Dodgson score of a∗ is less than 4Kn/11 +
3n.

Proof. Let H ⊆ V be a vertex cover of G with |H| = K. By the definition of the vertex cover, H covers
all edges of G and this implies that ∪i:vi∈HSi = U . Hence, by pushing a∗ to the first position in the
preferences of each of the K left agents `i such that vi ∈ H , a∗ decreases it deficit with respect to each
of the alternatives in U by 1, and becomes a Condorcet winner. The total number of positions a∗ rises is
K(4n/11 + 3) < 4Kn/11 + 3n. The last inequality is true since K < n.

21



Lemma 5.10. If any vertex cover of G has size at least K + 6, then the Dodgson score of a∗ is larger than
4Kn/11 + 37n/11 + 2K/11 + 3/4.

Proof. First assume that the minimum sequence of exchanges that makes a∗ beat the alternatives of U and
become a Condorcet winner includes pushing a∗ to one of the first 3n/2− 3 positions in the preferences of
some right agent ri. Certainly, not all alternatives of U are beaten in this way since the three alternatives
of Si are ranked below a∗ by agent ri. So, in order to beat the remaining 3 alternatives of Si, a∗ has to
either be pushed to one of the first three positions of a left agent or to one of the first 3n/2 − 3 positions
of another right agent ri

′
with i′ 6= i. Hence, a∗ must be first pushed to position 3n/2 − 2 of agent ri

(i.e., |F\Fi|+ 7n/11− 2 positions), to position 4 of a left agent (4n/11 additional positions) or to position
3n/2 − 2 of agent ri

′
(|F\Fi′ | + 7n/11 − 2 additional positions), and then rise at least 3n/2 additional

positions in order to beat all alternatives of U . In total, a∗ rises at least

|F\Fi|+ 7n/11− 2 + min{4n/11, |F\Fi′ |+ 7n/11− 2}+ 3n/2

≥ |F | − |Fi|+ 5n/2− 2

≥ 4Kn/11 + 4n− d4K/11 + 3/2e − 2

≥ 4Kn/11 + 4n− 4K/11− 9/2

= 4Kn/11 + 37n/11 + n/11 + 6n/11− 4K/11− 9/2

≥ 4Kn/11 + 37n/11 + 22/11 + 6(K + 6)/11− 4K/11− 9/2

> 4Kn/11 + 37n/11 + 2K/11 + 3/4

positions. The fourth inequality holds since n ≥ 22 and n ≥ K + 6.
Now, assume that the minimum sequence of exchanges for making a∗ a Condorcet winner does not

include raising a∗ to any of the first 3n/2 − 3 positions of any right agent. We will show that if a∗ has
Dodgson score at most 4Kn/11 + 37n/11 + 2K/11 + 3/4, then G has a vertex cover of size less than
K + 6, contradicting the assumption of the lemma.

Let H be the set of left agents where a∗ rises to one of the first three positions in order to beat all the
alternatives of U . In total, a∗ rises 4|H|n/11 positions in order to reach position 4 in the preferences of
each of the agents in H plus at least 3n/2 additional positions in order to decrease its deficit with respect to
the alternatives in U by at least 1, i.e., at least 4|H|n/11 + 3n/2 positions in total. Hence, by denoting the
Dodgson score of a∗ by scD(a∗), we have |H| ≤ 11

4n(scD(a∗)− 3n/2).
Since ∪i:`i∈HSi = U , the set of nodes of G consisting of nodes vi such that agent `i belongs to H is

a vertex cover of G of size |H|. Assuming that the Dodgson score of a∗ is at most 4Kn/11 + 37n/11 +
2K/11 + 3/4, we have

|H| ≤ 11

4n
(scD(a∗)− 3n/2)

≤ 11

4n
(4Kn/11 + 41n/22 + 2K/11 + 3/4)

< K + 6 ,

where the last inequality follows since K ≤ n− 6.

