Stably Decidable Graph Languages by Mediated Population Protocols

Othon Michail

Joint work with: Ioannis Chatzigiannakis Paul Spirakis

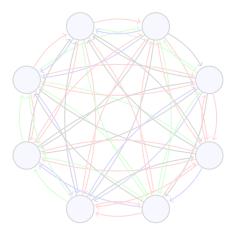
Research Academic Computer Technology Institute (RACTI)

SSS 2010 September 2010

O. Michail, I. Chatzigiannakis, and P. G. Spirakis

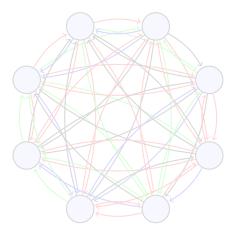
Mediated Population Protocol Model [CMS '09]

- The idea is the existence of a mediator with limited storage capacity
- Simplification: The communication links are constant storages



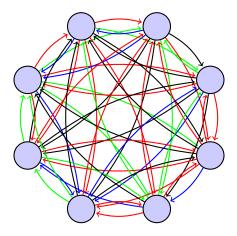
Mediated Population Protocol Model

- The idea is the existence of a mediator with limited storage capacity
- Simplification: The communication links are constant storages



Mediated Population Protocol Model

- The idea is the existence of a mediator with limited storage capacity
- Simplification: The communication links are constant storages



MPP Model

A Mediated Population Protocol

- is a PP that additionally has
 - a finite set of edge states S
 - and an extended transition function

 $\delta: Q \times Q \times S \to Q \times Q \times S$

MPP Model

A Mediated Population Protocol

- is a PP that additionally has
 - a finite set of edge states S
 - and an extended transition function

 $\delta: Q \times Q \times S \to Q \times Q \times S$

MPP Model

A Mediated Population Protocol

- is a PP that additionally has
 - a finite set of edge states S
 - and an extended transition function

$$\delta: \boldsymbol{Q} imes \boldsymbol{Q} imes \boldsymbol{S} o \boldsymbol{Q} imes \boldsymbol{Q} imes \boldsymbol{S}$$

Decidability of Graph Properties

- Here we disregard inputs to study the ability of MPPs to stably decide graph properties.
 - The corresponding model is the Graph Decision Mediated Population Protocol model (GDMPP).

Decidability of Graph Properties

- Here we disregard inputs to study the ability of MPPs to stably decide graph properties.
 - The corresponding model is the Graph Decision Mediated Population Protocol model (GDMPP).

- binary output alphabet $Y = \{0, 1\}$
- set of agent states Q
- output function $O: Q \rightarrow Y$
- set of edge states S
- transition function $\delta: Q \times Q \times S \rightarrow Q \times Q \times S$
- initial agent state $q_0 \in Q$
- initial edge state $s_0 \in S$

- binary output alphabet $Y = \{0, 1\}$
- set of agent states Q
- output function $O: Q \to Y$
- set of edge states S
- transition function $\delta: Q \times Q \times S \rightarrow Q \times Q \times S$
- initial agent state $q_0 \in Q$
- initial edge state $s_0 \in S$

- binary output alphabet $Y = \{0, 1\}$
- set of agent states Q
- output function $O: Q \to Y$
- set of edge states S
- transition function $\delta: Q \times Q \times S \rightarrow Q \times Q \times S$
- initial agent state $q_0 \in Q$
- initial edge state $s_0 \in S$

- binary output alphabet $Y = \{0, 1\}$
- set of agent states Q
- output function $O: Q \to Y$
- set of edge states S
- transition function $\delta: Q \times Q \times S \rightarrow Q \times Q \times S$
- initial agent state $q_0 \in Q$
- initial edge state $s_0 \in S$

- binary output alphabet $Y = \{0, 1\}$
- set of agent states Q
- output function $O: Q \to Y$
- set of edge states S
- transition function $\delta: Q \times Q \times S \rightarrow Q \times Q \times S$
- initial agent state $q_0 \in Q$
- initial edge state $s_0 \in S$

- binary output alphabet $Y = \{0, 1\}$
- set of agent states Q
- output function $O: Q \to Y$
- set of edge states S
- transition function $\delta: Q \times Q \times S \rightarrow Q \times Q \times S$
- initial agent state $q_0 \in Q$
- initial edge state $s_0 \in S$

