
Terminating Population Protocols via some Minimal
Global Knowledge Assumptions

Paul G. Spirakis

joint work with
Othon Michail

Ioannis Chatzigiannakis

Computer Technology Institute & Press “Diophantus” (CTI)
Dept. of Computer Engineering & Informatics (CEID), Univ. of Patras

14th International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS)

October 1-4, 2012
Toronto, Canada

1 / 26

Population Protocols (PPs)

n finite-state anonymous agents

Passively mobile

Modeled via a fair adversary scheduler
Abstract way to capture probabilistic mobility

Only stabilizing computations

Inability to terminate
Agents cannot tell when they have heard from everybody else

2 / 26

Population Protocols

3 / 26

Previous Work

PPs compute precisely the semilinear predicates [AADFP04]

Holds for local space up to o(log log n) [CMNPS11]

Mediated PPs are much more powerful [CMS09]

Equivalent to NTMs of space O(n2)

So are the Community Protocols that extend PPs with unique IDs

Equivalent to NTMs of space O(n log n)

The Stabilizing Inputs variant provides a means of sequentially composing
protocols even in the absence of termination [AACFJP05]

4 / 26

Cover-time Service

We augment PPs with a cover-time service

Definition

The cover-time service (CTS) informs a swapping state every time it covers the
whole population.

The CTS is a natural means of giving to finite-state nodes access to a known
bound on the cover time of a random walk

e.g. in a complete graph the cover time of a random walk is n log n

5 / 26

Cover-time Service

Imagine now a unique leader-state in the population that jumps from agent
to agent

Intuitively, the leader-state knows an upper bound on the cover time of its
own random walk via the CTS

We call this model the CTS model

6 / 26

Our Goal

Study the computability of the CTS model

Functions on input assignments to the agents

We do this via a reduction to an oracle model

The Absence Detection (AD) model

The oracle is capable of detecting the presence or absence of every state from
the population

The AD model serves as a convenient abstraction for PP models that have
the ability to detect termination

7 / 26

Population Protocol with Absence Detector

A Population Protocol with Absence Detector (AD) is a 7-tuple:

1 X is the input alphabet

2 Y is the output alphabet

3 Q is a set of states

4 I : X → Q is the input function

5 ω : Q → Y is the output function

6 δ is the transition function δ : Q × Q → Q × Q

7 γ is the detection transition function γ : Q × {0, 1}|Q| → Q

We call a transition every

(q1, q2)→ (q′1, q
′
2) where δ(q1, q2) = (q′1, q

′
2) and q1, q2, q

′
1, q

′
2 ∈ Q and every

(q, a)→ q′ where γ(q, a) = q′ and q, q′ ∈ Q, a ∈ {0, 1}|Q|

8 / 26

Setting

Complete interaction graph G = (V ,E) (simple, directed)

Population of n agents

1 absence detector

The state of the absence detector is an absence vector a ∈ {0, 1}|Q|

representing the absence or not of each state from the population

q ∈ Q is absent from the population in the current configuration iff a[q] = 1

Each agent initially senses its environment receiving an input symbol from X

This results in an input assignment x ∈ X n

The absence vector is initially

a[q] = 0 for all q ∈ Q so that ∃σk ∈ x : I (σk) = q and
a[q] = 1 for all other q ∈ Q

9 / 26

An Example

Q = {b, c , d}
(c , b)→ (c , c)

(c , d)→ (c , c)

a ∈ {0, 1}3
e.g. (0, 0, 1) means that b and c are present and d is absent

10 / 26

An Example

b

c

d

d

d

d

d

d

a[b] = 0, a[c] = 0, a[d] = 0

11 / 26

An Example

c

c

d

d

d

d

d

d

a[b] = 1, a[c] = 0, a[d] = 0

11 / 26

An Example

c

c

c

d

d

d

d

d

a[b] = 1, a[c] = 0, a[d] = 0

11 / 26

An Example

c

c

c

c

d

d

d

d

a[b] = 1, a[c] = 0, a[d] = 0

11 / 26

An Example

c

c

c

c

c

d

d

d

a[b] = 1, a[c] = 0, a[d] = 0

11 / 26

An Example

c

c

c

c

c

c

d

d

a[b] = 1, a[c] = 0, a[d] = 0

11 / 26

An Example

c

c

c

c

c

c

c

d

a[b] = 1, a[c] = 0, a[d] = 0

11 / 26

An Example

c

c

c

c

c

c

c

c

a[b] = 1, a[c] = 0, a[d] = 1

11 / 26

A Leader-Election AD

X = {1},
Q = {l , f , qhalt},
I (1) = f ,

δ is defined as (l , f)→ (l , qhalt), and

γ as

(f , a) → l , if a[l] = 1 and
(l , a) → qhalt , if a[f] = 1

The idea is that the 1st agent that meets the absence detector becomes a
leader while agents meeting the detector in subsequent rounds remain
followers

12 / 26

Interesting Properties

Proposition

Any AD with stabilizing states has an equivalent halting AD.

Proposition

Halting ADs can be sequentially composed.

Proposition

Any AD has an equivalent AD that assumes a unique leader which does not
obtain any input.