By Lemmas 5.8, 5.9, and 5.10, we obtain that if G has a vertex cover of size at most K, then a∗ is
the unique Dodgson winner, while if every vertex cover of G has size at least K + 6, then a∗ is below all
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alternatives in F in any Dodgson ranking. Denote by m the total number of alternatives and recall that
m = |F |+ |A|+ |U |+ 1 = 4Kn/11 + 4n+ 1. Then, the rank of a∗ in the second case is at least

|F |+ 1 = 4Kn/11 + 3n/2 + 1 = m− 5n/2 = m−
√

25n2/4

≥ m−
√

25nK/2 ≥ m− 6
√

4Kn/11 + 4n+ 1 = m− 6
√
m ,

where the first inequality follows since K ≥ n/2. By Theorem 5.7, we obtain the desired result.

An example. We present an example of the construction in the proof of Theorem 5.6. Consider an instance
of Minimum Vertex Cover with the 22-node 3-regular graph of Figure 3, and K = 12.
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Figure 3: A 3-regular graph with 22 nodes.

The corresponding preference profile has 185 alternatives and 44 agents. In particular, the set F has
129 alternatives f0, f1, . . . , f128, which are partitioned into 22 blocks as follows. Block F0 contains the
six alternatives f0, f1, . . . , f5, block F1 contains the six alternatives f6, . . . , f11, . . . , block F18 contains
the six alternatives f108, . . . , f113, block F19 contains the five alternatives f114, . . . , f118, . . ., and block
F21 contains the alternatives f124, . . . , f128. The set A has 22 alternatives a0, . . . , a21. The set U has 33
alternatives u0, . . . , u32, one alternative for each edge of the graph. The agents are partitioned into 22 left
agents and 22 right agents. In order to compute the preferences of an agent, say agent `17, we first compute
the set S17, which contains the alternatives corresponding to the edges incident to node v17 of the graph, i.e.,
S17 = {u24, u27, u28}. Now, the preferences of agent `17 are:

S17R
`17
a17R

`17
a18R

`17 · · · R`17
a1R

`17
a2R

`17
a∗R`

17
F17R

`17
F0R

`17 · · ·F16

R`
17
F18R

`17 · · · R`17
F21R

`17
a3R

`17 · · · R`17
a16R

`17
(U \ S17) .

Similarly, the preferences of agent r17 are:

(
←

U \ S17)R`
17 ←
F21 R`

17 ←
F20 R`

17 · · · R`17 ←
F18 R`

17 ←
F16 R`

17 · · · R`17 ←
F0 R`

17

a4R
`17
a3R

`17 · · · R`17
a15R

`17
a∗R`

17 ←
F17 a16R

`17
a5R

`17 ←
S17 ,

where the symbol← on top of a set of alternatives is used to denote that their order in the preferences of r17

is the reverse of the order `17 ranks them.
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6 Inapproximability of Young Scores and Rankings

Recall that the Young score of a given alternative a∗ ∈ A is the size of the largest subset of agents for which
a∗ is a Condorcet winner.

It is straightforward to obtain a simple ILP for the Young score problem. As before, let a∗ ∈ A be the
alternative whose Young score we wish to compute. Let the variables of the program be xi ∈ {0, 1} for all
i ∈ N ; xi = 1 if and only if agent i is included in the subset of agents for a∗. Define constants eia ∈ {−1, 1}
for all i ∈ N and a ∈ A \ {a∗}, which depend on the given preference profile; eia = 1 if and only if agent i
ranks a∗ higher than a. The ILP that computes the Young score of a∗ is given by:

maximize
∑
i∈N

xi

subject to ∀a ∈ A \ {a∗},
∑
i∈N

xieia ≥ 1 (4)

∀i ∈ N, xi ∈ {0, 1}

The ILP (4) for the Young score is seemingly simpler than the one for the Dodgson score. This might
seem to indicate that the problem can be easily approximated by similar techniques. Therefore, the following
result is quite surprising.

Theorem 6.1. It is NP-hard to approximate the Young score by any factor.

Proof. This result becomes more self-evident when we notice that the Young score has the rare property of
being nonmonotonic as an optimization problem, in the following sense: given a subset of agents that make
a∗ a Condorcet winner, it is not necessarily the case that a smaller subset of the agents would satisfy the
same property. This stands in contrast to many approximable optimization problems, in which a solution
that is worse than an optimal solution is also a valid solution. Consider the Set Cover problem, for instance:
if one adds more subsets to a valid cover, one obtains a valid cover. The same goes for the Dodgson score
problem: if a sequence of exchanges makes a∗ a Condorcet winner, introducing more exchanges on top of
the existing ones would not undo this fact.

