
Socially Desirable Approximations
for Dodgson’s Voting Rule∗

Ioannis Caragiannis
University of Patras & RACTI

Building B, 26500 Rio, Greece
caragian@ceid.upatras.gr

Christos Kaklamanis
University of Patras & RACTI

Building B, 26500 Rio, Greece
kakl@ceid.upatras.gr

Nikos Karanikolas
University of Patras & RACTI

Building B, 26500 Rio, Greece
nkaranik@ceid.upatras.gr

Ariel D. Procaccia
Harvard SEAS

Cambridge, MA 02138, USA
arielpro@seas.harvard.edu

ABSTRACT
In 1876 Charles Lutwidge Dodgson suggested the intriguing
voting rule that today bears his name. Although Dodg-
son’s rule is one of the most well-studied voting rules, it suf-
fers from serious deficiencies, both from the computational
point of view—it isNP-hard even to approximate the Dodg-
son score within sublogarithmic factors—and from the social
choice point of view—it fails basic social choice desiderata
such as monotonicity and homogeneity.

In a previous paper [Caragiannis et al., SODA 2009] we
have asked whether there are approximation algorithms for
Dodgson’s rule that are monotonic or homogeneous. In this
paper we give definitive answers to these questions. We de-
sign a monotonic exponential-time algorithm that yields a
2-approximation to the Dodgson score, while matching this
result with a tight lower bound. We also present a monotonic
polynomial-time O(logm)-approximation algorithm (where
m is the number of alternatives); this result is tight as well
due to a complexity-theoretic lower bound. Furthermore,
we show that a slight variation of a known voting rule yields
a monotonic, homogeneous, polynomial-time O(m logm)-
approximation algorithm, and establish that it is impossible
to achieve a better approximation ratio even if one just asks
for homogeneity. We complete the picture by studying sev-
eral additional social choice properties; for these properties,
we prove that algorithms with an approximation ratio that
depends only on m do not exist.
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1. INTRODUCTION
Social choice theory is concerned with aggregating the

preferences of a set of n agents over a set of m alternatives.
It is often assumed that each agent holds a private ranking of
the alternatives; the collection of agents’ rankings is known
as a preference profile. The preference profile is reported to
a voting rule, which then singles out the winning alternative.

When there are two alternatives (and an odd number of
agents), majority voting is unanimously considered a per-
fect method of selecting the winner. However, when there
are at least three alternatives it is sometimes unclear which
alternative is best. In the Eighteenth Century the marquis
de Condorcet, perhaps the founding father of the mathe-
matical theory of voting, suggested a solution by extending
majority voting to multiple alternatives [9]. An alternative
x is said to beat alternative y in a pairwise election if a
majority of agents prefer x to y, i.e., rank x above y. An
alternative that beats every other alternative in a pairwise
election is easy to accept as the winner of the entire elec-
tion; in the modern literature such an alternative is known
as a Condorcet winner. Unfortunately, there are preference
profiles for which no alternative is a Condorcet winner.

Almost a century after Condorcet, a refinement of Con-
dorcet’s ideas was proposed by Charles Lutwidge Dodgson
(today better known by his pen name Lewis Carroll), de-
spite apparently being unfamiliar with Condorcet’s work [5].
Dodgson proposed selecting the alternative “closest” to be-
ing a Condorcet winner, in the following sense. The Dodgson
score of an alternative x is the number of exchanges between
adjacent alternatives in the agents’ rankings that must be
introduced in order for x to become a Condorcet winner (see



Section 2 for an example). A Dodgson winner is an alterna-
tive with minimum Dodgson score.

Although Dodgson’s rule is intuitively appealing, it has
been heavily criticized over the years for failing to satisfy
desirable properties that are considered by social choice the-
orists to be extremely basic. Most prominent among these
properties are monotonicity and homogeneity ; a voting rule
is said to be monotonic if it is indifferent to pushing a win-
ning alternative upwards in the preferences of the agents,
and is said to be homogeneous if it is invariant under dupli-
cation of the electorate. In fact, several authors have com-
mented that it is somewhat unfair to attribute the above-
mentioned rule to Dodgson, since Dodgson himself seems to
have questioned it due to its serious defects (see, e.g., the
papers by Tideman [20, p. 194] and Fishburn [10, p. 474]).

To make matters worse, the rise of computational com-
plexity theory, a century after the conception of Dodgson’s
rule, has made it clear that it suffers from yet another seri-
ous deficiency: it is intractable to single out the winner of
the election. Indeed, it is the first voting rule where win-
ner determination was known to be NP-hard [4]; even the
computation of the Dodgson score of a given alternative is
NP-hard. The question of the exact complexity of winner
determination under Dodgson’s rule was resolved by Hemas-
paandra et al. [12]: it is complete for the class Θp

2. These
results have sparked great interest in Dodgson’s rule among
computer scientists, making it “one of the most studied vot-
ing rules in computational social choice” [6].

In previous work with numerous colleagues [7], we have
largely taken the computational complexity point of view
by considering the computation of the Dodgson score as an
optimization problem. Among other results, we have given
two polynomial-time algorithms that guarantee an approxi-
mation ratio of O(logm) to the Dodgson score (where m is
the number of alternatives); this bound is asymptotically
tight with respect to polynomial-time algorithms (unless
P = NP). Approximating Dodgson’s rule (using slightly
different notions of approximation) has also been consid-
ered by Homan and Hemaspaandra [13], McCabe-Dansted
et al. [15], and Tideman [21, pages 199-201].

Taking the social choice point of view, our main concep-
tual contribution in [7] was the suggestion that an algorithm
that approximates the Dodgson score is a voting rule in its
own right in the sense that it naturally induces a voting rule
that selects an alternative with minimum score according
to the algorithm. Hence, such algorithms should be evalu-
ated not only by their computational properties (e.g., ap-
proximation ratio and complexity) but also by their social
choice properties (e.g., monotonicity and homogeneity). In
other words, they should be “socially desirable”. This issue
was very briefly explored in the foregoing paper: we have
shown that one of our two approximation algorithms satis-
fies a weak flavor of monotonicity, whereas the other does
not. Both algorithms, as well as Dodgson’s rule itself, are
neither monotonic (in the usual sense) nor homogeneous,
but this does not preclude the existence of monotonic or ho-
mogeneous approximation algorithms for the Dodgson score.
Indeed, we have asked whether there exist such algorithms
that yield a good approximation ratio [7, p. 1064].