13 / 26

Computing the Non-Semilinear Predicate (N1 = 2d)

14 / 26

Computing the Non-Semilinear Predicate (N1 = 2d)

Implements the classical TM algorithm

The unique leader plays the role of the TM head

In each iteration it halves the number of remaining 1s

by marking red half of them and green the rest
then restores the green to begin the next iteration

The absence detector informs the protocol if the current iteration is complete

If no uncolored 1 has remained then the head has visited all 1s

15 / 26

CTS-AD Equivalence

Theorem
The CTS model is computationally equivalent to the leader-AD model.

Proof.
The CTS-leader may form an absence vector by walking around and keeping
track of present states until it covers the whole population

The AD-leader detects the completion of a covering by marking all nodes that
it meets and asking the absence detector whether all nodes have been marked

Thus we may explore the computational power of the CTS model via the AD
model

16 / 26

Some Notation

SEM: the class of semilinear predicates

HAD: the class of computable predicates by halting ADs with leader

k-truncate of a configuration c ∈ NQ : τk(c)[q] := min(k, c[q]) for all q ∈ Q

17 / 26

PPs vs ADs

Theorem
SEM is a proper subset of HAD.

Proof.
For any stabilizing PP ∃ finite k such that a configuration is output stable iff
its k-truncate is output stable

For all finite k and any initial configuration c ∈ NQ , there is an AD that
aggregates in one agent τk(c)

Let the AD know the k corresponding to the simulated PP

The AD-leader every l (constant) simulation steps, collects τk(c) and checks
whether it is output-stable

As k is fixed it can do this in its fixed memory

Thus, any PP can be simulated by some AD and since there is a
non-semilinear AD (power of 2) the theorem follows

18 / 26

A Better Lower Bound

Theorem
Any predicate of the form

l∑
d1,d2,...,dk=0

ad1,d2,...,dkN
d1
1 Nd2

2 · · ·N
dk
k < c ,

where ad1,d2,...,dk and c are integer constants and l and k are nonnegative
constants, is in HAD.

The construction is based on a protocol for the much simpler (bNd
1 < c)

19 / 26

Computing the Predicate (bNd
1 < c)

20 / 26

Simulating a Counter Machine

ADs and one-way (online) counter machines (CMs) can simulate each other

Theorem

SSPACE(log n) = SCMSPACE(n) ⊆ HAD ⊆ SNSPACE(log n) ⊆
SSPACE(log2 n).

SSPACE: deterministic TM space with input commutativity

SNSPACE: nondeterministic TM space with input commutativity

SCMSPACE: deterministic CM space with input commutativity

21 / 26

Our Bounds on HAD

SSPACE(log n)

HAD

SSPACE(log2 n)

22 / 26

Simulating a Counter Machine

CM: a control unit, an input terminal, and a constant number of counters

The AD:

Simulates the control unit by its unique leader
The input slots of the agents simulate the input terminal
The k counters are stored by creating a k-vector of bits in the memory of each
agent
Each counter is distributed across the agents
The value of the ith counter at any time is determined by the number of 1s
appearing in the ith components of the agents
A crucial operation of the CM is to determine the set of strictly positive
counters
The AD can do the same by detecting the absence of an all-0 component (all
agents have 0 in the corresponding place)

23 / 26

Conclusions

We proposed the CTS model a new extension of PPs that additionally
assumes the existence of a cover-time service

By reduction to the AD oracle model we were able to investigate and almost
completely characterize the computational power of the new model

The introduced minimal global knowledge enables CTS to perform halting
computations, a feature that was missing from PPs

We showed that HAD is somewhere between SSPACE(log n) and
SSPACE(log2 n)

In the full paper we also show that ADs can simulate some interesting linear
bounded automata

24 / 26

Open Problems

Give an exact characterization of HAD

Make the AD model fault-tolerant, e.g. self-stabilizing

What happens in the case where the detector does not always correctly
detect the existing states in the population?

How is the computability of graph properties of the interaction graph affected
by the presence of an absence detector?

Are there other realistic variants of PPs that have the ability to terminate?

25 / 26

Thank You!

26 / 26

References

O. Michail, I. Chatzigiannakis, and P. G. Spirakis.
New Models for Population Protocols.
N. A. Lynch (Ed), Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool, 2011.

D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta.
Computation in networks of passively mobile finite-state sensors.
In 23rd annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 290–299, New York, NY, USA, 2004. ACM.

I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, and P. G.
Spirakis.
Passively mobile communicating machines that use restricted space.
Theor. Comput. Sci., 412[46]:6469–6483, October 2011.

26 / 26

References

I. Chatzigiannakis, O. Michail, and P. G. Spirakis.
Mediated population protocols.
In 36th International Colloquium on Automata, Languages and Programming
(ICALP), volume 5556 of LNCS, pages 363–374. Springer-Verlag, July 2009.

D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, and R. Peralta.
Stably computable properties of network graphs.
In Distributed Computing in Sensor Systems: First IEEE International
Conference DCOSS, volume 3560 of LNCS, pages 63–74. Springer-Verlag,
June 2005.

26 / 26