In order to prove the inapproximability of the Young score, we define the following problem.

NONEMPTY SUBSET

Instance: An alternative a∗, and a preference profile RN ∈ LN .
Question: Is there a nonempty subset of agents C ⊆ N , C 6= ∅, for which a∗ is a Condorcet winner?

To prove Theorem 6.1, it is sufficient to prove that NONEMPTY SUBSET is NP-hard. Indeed, this
implies that it is NP-hard to distinguish whether the Young score of a given alternative is zero or greater
than zero, which directly entails that the score cannot be approximated.

Lemma 6.2. NONEMPTY SUBSET is NP-complete.

Proof. The problem is clearly in NP; a witness is given by a nonempty set of agents for which a∗ is a
Condorcet winner.

In order to showNP-hardness, we present a polynomial-time reduction from theNP-hard Exact Cover
by 3-Sets (X3C) problem [22] to our problem. An instance of the X3C problem includes a finite set of
elements U , |U | = n (where n is divisible by 3), and a collection S of 3-element subsets of U , S =
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{S1, . . . , Sk}, such that for every i, 1 ≤ i ≤ k, Si ⊆ U and |Si| = 3. The question is whether the collection
S contains an exact cover for U , i.e., a subcollection S∗ ⊆ S of size n/3 such that every element of U
occurs in exactly one subset in S.

We next give the details of the reduction from X3C to NONEMPTY SUBSET. Given an instance of X3C,
defined by the set U and a collection of 3-element sets S, we construct the following instance of NONEMPTY

SUBSET.
Define the set of alternatives as A = U ∪ {a} ∪ {a∗}. Let the set of agents be N = N ′ ∪ N ′′, where

N ′ and N ′′ are defined as follows. The set N ′ is composed of k agents, corresponding to the k subsets in S,
such that for all i ∈ N ′, agent i prefers the alternatives in U \ Si to a∗, and prefers a∗ to all the alternatives
in Si ∪ {a} (i.e., (U \ Si) Ri a∗Ri (Si ∪ {a})). Subset N ′′ is composed of n3 − 1 agents who prefer a to a∗

and a∗ to U (i.e., for all i ∈ N ′′, a Ri a∗ Ri U ).
We next show that there is an exact cover in the given instance if and only if there is nonempty subset of

agents for which a∗ is a Condorcet winner in the constructed instance.
Sufficiency: Let S∗ be an exact cover by 3-sets of U , and letN∗ ⊆ N ′ be the subset of agents corresponding
to the n

3 subsets Si ∈ S∗. We show that a∗ is a Condorcet winner for C = N∗ ∪N ′′. Since S∗ is an exact
cover, for all b ∈ U there exists exactly one agent in N∗ that prefers a∗ to b and n

3 − 1 agents in N∗ that
prefer b to a∗. In addition, all n3 − 1 agents in N ′′ prefer a∗ to b. Therefore, a∗ beats b in a pairwise election.

It remains to show that a∗ beats a in a pairwise election. This is true since all n3 agents in N∗ prefer a∗

to a, and there are only n
3 − 1 agents in N ′′ who prefer a to a∗. It follows that a∗ is a Condorcet winner for

N∗ ∪N ′′.
Necessity: Assume the given instance of X3C has no exact cover. We have to show that there is no subset
of agents for which a∗ is a Condorcet winner. Let C ⊆ N , C 6= ∅, and let N∗ = C ∩ N ′. We distinguish
among three cases.

Case 1: |N∗| = 0. It must hold that C ∩N ′′ 6= ∅. In this case, a∗ loses to a in a pairwise election, since
all the agents in N ′′ prefer a to a∗.

Case 2: 0 < |N∗| ≤ n
3 . Since there is no exact cover, the corresponding sets Si cannot cover U . Thus

there exists b ∈ U that is ranked higher than a∗ by all agents in N∗. In order for a∗ to beat b in a pairwise
election, C must include at least |N∗|+1 agents fromN ′′. However, this means that a beats a∗ in a pairwise
election (since a is ranked lower than a∗ by |N∗| agents, and higher than a∗ by at least |N∗|+ 1 agents). It
follows that a∗ is not a Condorcet winner for C.