In the following, we refer to algorithms approximating the
Dodgson score (as well as to the voting rules they induce) us-
ing the term Dodgson approximations. A nice property that
Dodgson approximations enjoy is that a finite approxima-

tion ratio implies Condorcet-consistency, i.e., a Condorcet
winner (if one exists) is elected as the unique winner. One
might wish for approximations of the Dodgson ranking (i.e.,
the ranking of the alternatives with respect to their Dodgson
scores) directly instead of approximating the Dodgson score.
Unfortunately, it is known that distinguishing whether an
alternative is the Dodgson winner or in the last O(

√
m) po-

sitions in the Dodgson ranking isNP-hard [7]. This extreme
inapproximability result provides a complexity-theoretic ex-
planation of the discrepancies that have been observed in
the social choice literature when comparing Dodgson’s rule
to simpler polynomial-time voting rules (see the discussion
in [7]) and implies that, as long as we care about efficient
algorithms, reasonable approximations of the Dodgson rank-
ing are impossible. However, the cases where the ranking is
hard to approximate are cases where the alternatives have
very similar Dodgson scores. We would argue that in those
cases it is not crucial, from Dodgson’s point of view, which
alternative is elected, since they are all almost equally close
to being Condorcet winners. Put another way, if the Dodg-
son score is a measure of an alternative’s quality, the goal is
simply to elect a good alternative according to this measure.

Our results and techniques. In this paper we give defini-
tive (and mostly positive) answers to the questions raised
above; our results are tight.

In Section 3 we study monotonic Dodgson approxima-
tions. We first design an algorithm that we denote by M .
Roughly speaking, this algorithm “monotonizes” Dodgson’s
rule by explicitly defining a winner set for each given prefer-
ence profile, and assigning an alternative to the winner set if
it is a Condorcet winner in some preference profile such that
the former profile is obtained from the latter by pushing the
alternative upwards. We prove the following result.

Theorem 3.2. M is a monotonic Dodgson approximation
with an approximation ratio of 2.

We furthermore show that there is no monotonic Dodgson
approximation with a ratio smaller than 2 (Theorem 3.4),
hence M is optimal among monotonic Dodgson approxima-
tions. Note that the lower bound is independent of compu-
tational assumptions, and, crucially, computing an alterna-
tive’s score under M requires exponential time. This is to be
expected since the Dodgson score is computationally hard
to approximate within a factor better than Ω(logm) [7].

It is now natural to ask whether there is a monotonic
polynomial-time Dodgson approximation with an approxi-
mation ratio of O(logm). We give a positive answer to this
question as well. Indeed, we design a Dodgson approxima-
tion denoted by Q, and establish the following result.

Theorem 3.10. Q is a monotonic polynomial-time Dodg-
son approximation with an approximation ratio of O(logm).

The result relies on monotonizing an existing Dodgson
approximation that is based on linear programming. The
main obstacle is to perform the monotonization in polyno-
mial time rather than looking at an exponential number of
profiles, as described above. Our main tool is the notion of
pessimistic estimator, which allows the algorithm to restrict
its attention to a single preference profile. Pessimistic esti-
mators are obtained by solving a linear program that is a
variation of the one that approximates the Dodgson score.

In Section 4 we turn to homogeneity. We consider Tide-



man’s simplified Dodgson rule [21, pages 199-201], which was
designed to overcome the deficiencies of Dodgson’s rule. The
former rule is computable in polynomial time, and is more-
over known to be monotonic and homogeneous. By scaling
the score given by the simplified Dodgson rule we obtain a
Dodgson approximation, denoted Td′, that is identical as a
voting rule, and moreover has the following properties.

Theorem 4.1. Td′ is a monotonic, homogeneous,
polynomial-time Dodgson approximation with an approxima-
tion ratio of O(m logm).

Note that the Dodgson score can be between 0 and Θ(nm),
so this bound is far from trivial. The analysis is tight when
there is an alternative that is tied against many other alter-
natives in pairwise elections (and hence has relatively high
Dodgson score), whereas another alternative strictly loses
in pairwise elections to few alternatives (so it has relatively
low Dodgson score). By homogeneity the former alternative
must be elected, since its score does not scale when the elec-
torate is replicated (we elaborate in Section 4). This intu-
ition leads to the following result which applies to any (even
exponential-time) homogeneous Dodgson approximation.

Theorem 4.2. Any homogeneous Dodgson approximation
has approximation ratio at least Ω(m logm).

In particular the upper bound given in Theorem 4.1
(which is achieved by an algorithm that is moreover mono-
tonic and efficient) is asymptotically tight. The heart of our
construction is the design of a preference profile such that
an alternative is tied against Ω(m) other alternatives; this
is equivalent to a construction of a family of subsets of a set
U , |U | = m, such that each element of U appears in roughly
half the subsets but the minimum cover is of size Ω(logm).

In order to complete the picture, in Section 5 we discuss
some other, less prominent, social choice properties not sat-
isfied by Dodgson’s rule [21, Chapter 13]: combinativity,
Smith consistency, mutual majority, invariant loss consis-
tency, and independence of clones. We show that any Dodg-
son approximation that satisfies one of these properties has
an approximation ratio of Ω(nm) (in the case of the former
two properties) or Ω(n) (in the case of the latter three). An
Ω(nm) ratio is a completely trivial one, but we also con-
sider an approximation ratio of Ω(n) to be impractical, as
the number of agents n is very large in almost all settings of
interest.

Discussion. Our results with respect to monotonicity are
positive across the board. In particular, we find Theorem
3.2 surprising as it indicates that Dodgson’s lack of mono-
tonicity can be circumvented by slightly modifying the def-
inition of the Dodgson score; in a sense this suggests that
Dodgson’s rule is not fundamentally far from being mono-
tonic. Theorem 3.10 provides a striking improvement over
the main result of [7]. Indeed, if one is interested in compu-
tationally tractable algorithms then an approximation ratio
of O(logm) is optimal; the theorem implies that we can ad-
ditionally satisfy monotonicity without (asymptotically) in-
creasing the approximation ratio. Our monotonization tech-
niques may be of independent interest.

Our results regarding homogeneity, Theorem 4.1 and The-
orem 4.2, can be interpreted both positively and negatively.
Consider first the case where the number of alternatives m
is small (e.g., in political elections). A major advantage of

Theorem 4.1 is that it concerns Tideman’s simplified Dodg-
son rule, which is already recognized as a desirable voting
rule, as it is homogeneous, monotonic, Condorcet-consistent,
and resolvable in polynomial time. The theorem lends fur-
ther justification to this rule by establishing that it always
elects an alternative relatively close (according to Dodgson’s
notion of distance) to being a Condorcet winner, that is, the
spirit of Dodgson’s ideas is indeed preserved by the “simpli-
fication” and (due to Theorem 4.2) this is accomplished in
the best possible way.

Viewed negatively, when the number of alternatives is
large (an extreme case is a multiagent system where the
agents are voting over joint plans), Theorem 4.2 strength-
ens the criticism against Dodgson’s rule: not only is the
rule itself nonhomogeneous, but any (even exponential-time
computable) conceivable variation that tries to roughly pre-
serve Dodgson’s notion of proximity to Condorcet is also
nonhomogeneous. We believe that both interpretations of
the homogeneity results are of interest to social choice the-
orists as well as computer scientists.