- binary output alphabet $Y = \{0, 1\}$
- set of agent states Q
- output function $O: Q \to Y$
- set of edge states S
- transition function $\delta: Q \times Q \times S \rightarrow Q \times Q \times S$
- initial agent state $q_0 \in Q$
- initial edge state $s_0 \in S$

• Initially all agents are in q_0 and all edges in s_0

- A fair adversary scheduler picks ordered pairs of agents that interact according to δ
- \bullet A graph universe ${\cal U}$ is a set containing all possible communication graphs on which the protocol may run
- Given some \mathcal{U} a graph language L is any subset of \mathcal{U}
 - We are interested in those that can be described by some succinct property
- A GDMPP protocol A stably decides a graph language L ⊆ U iff for any G ∈ L all agents eventually accept and for any G ∈ U − L all agents eventually reject
- $L \in \mathcal{U}$ is stably decidable if \exists GDMPP protocol that stably decides it

- Initially all agents are in q_0 and all edges in s_0
- A fair adversary scheduler picks ordered pairs of agents that interact according to δ
- \bullet A graph universe ${\cal U}$ is a set containing all possible communication graphs on which the protocol may run
- Given some \mathcal{U} a graph language L is any subset of \mathcal{U}
 - We are interested in those that can be described by some succinct property
- A GDMPP protocol A stably decides a graph language L ⊆ U iff for any G ∈ L all agents eventually accept and for any G ∈ U − L all agents eventually reject
- $L \in \mathcal{U}$ is stably decidable if \exists GDMPP protocol that stably decides it

- Initially all agents are in q_0 and all edges in s_0
- A fair adversary scheduler picks ordered pairs of agents that interact according to δ
- \bullet A graph universe ${\cal U}$ is a set containing all possible communication graphs on which the protocol may run
- Given some \mathcal{U} a graph language L is any subset of \mathcal{U}

• We are interested in those that can be described by some succinct property

- A GDMPP protocol A stably decides a graph language L ⊆ U iff for any G ∈ L all agents eventually accept and for any G ∈ U − L all agents eventually reject
- $L \in \mathcal{U}$ is stably decidable if \exists GDMPP protocol that stably decides it

- Initially all agents are in q_0 and all edges in s_0
- A fair adversary scheduler picks ordered pairs of agents that interact according to δ
- \bullet A graph universe ${\cal U}$ is a set containing all possible communication graphs on which the protocol may run
- Given some \mathcal{U} a graph language L is any subset of \mathcal{U}
 - We are interested in those that can be described by some succinct property
- A GDMPP protocol A stably decides a graph language L ⊆ U iff for any G ∈ L all agents eventually accept and for any G ∈ U − L all agents eventually reject
- $L \in \mathcal{U}$ is stably decidable if \exists GDMPP protocol that stably decides it

- Initially all agents are in q_0 and all edges in s_0
- A fair adversary scheduler picks ordered pairs of agents that interact according to δ
- \bullet A graph universe ${\cal U}$ is a set containing all possible communication graphs on which the protocol may run
- Given some \mathcal{U} a graph language L is any subset of \mathcal{U}
 - We are interested in those that can be described by some succinct property
- A GDMPP protocol A stably decides a graph language L ⊆ U iff for any G ∈ L all agents eventually accept and for any G ∈ U − L all agents eventually reject
- $L \in \mathcal{U}$ is stably decidable if \exists GDMPP protocol that stably decides it

- Initially all agents are in q_0 and all edges in s_0
- A fair adversary scheduler picks ordered pairs of agents that interact according to δ
- \bullet A graph universe ${\cal U}$ is a set containing all possible communication graphs on which the protocol may run
- Given some \mathcal{U} a graph language L is any subset of \mathcal{U}
 - We are interested in those that can be described by some succinct property
- A GDMPP protocol A stably decides a graph language L ⊆ U iff for any G ∈ L all agents eventually accept and for any G ∈ U − L all agents eventually reject
- $L \in \mathcal{U}$ is stably decidable if \exists GDMPP protocol that stably decides it

- Initially all agents are in q_0 and all edges in s_0
- A fair adversary scheduler picks ordered pairs of agents that interact according to δ
- \bullet A graph universe ${\cal U}$ is a set containing all possible communication graphs on which the protocol may run
- Given some \mathcal{U} a graph language L is any subset of \mathcal{U}
 - We are interested in those that can be described by some succinct property
- A GDMPP protocol A stably decides a graph language L ⊆ U iff for any G ∈ L all agents eventually accept and for any G ∈ U − L all agents eventually reject
- $L \in \mathcal{U}$ is stably decidable if \exists GDMPP protocol that stably decides it

What graph properties are stably decidable by the GDMPP model?