Case 3: |N∗| > n
3 . Let us award each alternative b ∈ A \ {a∗} a point for each agent that ranks it above

a∗, and subtract a point for each agent that ranks it below a∗. a∗ is a Condorcet winner if and only if the
score of every b ∈ A \ {a∗}, counted this way, is negative. This implies that a∗ is a Condorcet winner only
if for every subset B ⊆ A of alternatives, the total score of the alternatives in B is at most −|B|.

We shall calculate the total score of the alternatives in U from the agents in N∗. Every agent in N∗

prefers a∗ to 3 alternatives in U and prefers n−3 alternatives in U to a∗. Thus, every agent inN∗ contributes
(n − 3) − 3 = n − 6 points to the total score of U . Summing over all the agents in N∗, we have that the
total score of U from N∗ is |N∗|(n− 6). By |N∗| > n

3 , we have that

|N∗|(n− 6) ≥
((n

3
− 1
)

+ 2
)

(n− 6) =
(n

3
− 1
)
n− 6 .

Recall that every agent in N ′′ prefers a∗ to all alternatives in U . However, since |N ′′| = n
3 − 1, agents from

N ′′ can only subtract (n3 −1)n from the total score of U . We conclude that the total score of U is at least−6.
Since we can assume that |U | = n > 6,3 a∗ cannot beat all the alternatives in U in pairwise elections.

3X3C is obviously tractable for a constant n, as one can examine all the families S ′ ⊆ S of constant size in polynomial time.
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This concludes the proof of Theorem 6.1.

A short discussion is in order. Theorem 6.1 states that the Young score cannot be efficiently approxi-
mated to any factor. The proof shows that, in fact, unless P = NP it is impossible to efficiently distinguish
between a zero and a nonzero score. However, the proof actually shows more: it constructs a family of
instances, where it is hard to distinguish between a score of zero and almost 2m/3. Now, if one looks at an
alternative formulation of the Young score problem where all the scores are scaled by an additive constant,
it is no longer true that it is hard to approximate the score to any factor; however, the proof still shows that
it is hard to approximate the Young score, even under this alternative formulation, to a factor of O(m).

The strong inapproximability result for the Young score intuitively implies that the Young ranking can-
not be approximated. The following corollary, whose proof is a straightforward variation on the proof of
Lemma 6.2, shows that this is indeed the case. It can be viewed as an analog of Theorem 5.6 for Young.

Corollary 6.3. For any constant ε > 0, given a preference profile with m alternatives and an alternative
a∗, it isNP-hard to decide whether a∗ has rankO(mε) or is ranked in place m (that is, ranked last) in any
Young ranking.

Proof. Let ε > 0 be a constant. We perform the same reduction as before, with the following differences.
Let A′ be the set of alternatives constructed in the reduction of Lemma 6.2, and m′ = |A′|; we add a set
B of (m′)1/ε additional alternatives, i.e., A = A′ ∪ B, m = |A| = m′ + (m′)1/ε. The set of agents is
N ′ ∪N ′′ ∪N∗, the preferences of N ′ and N ′′ restricted to A′ are as before, and all these agents rank B at
the bottom. All the agents in N∗ rank a∗ last; for each b ∈ A′ \ {a∗}, there is i ∈ N∗ that ranks b first and
B just above a∗, i.e.,

b Ri (A′ \ {a∗, b}) Ri B Ri a∗ .

For each c ∈ B, there is i ∈ N∗ that ranks c first and the rest of B just above a∗, namely

c Ri (A′ \ {a∗}) Ri (B \ {c}) Ri a∗ .

Notice that the Young score of the alternatives in A′ \ {a∗} is at least one. The Young score of any
alternative c ∈ B is exactly one, since exactly one agent (in N∗) does not rank A′ \ {a∗} above c. Now,
if there is an exact 3-cover, then the Young score of a∗ is at least 2n/3 − 1 (according to the proof of
Lemma 6.2), so a∗ is ranked above all the alternatives in B, that is, in the top m′ + 1 = O(mε) places. On
the other hand, if there is no exact 3-cover, then the Young score of a∗ is zero by the same arguments as in
Lemma 6.2, since the agents in N∗ all rank a∗ last. Hence a∗ is placed last in any Young ranking.