As an aside, note that almost all work in algorithmic mech-
anism design [17] seeks truthful approximation algorithms,
that is, algorithms such that the agents cannot benefit by
lying. However, it is well known that in the standard so-
cial choice setting, truthfulness cannot be achieved. Indeed,
the Gibbard-Satterthwaite Theorem [11, 18] (see also [16])
implies that any minimally reasonable voting rule is not
truthful. Therefore, social choice theorists strive for other
socially desirable properties, and in particular the ones dis-
cussed above. To avoid confusion, we remark that although
notions of monotonicity are often studied in mechanism de-
sign as ways of obtaining truthfulness (e.g., see [3]), in social
choice theory monotonicity is a very basic desirable property
in its own right (and has been so long before mechanism de-
sign was conceived).

Future work. In the future, we envision the extension of
our agenda of socially desirable approximation algorithms
to other important voting rules. Positive results in this di-
rection would provide us with tools to circumvent the defi-
ciencies of known voting rules without sacrificing their core
principles; negative results would further enhance our under-
standing of such deficiencies. Note that these questions are
relevant even with respect to tractable voting rules that do
not satisfy certain properties, but seem especially interest-
ing in the context of voting and rank aggregation rules that
are hard to compute, e.g., Kemeny’s and Slater’s rules [1, 8,
14]. The work in this direction might involve well-known
tractable, Condorcet-consistent, monotonic, and homoge-
neous rules such as Copeland and Maximin (see, e.g., [21])
in the same way that we use Tideman’s simplified Dodgson
rule in the current paper. It might also use different notions
of approximation (such as additive or differential approxima-
tions) besides the standard definition of the approximation
ratio as a multiplicative factor used in the current paper.

2. PRELIMINARIES
We consider a set of agents N = {0, 1, . . . , n−1} and a set

of alternatives A, |A| = m. Each agent has linear preferences
over the alternatives, that is, a ranking over the alternatives.
Formally, the preferences of agent i are a binary relation
�i over A that satisfies irreflexivity, asymmetry, transitivity
and totality; given x, y ∈ A, x �i y means that i prefers x to



y. We let L = L(A) be the set of linear preferences over A. A
preference profile �= 〈�0, . . . ,�n−1〉 ∈ Ln is a collection of
preferences for all the agents. A voting rule (also known as a
social choice correspondence) is a function f : Ln → 2A\{∅}
from preference profiles to nonempty subsets of alternatives,
which designates the winner(s) of the election.

Let x, y ∈ A, and �∈ Ln. We say that x beats y in a pair-
wise election if |{i ∈ N : x �i y}| > n/2, that is, if a (strict)
majority of agents prefer x to y. A Condorcet winner is an
alternative that beats every other alternative in a pairwise
election. The Dodgson score of an alternative x ∈ A with
respect to a preference profile �∈ Ln, denoted scD(x,�), is
the number of swaps between adjacent alternatives in the
individual rankings that are required in order to make it a
Condorcet winner. A Dodgson winner is an alternative with
minimum Dodgson score.

Consider, for example, the profile � in Table 1; in this
example N = {0, . . . , 4}, A = {a, b, c, d, e}, and the ith col-
umn is the ranking reported by agent i. Alternative a loses
in pairwise elections to b and e (two agents prefer a to b,
one agent prefers a to e). In order to become a Condorcet
winner, four swaps suffice: swapping a and e, and then a
and b, in the ranking of agent 1 (after the swaps the ranking
becomes a �1 b �1 e �1 c �1 d), and swapping a and d,
and then a and e, in the ranking of agent 4. Agent a cannot
be made a Condorcet winner with fewer swaps, hence we
have scD(a,�) = 4 in this profile. However, in the profile of
Table 1 there is a Condorcet winner, namely agent b, hence
b is the Dodgson winner with scD(b,�) = 0.

0 1 2 3 4
a b e e b
b e b c e
c a c d d
d c a a a
e d d b c

Table 1: An example of the Dodgson score. For this
profile �, it holds that scD(b,�) = 0, scD(a,�) = 4.

Given a preference profile �∈ Ln and x, y ∈ A, the deficit
of x against y, denoted defc(x, y,�), is the number of ad-
ditional agents that must rank x above y in order for x to
beat y in a pairwise election. Formally,

defc(x, y,�) = max

{
0,

⌈
n+ 1

2

⌉
− |{i ∈ N : x �i y}|

}
.

In particular, if x beats y in a pairwise election then it
holds that defc(x, y,�) = 0. Note that if n is even and
x and y are tied, that is, |{i ∈ N : x �i y}| = n/2,
then defc(x, y,�) = 1. For example, in the profile of Ta-
ble 1 we have that defc(a, b,�) = 1, defc(a, c,�) = 0,
defc(a, d,�) = 0, defc(a, e,�) = 2.

We consider algorithms that receive as input an alterna-
tive x ∈ A and a preference profile �∈ Ln, and return a
score for x. We denote the score returned by an algorithm
V on the input which consists of an alternative x ∈ A and
a profile �∈ Ln by scV (x,�). We call such an algorithm
V a Dodgson approximation if scV (x,�) ≥ scD(x,�) for ev-
ery alternative x ∈ A and every profile �∈ Ln. We also
say that V has an approximation ratio of ρ if scD(x,�) ≤
scV (x,�) ≤ ρ · scD(x,�), for every x ∈ A and every �∈ Ln.
A Dodgson approximation naturally induces a voting rule

by electing the alternative(s) with minimum score. Hence,
when we say that a Dodgson approximation satisfies a social
choice property we are referring to the voting rule induced
by the algorithm. Observe that the voting rule induced by
a Dodgson approximation with finite approximation ratio is
Condorcet-consistent, i.e., it always elects a Condorcet win-
ner as the sole winner if one exists.

Let us give an example. Consider the algorithm V that,
given an alternative x ∈ A and a preference profile �∈ Ln,
returns a score of scV (x,�) = m ·

∑
y∈A\{x} defc(x, y,�). It

is easy to show that this algorithm is a Dodgson approxima-
tion and, furthermore, has approximation ratio at most m.
Indeed, it is possible to make x beat y in a pairwise election
by pushing x to the top of the preferences of defc(x, y,�)
agents, and this requires at most m ·defc(x, y,�) swaps. By
summing over all y ∈ A \ {x}, we obtain an upper bound
of scV (x,�) on the Dodgson score of x. On the other hand,
given x ∈ A, for every y ∈ A \ {x} we require defc(x, y,�)
swaps that push x above y in the preferences of some agent in
order for x to beat y in a pairwise election. Moreover, these
swaps do not decrease the deficit against any other alterna-
tive. Therefore,

∑
y∈A\{x} defc(x, y,�) ≤ scD(x,�), and by

multiplying by m we get that scV (x,�) ≤ m · scD(x,�).