As noted in Section 2, one can imagine another alternative formulation of the Young score. Indeed, one
might ask: given a preference profile, what is the smallest number of agents that must be removed in order to
make a∗ a Condorcet winner? This minimization problem, where the score is the number of agents that are
removed, is referred to as the Dual Young score by Betzler et al. [4]. Of course, a Young winner according
to the primal formulation is always a winner according to the dual formulation, and vice versa. Notice that it
is easy to obtain an εn-approximation under the dual formulation for any constant ε > 0 by enumerating all
subsets of agents of size at least n−1/ε and checking whether a∗ is the Condorcet winner in the preferences
of these agents. Our next result states that the dual Young score is hard to approximate significantly better.

Theorem 6.4. For any constant ε > 0, the dual Young score is NP-hard to approximate within O(n1−ε).

Proof. We rely on a statement regarding the inapproximability of Vertex Cover that is weaker than Theo-
rem 5.7; the one we used in the proof for the inapproximability of the Dodgson ranking.
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Theorem 6.5 (Berman and Karpinski [3], see also [27]). Given a 3-regular graph G and an integer K ≥ 1,
it is NP-hard to distinguish between the following two cases:

• G has a vertex cover of size at most K.

• Any vertex cover of G has size at least K + 2.

Our reduction extends the one in the proof of Lemma 6.2. Consider a 3-regular graph G = (V1, E) with
p nodes and an integerK ≥ 1. Also, let ε ∈ (0, 1) be a constant and let n = dp1/εe. Denote byH = (V2, F )
the complete graph with n− p nodes.

Define the set of alternatives as A = E ∪F ∪{a}∪ {a∗}. Let the set of agents be N = N ′ ∪N ′′ ∪N ′′′,
where N ′, N ′′, and N ′′′ are defined as follows. The set N ′ consists of p agents corresponding to the p
nodes of G, such that for all i ∈ N ′, agent i prefers the alternatives in F ∪ E \ Ei to a∗ (where the set Ei
consists of the edges of E which are incident to node i), and prefers a∗ to all the alternatives in Ei ∪ {a}
(i.e., ((F ∪ E) \ Ei) Ri a∗Ri (Ei ∪ {a})). The set N ′′ contains n − p agents corresponding to the n − p
nodes of H , such that for all i ∈ N ′′, agent i prefers the alternatives in E ∪ F \ Fi to a∗ (where the set Fi
consists of the edges of F which are incident to node i), and prefers a∗ to all the alternatives in Fi ∪ {a}
(i.e., ((E ∪ F ) \ Fi) Ri a∗Ri (Fi ∪ {a})). Subset N ′′′ consists of n− p+K − 2 agents who prefer a to a∗

and a∗ to E ∪ F (i.e., a Ri a∗ Ri (E ∪ F )).
Theorem 6.4 now follows by Theorem 6.5 and the next two lemmas.

Lemma 6.6. IfG has a vertex cover of size at mostK, then the dual Young score of alternative a∗ is at most
nε.

Proof. Let C ⊆ V1 be a vertex cover of G of size at most K. Consider the following sets of agents: a set
N∗ ⊆ N ′ that contains the agents that correspond to nodes in the vertex cover C, a set N+ of all the agents
of N ′′ besides one, and the set N ′′′.

Recall that N∗ ∪N+ has size at most n− p+K − 1 while N ′′′ has size n− p+K − 2. Since C is a
vertex cover in G, each alternative in E is ranked lower than a∗ by at least one agent of N∗. Also, the nodes
corresponding to the agents in N+ form a vertex cover of H . So, each alternative in F is ranked lower than
a∗ by at least one agent of N+. Hence, by considering the agents of N∗ ∪ N+ ∪ N ′′′, a∗ beats any other
alternative in their pairwise comparison and its dual Young score is at most p− |C|+ 1 ≤ p ≤ nε.

Lemma 6.7. If G has no vertex cover of size less than K + 2, then the dual Young score of alternative a∗ is
n.

Proof. We will show that there is no nonempty subset of agents that make a∗ a Condorcet winner. Indeed,
assume for contradiction that there exists such a subset that contains the sets of agentsN∗ ⊆ N ′,N+ ⊆ N ′′,
and N− ⊆ N ′′′.

If |N+| < n − p − 1 or |N∗| < K + 2 then there exists an alternative of E or F which is not ranked
lower than a∗ by any agent of N∗ ∪N+. In both cases, N− must have size at least |N∗|+ |N+| in order for
a∗ to beat every alternative in E ∪ F in their pairwise comparison. However, a∗ does not beat a and cannot
be a Condorcet winner.