3. MONOTONICITY
In this section we present our results on monotonic Dodg-

son approximations. A voting rule is monotonic if a winning
alternative remains winning after it is pushed upwards in the
preferences of some of the agents. Dodgson’s rule is known
to be non-monotonic (see, e.g., [6]). The intuition is that if
an agent ranks x directly above y and y above z, swapping
x and y may not help y if it already beats x, but may help
z defeat x.

As a warm-up we observe that the Dodgson approxima-
tion mentioned at the end of the previous section is mono-
tonic as a voting rule. Indeed, consider a preference pro-
file � and a winning alternative x. Pushing x upwards in
the preference of some of the agents can neither increase
its score (since its deficit against any other alternative does
not increase) nor decrease the score of any other alternative
y ∈ A \ {x} (since the deficit of y against any alternative in
A \ {x, y} remains unchanged and its deficit against x does
not decrease).

3.1 Monotonizing Dodgson’s Voting Rule
In the following we present a much stronger result. Us-

ing a natural monotonization of Dodgson’s voting rule, we
obtain a monotonic Dodgson approximation with approx-
imation ratio at most 2. The main idea is to define the
winning set of alternatives for a given profile first and then
assign the same score to the alternatives in the winning set
and a higher score to the non-winning alternatives. Roughly
speaking, the winning set is defined so that it contains the
Dodgson winners for the given profile as well as the Dodgson
winners of other profiles that are necessary so that mono-
tonicity is satisfied.

More formally, we say that a preference profile �′∈ Ln is
a y-improvement of � for some alternative y ∈ A if �′ is
obtained by starting from � and pushing y upwards in the
preferences of some of the agents. In particular a profile is a
y-improvement of itself for any alternative y ∈ A. The next
statement is obvious.



Observation 3.1. Let y ∈ A and let �,�′∈ Ln be pro-
files such that �′ is a y-improvement of �. Then,

scD(y,�′) ≤ scD(y,�).

We monotonize Dodgson’s voting rule as follows. Let M
denote the new voting rule we are constructing. We denote
by W (�) the set of winners of M for profile �∈ Ln. Let
∆ = maxy∈W (�) scD(y,�). The voting rule M assigns a
score of scM (y,�) = ∆ to each alternative y ∈W (�) and a
score of

scM (y,�) = max{∆ + 1, scD(y,�)}

to each alternative y /∈ W (�). All that remains is to define
the set of winners W (�) for profile �. This is done as fol-
lows: for each preference profile �∗∈ Ln and each Dodgson
winner y∗ at �∗, include y∗ in the winner set W (�′) of each
preference profile �′∈ Ln that is a y∗-improvement of �∗.

Theorem 3.2. M is a monotonic Dodgson approxima-
tion with an approximation ratio of 2.

Proof. Clearly, the voting rule M is a Dodgson approx-
imation (i.e., scM (y,�) ≥ scD(y,�) for each alternative
y ∈ A and profile �∈ Ln). Furthermore, it is monotonic by
definition; if y is a winner for a profile �, y stays a winner
for each y-improvement of �. In the following, we show that
it has an approximation ratio of 2 as well. We will need the
following lemma; informally, it states that by pushing an al-
ternative upwards we cannot significantly decrease (that is,
improve) the Dodgson score of another alternative.

Lemma 3.3. Let y ∈ A and let �,�′∈ Ln be profiles such
that �′ is a y-improvement of �. For any alternative z ∈
A \ {y} it holds that scD(z,�) ≤ 2 · scD(z,�′).

Proof. The fact that the Dodgson score of alternative
z at profile �′ is scD(z,�′) means that z can become a
Condorcet winner by pushing it scD(z,�′) positions upwards
in the preference of some agents; let �′′ be the resulting
profile (where z is a Condorcet winner). For i ∈ N denote

Si = {x ∈ A : x �′i z ∧ z �′′i x}.

Clearly,
∑

i∈N |Si| = scD(z,�′).
Next consider the profile � and observe that for all alter-

natives x ∈ A \ {z}, defc(z, x,�) ≤ defc(z, x,�′). Hence, z
can become a Condorcet winner by pushing it upwards in
each agent i so that it bypasses all the alternatives in Si.
This involves no swaps at agent i if Si = ∅ while pushing
z |Si| + 1 positions upwards at agent i is sufficient to by-
pass the alternatives in Si and, possibly, alternative y that
may lie in between them in � (and not in �′). Hence, the
Dodgson score of z at profile � is

scD(z,�) ≤
∑

i∈N :Si 6=∅

(|Si|+ 1) ≤ 2
∑
i∈N

|Si| = 2 · scD(z,�′),

and the lemma follows.

Now, consider a profile �∈ Ln. Let y∗ be the alternative
in W (�) with highest Dodgson score (equal to ∆). If y∗ is
a Dodgson winner at � then scM (z,�) = scD(z,�) for each
alternative z ∈ A, and we are done. Hence we can assume
that y∗ is not a Dodgson winner but it belongs to W (�).

By definition there must be a profile �∗∈ Ln such that
y∗ is a Dodgson winner of �∗ and � is a y∗-improvement

of �∗. By Observation 3.1, since � is a y∗-improvement of
�∗, we have

scD(y∗,�) ≤ scD(y∗,�∗). (1)

Since y∗ is a Dodgson winner of �∗, we have

scD(y∗,�∗) ≤ scD(z,�∗) (2)

for each alternative z ∈ W (�). Also, by applying
Lemma 3.3, we have

scD(z,�∗) ≤ 2 · scD(z,�) (3)

for each alternative z ∈W (�). Now, using the definition of
M and inequalities (1), (2), and (3), for any alternative
z ∈W (�) we have

scM (z,�) = ∆ = scD(y∗,�) ≤ 2 · scD(z,�).

It remains to establish the approximation ratio with re-
spect to the alternatives in A\W (�). Let y′ ∈ A\{y∗} be a
Dodgson winner of �. Since y′ ∈W (�) the above inequality
implies that

∆ ≤ 2 · scD(y′,�). (4)

Let z′ ∈ A \W (�). By definition, scM (z′,�) = scD(z′,�)
when scD(z′,�) > ∆ + 1, and we are done. Otherwise it
holds that scM (z′,�) = ∆ + 1. Since z′ is not a Dodgson
winner for �, we have scD(z′,�) ≥ scD(y′,�) + 1 in this
case, and using (4) we obtain

scM (z′,�) = ∆ + 1 ≤ 2 · scD(y′,�) + 1 ≤ 2 · scD(z′,�).

To conclude, the score of each alternative under M is at
most twice its Dodgson score.

In general, the Dodgson approximation M is computable
in exponential time. However, it can be implemented to run
in polynomial time when m is a constant; in this special
case the number of different profiles with n agents is poly-
nomial and the Dodgson score can be computed exactly in
polynomial time [4].

The next statement shows that the voting rule M is the
best possible monotonic Dodgson approximation. Note that
it is not based on any complexity assumptions and, hence, it
holds for exponential-time Dodgson approximations as well.
Due to lack of space, the proof is omitted.

Theorem 3.4. A monotonic Dodgson approximation
cannot have an approximation ratio smaller than 2.

3.2 A monotonic polynomial-time O(logm)-
approximation algorithm

In the following we present a monotonic polynomial-time
Dodgson approximation that achieves an approximation ra-
tio of O(logm). Given the Ω(logm) inapproximability
bound for the Dodgson score [7], this rule is asymptotically
optimal with respect to polynomial-time algorithms. To be
precise, it is optimal within a factor of 4, assuming that
problems in NP do not have quasi-polynomial-time algo-
rithms.

In general, there are two main obstacles that we have to
overcome in order to implement the monotonization in poly-
nomial time. First, the computation of the Dodgson score
and the decision problem of detecting whether a given al-
ternative is a Dodgson winner on a particular profile are
NP-hard problems [4]. We overcome this obstacle by using



a polynomial-time Dodgson approximation R instead of the
Dodgson score itself. Even in this case, given a profile, we
still need to be able to detect whether an alternative y ∈ A is
the winner according to R at some profile of which the cur-
rent profile is a y-improvement; if this is the case, y should
be included in the winning set. Note that, in general, this re-
quires checking an exponential number of profiles in order to
determine the winning set of the current one. We tackle this
second obstacle using the notion of pessimistic estimators;
these are quantities defined in terms of the current profile
only and are used to identify its winning alternatives.

In order to define the algorithm R that we will monotonize
we consider an alternative definition of the Dodgson score
for an alternative z∗ ∈ A and a profile �∈ Ln. Define the
set S�i

k (z∗) to be the set of alternatives z∗ bypasses as it
is pushed k positions upwards in the preference of agent i.
Denote by S�i(z∗) the collection of all possible such sets for
agent i, i.e.,

S�i(z∗) = {S�i
k (z∗) : k = 1, ..., ri(z

∗,�)− 1},

where ri(z
∗,�) denotes the rank of alternative z∗ in the

preferences of agent i ∈ N (e.g., the most and least pre-
ferred alternatives have rank 1 and m, respectively). Let
S(z∗) =

⋃
i∈N S

�i(z∗). Then, the problem of computing
the Dodgson score of alternative z∗ on the profile � is equiv-
alent to selecting sets from S of minimum total size so that
at most one set is selected among the ones in S�i(z∗) for
each agent i ∈ N and each alternative z ∈ A \ {z∗} appears
in at least defc(z∗, z,�) selected sets. This can be expressed
by the following integer linear program:

minimize
∑
i∈N

ri(z
∗,�)−1∑
k=1

k · x
(
S�i

k (z∗)
)

(5)

subject to ∀z ∈ A \ {z∗},∑
i∈N

∑
S∈S�i (z∗):z∈S

x(S) ≥ defc(z∗, z,�)

∀i ∈ N,
∑

S∈S�i (z∗)

x(S) ≤ 1

∀S ∈ S(z∗), x(S) ∈ {0, 1}

The binary variable x(S) indicates whether the set S ∈
S(z∗) is selected (x(S) = 1) or not (x(S) = 0). Now, con-
sider the LP relaxation of the above ILP in which the last
constraint is relaxed to x(S) ≥ 0. We define the voting
rule R that sets scR(z∗,�) equal to the optimal value of
the LP relaxation multiplied by Hm−1, where Hk is the kth
harmonic number. In [7] it is shown that

scD(y,�) ≤ scR(y,�) ≤ Hm−1 · scD(y,�)

for every alternative y ∈ A, i.e., R is a Dodgson approxima-
tion with an approximation ratio of Hm−1. The following
observation is analogous to Observation 3.1.

Observation 3.5. Let y ∈ A and let �,�′∈ Ln be pro-
files such that �′ is a y-improvement of �. Then,

scR(y,�′) ≤ scR(y,�).

We now present a new voting rule Q by monotonizing R.
The voting rule Q defines a set of alternatives W (�) that
is the set of winners on a particular profile �. Then, it sets
scQ(y,�) = 2 · scR(y∗,�) for each alternative y ∈ W (�),

where y∗ is the winner according to the voting rule R. In
addition, it sets scQ(y,�) = 2 ·scR(y,�) for each alternative
y /∈W (�).

In order to define the set W (�) we will use another
(slightly different) linear program defined for two alterna-
tives y, z∗ ∈ A and a profile �∈ Ln. The new LP has the
same set of constraints as the relaxation of (5) used in the
definition of scR(z∗,�) and the following objective function:

minimize
∑
i∈N

ri(z
∗,�)−1∑
k=1

k · x
(
S�i

k (z∗)
)

(6)

+
∑

i∈N :y�iz∗

ri(z
∗,�)−ri(y,�)−1∑

k=1

x
(
S�i

k (z∗)
)

We define the pessimistic estimator pe(z∗, y,�) for al-
ternative z∗ ∈ A with respect to another alternative y ∈
A \ {z∗} and a profile �∈ Ln to be equal to the objective
value of LP (6) multiplied by Hm−1. As will become ap-
parent shortly, the pessimistic estimator pe(z∗, y,�′) upper-
bounds the score of alternative z∗ under R on every profile �
such that �′ is a y-improvement of �, hence the pessimism
with respect to estimating the score of z∗. These pessimistic
estimators will be our main tool in order to monotonize R.

We are now ready to complete the definition of the vot-
ing rule Q. The set W (�) is defined as follows. First, it
contains all the winners according to voting rule R. An al-
ternative y that is not a winning alternative according to
R is included in the set W (�) if pe(z, y,�) ≥ scR(y,�) for
every alternative z ∈ A \ {y}.

Clearly, Q is polynomial-time; computing the scores of all
alternatives involves solving m2 linear programs of polyno-
mial size. We next show that it is monotonic as well. This
is done in Lemma 3.8 after establishing some properties of
pessimistic estimators. The first property (stated in Lemma
3.6) has a long and technically involved proof that is omit-
ted due to lack of space. The second one (in Lemma 3.7)
follows easily by the definition of pessimistic estimators.

Lemma 3.6. Let y, z∗ ∈ A be different alternatives and let
�,�′∈ Ln be two profiles such that �′ is a y-improvement
of �. Then, pe(z∗, y,�′) ≥ pe(z∗, y,�).