Therefore, it holds that |N+| ∈ {n− p− 1, n− p} and |N∗| ≥ K + 2. If |N+| = n− p− 1, then some
alternative of F is ranked below a∗ by at most one agent of N+. It is also ranked above a∗ by the agents of
N∗ and below it by the agents of N−. In total, it is ranked above a∗ by at least n− p+K agents while it is
ranked below a∗ by at most n− p+K − 1 agents. Hence, a∗ cannot be a Condorcet winner in this case.
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If |N+| = n−p then each alternative in F is ranked below a∗ by two agents ofN+. In total, it is ranked
above a∗ by at least n− p+K agents while it is ranked below a∗ by at most n− p+K agents. Again, a∗

cannot be a Condorcet winner.

This concludes the proof of Theorem 6.4.

The proof of Theorem 6.4 provides an alternative proof of Theorem 6.1. In terms of the Young score,
it implies that, for every constant ε > 0, there are instances for which it is hard to distinguish between a
score of zero and a score of at least n− nε. So, for the formulation of the Young score where all the scores
are scaled by an additive constant, it provides additional information which is complementary to the one
provided by the proof of Theorem 6.1: it implies that it is hard to approximate the Young score, even under
this alternative formulation, within a factor of O(n).

7 Discussion

Generally speaking, we have taken the following approach: winner determination under the Dodgson and
Young voting rules is intractable, therefore we aim to approximate the Dodgson or Young score. Other
goals may seem more natural. For example, one can ask for a randomized algorithm that selects the winner
with high probability, or an algorithm that selects an alternative that is ranked high by the voting rule in
question. Note that our Theorem 5.6 rules out the latter goal. Nevertheless, a social choice justification for
approximating a voting rule’s score is called for. Below we concentrate on the Dodgson score because our
positive results concern this rule.

Dodgson’s reasoning in designing his voting rule is a special case of a more general framework called
distance rationalizability, which was proposed by Meskanen and Nurmi [35], and recently received some
attention in the AI literature [14, 16, 15]. The reasoning behind this framework is that a voting rule should
elect an alternative that is closest to being a consensus winner, according to a natural notion of consensus
and a natural notion of distance.

Dodgson’s rule employs a very natural notion of consensus (Condorcet winner) and arguably a natu-
ral notion of distance (number of swaps between adjacent alternatives). These are normative statements,
as is common in social choice theory. However, viewed through the distance rationalizability lens, an ap-
proximation of the Dodgson score is simply an approximation of a natural distance function, much like
approximations for other hard problems that involve distances, e.g., facility location problems. In facility
location problems there is a direct connection between distances and the quality of the solution (e.g., the
larger the distances, the more costly it would be to build an appropriate infrastructure). Work in progress
by Boutilier and Procaccia suggests that, similarly, in the distance rationalizability framework the distance
function can be proportional to a direct quantitative measure of an alternative’s quality: the closer the alter-
native is to consensus according to the distance function, the faster it leads to consensus in a social choice
model that involves dynamic preferences, as put forward by Parkes and Procaccia [37].

Therefore, we can argue that an alternative is increasingly more socially desirable the smaller its Dodg-
son score, that is, the score itself is meaningful and not just the Dodgson ranking, and therefore a good
approximation of the Dodgson score may also single out socially desirable winners. Moreover, as argued
in Section 4, whenever approximation algorithms satisfy additional social choice desiderata, they may ulti-
mately be adopted as socially sensible voting rules in their own right.

Interestingly, Dodgson’s rule is considered to be especially flawed from a social choice point of view,
and this may be one of the reasons why it was never employed in real-world decision making. Some well-
known voting rules like Copeland and Maximin are Condorcet-consistent, and in addition avoid the main
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drawbacks from which Dodgson suffers (e.g., they are monotonic). Nevertheless, our thesis is that Dodgson
approximations can in fact be superior to the original rule, from both the computational and the social choice
points of view, and ultimately may serve as realistic choices for preference aggregation in human societies
and in multiagent systems. The results given above are the starting point of this line of inquiry; some of us
make the point more forcefully in follow-up work [7], which directly builds on the results of this paper.
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