Lemma 3.7. Let y, z∗ ∈ A be different alternatives and
let �∈ Ln be a profile. Then, scR(z∗,�) ≤ pe(z∗, y,�) ≤
2 · scR(z∗,�).

Proof. The lemma follows directly from the observations
that the objective of the linear program (6) is lower-bounded
by the objective of the linear programming relaxation of (5)
and also upper-bounded by the latter multiplied by 2.

Lemma 3.8. The voting rule Q is monotonic.

Proof. Let y ∈ A and consider a profile �∈ Ln such that
y ∈W (�). We will show that y ∈W (�′) for each profile �′
which is a y-improvement of �. This is clearly true if y is a
winning alternative according to R at �′. If this is not the
case, we distinguish between two cases:

Case 1. y is a winning alternative according to R at �.
Then for any alternative z ∈ A \ {y} we have

pe(z, y,�′) ≥ pe(z, y,�) ≥ scR(z,�) ≥ scR(y,�)

≥ scR(y,�′),



therefore y ∈W (�′). The first inequality follows by Lemma
3.6, the second follows by Lemma 3.7, the third is true since
y is the winner under R in profile �, and the fourth follows
from Observation 3.5.

Case 2. y is not a winning alternative according to R at �.
Since y ∈ W (�) it must hold that pe(z, y,�) ≥ scR(y,�)
for any alternative z ∈ A \ {y}. We therefore have that

pe(z, y,�′) ≥ pe(z, y,�) ≥ scR(y,�) ≥ scR(y,�′)

for any alternative z ∈ A \ {y} and, hence, y ∈ W (�′).
The first inequality follows by Lemma 3.6 and the third is
implied by Observation 3.5.

The following lemma provides the desired bound on the
approximation ratio.

Lemma 3.9. Q is a Dodgson approximation with an ap-
proximation ratio of 2Hm−1.

Proof. We have to show that

scD(y,�) ≤ scQ(y,�) ≤ 2Hm−1 · scD(y,�)

for any alternative y ∈ A and profile �∈ Ln. This is clearly
the case if y is a winning alternative according to R or y 6∈
W (�) since scQ(y,�) = 2 · scR(y,�) (by the definition of
Q) and

scD(y,�) ≤ scR(y,�) ≤ Hm−1 · scD(y,�)

since R is a Dodgson approximation with approximation ra-
tio Hm−1.

Now assume that y is not a winning alternative according
to R but it belongs to W (�). Let z be a winning alterna-
tive according to R. Since y ∈ W (�), it must be the case
that pe(z, y,�) ≥ scR(y,�). So, using in addition the def-
inition of Q, Lemma 3.7, and the fact that R is a Dodgson
approximation, we have

scQ(y,�) = 2 · scR(z,�) ≥ pe(z, y,�) ≥ scR(y,�)

≥ scD(y,�).

Furthermore, using the definition of Q, the fact that z is a
winning alternative under R, and the approximation bound
of R, we have

scQ(y,�) = 2 · scR(z,�) ≤ 2 · scR(y,�)

≤ 2Hm−1 · scD(y,�).

We summarize the discussion above with the following
statement.

Theorem 3.10. Q is a monotonic polynomial-time Dodg-
son approximation with an approximation ratio of 2Hm−1.

4. HOMOGENEITY
In this section we present our results on homogeneous

Dodgson approximations. A voting rule is homogeneous if
duplicating the electorate, that is, duplicating the preference
profile, does not change the outcome of the election. An ex-
ample (due to Brandt [6]) that demonstrates that Dodgson’s
rule fails homogeneity can be found in Table 2. The intuition
is that if alternatives x and y are tied in a pairwise election,
the deficit of x against y does not increase by duplicating the
profile, whereas if x strictly loses to y in a pairwise election
then the deficit scales with the number of copies.

×2 ×2 ×2 ×2 ×2 ×1 ×1
d b c d a a d
c c a b b d a
a a b c c b b
b d d a d c c

Table 2: An example that demonstrates that Dodg-
son’s rule does not satisfy homogeneity. A column
headed by ×k represents k identical agents. In this
profile, a is the Dodgson winner with a score of 3.
By duplicating the electorate three times we obtain
a profile in which the winner is d with a score of 6.

4.1 The Simplified Dodgson Rule
Tideman [21, pages 199-201] defines the following sim-

plified Dodgson rule and proves that it is monotonic and
homogeneous. Consider a profile �∈ Ln. If an alternative
is a Condorcet winner, then this alternative is the sole win-
ner. Otherwise, the simplified Dodgson rule assigns a score
to each alternative and the alternative with the minimum
score wins. According to the simplified Dodgson rule, the
score of an alternative x is

scTd(x,�) =
∑

y∈A\{x}

max {0, n− 2 · |{i ∈ N : x �i y}|}.

Observe that scTd(x,�) can be smaller than the Dodgson
score of x and, hence, this definition does not correspond to
a Dodgson approximation. For example, in profiles with an
even number of agents, scTd(x,�) is 0 when x is tied against
some alternatives and beats the rest. Hence, we present an
alternative definition of the simplified Dodgson rule as a
Dodgson approximation by scaling the original definition. If
an alternative x is a Condorcet winner, then it has score
scTd′(x,�) = 0. Otherwise:

scTd′(x,�) = m · scTd(x,�) +m(logm+ 1).

It is clear that this alternative definition is equivalent to
the original one of the simplified Dodgson rule, in the sense
that it elects the same set of alternatives. It is also clear
that scTd(x,�) can be computed in polynomial time, and,
as mentioned above, Td is known to be monotonic and ho-
mogeneous. Hence, in order to prove the following theorem
it is sufficient to prove that Td′ is a Dodgson approximation
and to bound its approximation ratio.

Theorem 4.1. Td′ is a monotonic, homogeneous,
polynomial-time Dodgson approximation with an approxi-
mation ratio of O(m logm).

Proof. We will show that, given any profile �∈ LN and
alternative x ∈ A, it holds that scD(x,�) ≤ scTd′(x,�) ≤
m(logm+ 3) · scD(x,�). We will consider the case in which
x is not a Condorcet winner since otherwise the inequalities
clearly hold.

In order to show that Td′ is a Dodgson approximation we
distinguish between two cases.

If the number of agents is odd, then scTd(x,�) can be
expressed in terms of the deficits of alternative x against
the other alternatives as follows:

scTd(x,�) =
∑

y∈A\{x}

max{0, 2 · defc(x, y,�)− 1}.



Observe that each term of the above sum is non-zero
only when defc(x, y,�) > 0. Since 2 · defc(x, y,�) − 1 ≥
defc(x, y,�) in this case, we have that

scTd′(x,�) = m · scTd(x,�) +m(logm+ 1)

> m · scTd(x,�)

≥ m
∑

y∈A\{x}

defc(x, y,�)

≥ scD(x,�).

If the number of agents is even, then scTd(x,�) can be
expressed in terms of the deficits of alternative x against
the other alternatives as follows:

scTd(x,�) =
∑

y∈A\{x}

max{0, 2 · defc(x, y,�)− 2}.

Let

Sx = {y ∈ A \ {x} : defc(x, y,�) ≥ 2}

and

Tx = {y ∈ A \ {x} : defc(x, y,�) = 1}.

We will now prove that it is sufficient to push x to the top
of the preferences of at most logm + 1 agents in order to
cover the deficits against the alternatives in Tx. Since the
number of agents n is even, the fact that defc(x, y,�) = 1
means that exactly n/2 agents rank x above y. For every
i ∈ N , let Ai = {y ∈ Tx : y �i x}. By the pigeonhole
principle there exists an agent i1 such that |Ai1 | ≥ |Tx|/2;
we add i1 to our cover, and denote X1 = Tx \ Ai1 . Next,

there must exist an agent i2 such that |Ai2 ∩X1| ≥ |X1|
2

. We
add i2 to our cover, and define X2 = X1 \ Ai2 . Continuing
inductively in this way, we cover all the alternatives in Tx

after log |Tx|+ 1 ≤ logm+ 1 steps.
Moreover, in order to make x beat the alternatives in Sx

it suffices to push it to the top of the preferences of at most∑
y∈Sx

defc(x, y,�) agents. Hence, the Dodgson score of x
is

scD(x,�) ≤ m
∑

y∈Sx

defc(x, y,�) +m(logm+ 1).

Now observe that each term of the sum in the equivalent
definition of scTd(x,�) is non-zero only when defc(x, y,�) ≥
2 (i.e., when y ∈ Sx). Since 2·defc(x, y,�)−2 ≥ defc(x, y,�)
in this case, we have that

scTd′(x,�) = m · scTd(x,�) +m(logm+ 1)

≥ m
∑

y∈Sx

defc(x, y,�) +m(logm+ 1)

≥ scD(x,�).

We have completed the proof that Td′ is a Dodgson ap-
proximation. In order to prove the bound on the approxi-
mation ratio, in both cases we have

scTd′(x,�) = m · scTd(x,�) +m(logm+ 1)

≤ 2m
∑

y∈A\{x}

defc(x, y,�) +m(logm+ 1)

≤ m(logm+ 3) · scD(x,�).

The last inequality holds since scD(x,�) is lower bounded
by both

∑
y∈A\{x} defc(x, y,�) and 1.

4.2 Lower Bound
We next show that Td′ is the asymptotically optimal ho-

mogeneous Dodgson approximation by proving a matching
lower bound on the approximation ratio of homogeneous
Dodgson approximations. The lower bound is not based
on any complexity assumptions and holds for exponential-
time Dodgson approximations as well. This is quite striking
since, as stated in Theorem 4.1, Td′ is also monotonic and
polynomial-time.

Theorem 4.2. Any homogeneous Dodgson approxima-
tion has approximation ratio at least Ω(m logm).

The proof is based on the construction of a preference
profile with an alternative b ∈ A that defeats some of the
alternatives in pairwise elections, and is tied against many
others. Hence, it has a high Dodgson score. On the other
hand, there is a second alternative that has a Dodgson score
of two, simply because it has a deficit of two against another
alternative. In order to obtain a good approximation ratio,
the algorithm must not select b in this profile. However,
when the profile is replicated, the Dodgson score of b does
not increase: it is still tied against the same alternatives. In
contrast, the Dodgson score of the other alternatives scales
with the number of copies. By homogeneity, we cannot select
b in the replicated profile, which yields the lower bound.

We can think of an agent as the subset of alternatives
that are ranked above b. If b is tied against an alternative,
then that alternative is a member of exactly half the sub-
sets. The argument used in the proof of Theorem 4.1 implies
that there is always a cover of logarithmic size; the proof of
Theorem 4.2 establishes that this bound is tight. Indeed, the
combinatorial core of the theorem’s proof is the construction
of a set cover instance with the following properties: each el-
ement of the ground set appears in roughly half the subsets,
but every cover requires a logarithmic number of subsets
(see Claim 4.3). This (apparently novel) construction is due
to Noga Alon [2].

Proof of Theorem 4.2. Given an integer r ≥ 3, we
construct a preference profile � with n = 2r agents and m =
2r+1 +1 alternatives. There is a set X = {x1, x2, . . . , x2r−1}
with 2r − 1 alternatives, two sets Y and Z with 2r−1 alter-
natives each, and two additional alternatives a and b.

For i = 1, ..., 2r − 1, denote by Xi the set of alternatives
xj such that the inner product of the binary vectors cor-
responding to the binary representations of i and j equals
1 modulo 2. Denote by X the collection of all sets Xi for
i = 1, ..., 2r − 1.

Claim 4.3. The sets of X have the following properties:

1. Each alternative x ∈ X belongs to 2r−1 different sets
of X .

2. Each set of X contains exactly 2r−1 alternatives.

3. There are r different sets in X whose union contains
all alternatives in X.

4. For each subcollection of at most r−1 sets in X , there
exists an alternative of X that does not belong to their
union.

Proof. Properties 1 and 2 follow easily by the definition
of the sets in X .



0 1 2 ... 2r−1 2r−1 + 1 ... 2r − 1
b b a ... a X2r−1+1 ... X2r−1

a a X2 ... X2r−1 Z ... Z
Y X1 Y ... Y b ... b
Z Z b ... b Y ... Y
X Y Z ... Z X \X2r−1+1 ... X \X2r−1

X \X1 X \X2 ... X \X2r−1 a ... a

Table 3: The preference profile � used in the proof of Theorem 4.2.

In order to establish property 3, it suffices to consider the
r sets X2i for i = 0, ..., r − 1, i.e., the ones whose binary
representation has just one 1 in the (i+ 1)-th bit position.

Turning to property 4, we consider a binary r-vector
z = 〈z1, z2, ..., zr〉 ∈ {0, 1}r. Now, consider the set Xk and
let 〈b1(k), b2(k), ..., br(k)〉 be the r-vector corresponding to
the binary representation of k. We have that the equation∑r

j=1 bj(k) · zj = 0 mod 2 is true if and only if the alter-
native such that z is the binary representation of its index
is not contained in set Xk. Since any homogeneous system
of less than r linear equations modulo 2 with r unknowns
has a nontrivial (i.e., nonzero) solution, it follows that for
any subcollection of less than r sets in X , there exists an
alternative in X that is not contained in their union.

We construct the preference profile � as follows (see Ta-
ble 3):

• Agent 0 ranks b first, then a, then the alternatives in
Y (in arbitrary order), then the alternatives in Z (also
in arbitrary order), and then the alternatives of X (in
arbitrary order).

• Agent 1 ranks b first, then a, then the alternatives in
X1 (in arbitrary order), then the alternatives in Z,
then the alternatives in Y , and then the alternatives
in X \X1 (in arbitrary order).

• For i = 2, ..., 2r−1, agent i ranks a first, then the alter-
natives of Xi (in arbitrary order), then the alternatives
in Y , then b, then the alternatives in Z, and then the
alternatives in X \Xi (in arbitrary order).

• For i = 2r−1 + 1, ..., 2r − 1, agent i ranks the alterna-
tives in Xi (in arbitrary order) first, then the alterna-
tives of Z, then b, then the alternatives in Y , then the
alternatives in X \Xi (in arbitrary order), and then a.

The next four claims state important properties of the
profile �.

Claim 4.4. The Dodgson score of a is at most 2.

Proof. After swapping a and b in the rankings of agents
0 and 1 alternative a is ranked first by a majority of agents,
hence it clearly becomes the Condorcet winner.

Claim 4.5. Alternative b has deficit at most 1 against any
other alternative.

Proof. By property 1 of Claim 4.3 and the construction
of the profile, we have that b is ranked below any alternative
xi of X \ X1 by 2r−1 agents, that is, b is tied with these
alternatives in pairwise elections. It follows that defc(b, xi,�
) = 1. In addition, b is ranked above any alternative in
X1 ∪ Y ∪ Z ∪ {a} by 2r−1 + 1 agents, i.e., defc(b, x,�) = 0
for any alternative x ∈ X1 ∪ Y ∪ Z ∪ {a}.

Claim 4.6. r2r−2 ≤ scD(b,�) ≤ (r − 1)2r.

Proof. By property 4 of Claim 4.3, alternative b has to
be pushed upwards in the rankings of at least r − 1 among
the agents 2, ..., 2r−1 in order to eliminate its deficit against
the 2r−1 − 1 alternatives of X \ X1. This requires at least
(r − 1)2r−1 swaps in order to push above the alternatives
of Y (in the case of agents 2, . . . , 2r−1) or Z (in the case of
agents 2r−1 + 1, . . . , 2r − 1) in the rankings of r − 1 agents,
plus at least 2r−1−1 additional swaps in order to defeat each
of the alternatives in X \X1; the total is r2r−1 − 1 ≥ r2r−2

swaps.
The upper bound follows by properties 2 and 3 of Claim

4.3, since b becomes a Condorcet winner by pushing it above
the alternatives of X in the rankings of at most r − 1
additional agents, and using at most |Xi| + |Y | = 2r or
|Xi|+ |Z| = 2r swaps per agent.

Claim 4.7. Any alternative besides b has deficit at least
2 against some other alternative.

Proof. Alternative a is ranked higher than alternative b
by 2r−1−1 agents; so, it holds that defc(a, b,�) = 2. More-
over, alternative a is ranked higher than the alternatives in
X, Y and Z by 2r−1 + 1 agents. So, defc(x, a,�) = 2 for
any alternative x ∈ X ∪ Y ∪ Z.

Now, consider a homogeneous Dodgson approximation H.
If it selects b as the winner of profile � then, using Claims
4.4 and 4.6, and since H is a Dodgson approximation, we
have

scH(a,�) ≥ scH(b,�) ≥ r2r−2 ≥ r2r−3scD(a,�).

Hence, H has an approximation ratio of at least

r2r−3 =
m− 1

16
· log

m− 1

2
= Ω(m logm) .

Assume otherwise that the winner under H is some al-
ternative x ∈ A \ {b}. Consider the preference profile
�′ obtained by making r(r − 1)22r−3 copies of the pro-
file �. By Claim 4.5, we have that b has deficit at most
1 against any other alternative in the new profile as well;
its Dodgson score in the new profile is in the range defined
in Claim 4.6, i.e., scH(b,�′) ≤ (r − 1)2r. By the defini-
tion of the deficit and Claim 4.7, we have that alternative
x has deficit at least r(r − 1)22r−3 against some other al-
ternative and, hence, its Dodgson score in the new profile is
scH(x,�′) ≥ r(r − 1)22r−3.

By the homogeneity property, x should be a winner under
H in the profile �′. Then,

scH(b,�′) ≥ scH(x,�′) ≥ scD(x,�′)
≥ r(r − 1)22r−3 ≥ r2r−3scD(b,�′).



Therefore, H has approximation ratio r2r−3 = Ω(m logm)
in this case as well.

5. ADDITIONAL PROPERTIES
In this section we briefly summarize our results with re-

spect to several additional social choice properties that are
not satisfied by Dodgson’s rule. In general, our lower bounds
with respect to these properties are at least linear in n, the
number of agents. Since n is almost always large, these re-
sults should strictly be interpreted as impossibility results,
that is, normally an upper bound of O(n) is not useful. We
now (informally) formulate the five properties in question;
for more formal definitions the reader is referred to [21].

We say that a voting rule satisfies combinativity if, given
two preference profiles where the rule elects the same win-
ning set, the rule would also elect this winning set under the
profile obtained from appending one of the original prefer-
ence profiles to the other. Note that combinativity implies
homogeneity.

A dominating set is a nonempty set of alternatives such
that each alternative in the set beats every alternative out-
side the set in pairwise elections. The Smith set is the unique
inclusion-minimal dominating set. A voting rule satisfies
Smith consistency if winners under the rule are always con-
tained in the Smith set.

We say that a voting rule satisfies mutual majority consis-
tency if, given a preference profile where more than half the
agents rank a subset of alternatives X ⊆ A above A\X, only
alternatives from X can be elected. A voting rule satisfies
invariant loss consistency if an alternative that loses to ev-
ery other alternative in pairwise elections cannot be elected.
Clearly, mutual majority consistency implies invariant loss
consistency.

Independence of clones was introduced by Tideman [20];
see also the paper by Schulze [19]. For ease of exposition
we use a slightly weaker definition previously employed by
Brandt [6]; since we are proving a lower bound, a weaker
definition only strengthens the bound. Given a preference
profile, two alternatives x, y ∈ A are considered clones if
they are adjacent in the rankings of all the agents, that is,
their order with respect to every alternative in A \ {x, y} is
identical everywhere. A voting rule is independent of clones
if a losing alternative cannot be made a winning alternative
by introducing clones.

We have the following theorem. Due to lack of space, the
proof is omitted.

Theorem 5.1. Let V be a Dodgson approximation. If V
satisfies combinativity or Smith consistency, then its approx-
imation ratio is at least Ω(nm). If V satisfies mutual major-
ity consistency, invariant loss consistency, or independence
of clones, then its approximation ratio is at least Ω(n).
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