O. Michail, I. Chatzigiannakis, and P. G. Spirakis

Closure results

Theorem

The class of stably decidable graph languages is closed under

- Complement
- Union
- Intersection

Closure results

Theorem

The class of stably decidable graph languages is closed under

- Complement
- Union
- Intersection

Closure results

Theorem

The class of stably decidable graph languages is closed under

- Complement
- Union
- Intersection

Weakly Connected Graphs

Let ${\mathcal G}$ be the graph universe consisting of all directed and weakly connected communication graphs

Some examples of stably decidable graph languages:

- Node Parity
- Edge Parity
- All nodes have less than k = O(1) outgoing neighbors (bounded out-degree)
- Some node has more incoming than outgoing neighbors
- G has some directed path of length at least $k = \mathcal{O}(1)$

Some examples of stably decidable graph languages:

- Node Parity
- Edge Parity
- All nodes have less than $k = \mathcal{O}(1)$ outgoing neighbors (bounded out-degree)
- Some node has more incoming than outgoing neighbors
- G has some directed path of length at least $k = \mathcal{O}(1)$

Some examples of stably decidable graph languages:

- Node Parity
- Edge Parity

• All nodes have less than $k = \mathcal{O}(1)$ outgoing neighbors (bounded out-degree)

- Some node has more incoming than outgoing neighbors
- G has some directed path of length at least $k = \mathcal{O}(1)$

Some examples of stably decidable graph languages:

- Node Parity
- Edge Parity
- All nodes have less than $k = \mathcal{O}(1)$ outgoing neighbors (bounded out-degree)
- Some node has more incoming than outgoing neighbors
- G has some directed path of length at least $k = \mathcal{O}(1)$

Some examples of stably decidable graph languages:

- Node Parity
- Edge Parity
- All nodes have less than k = O(1) outgoing neighbors (bounded out-degree)
- Some node has more incoming than outgoing neighbors

• G has some directed path of length at least k = O(1)

Some examples of stably decidable graph languages:

- Node Parity
- Edge Parity
- All nodes have less than k = O(1) outgoing neighbors (bounded out-degree)
- Some node has more incoming than outgoing neighbors
- G has some directed path of length at least $k = \mathcal{O}(1)$

An Impossibility Result

• $2C = \{G \in \mathcal{G} \mid G \text{ has at least two nodes } u, v \text{ s.t. both} (u, v), (v, u) \in E(G)\}$ (in other words, G has at least one 2-cycle)

Theorem

2*C* is not stably decidable by GDMPPs with stabilizing states.

An Impossibility Result

• $2C = \{G \in \mathcal{G} \mid G \text{ has at least two nodes } u, v \text{ s.t. both} (u, v), (v, u) \in E(G)\}$ (in other words, G has at least one 2-cycle)

Theorem

2C is not stably decidable by GDMPPs with stabilizing states.

O. Michail, I. Chatzigiannakis, and P. G. Spirakis

• $2C = \{G \in \mathcal{G} \mid G \text{ has at least two nodes } u, v \text{ s.t. both} (u, v), (v, u) \in E(G)\}.$

Theorem

2C is not stably decidable by GDMPPs with stabilizing states.

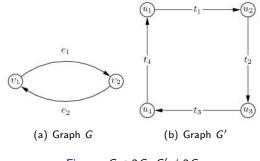


Figure: $G \in 2C$, $G' \notin 2C$.

Lemma

For any GDMPP A and any computation (infinite fair execution) C_0, C_1, C_2, \ldots of A on G (Figure 1(a)) there exists a computation $C'_0, C'_1, C'_2, \ldots, C'_i, \ldots$ of A on G' (Figure 1(b)) s.t.

$$C_{i}(v_{1}) = C'_{2i}(u_{1}) = C'_{2i}(u_{3})$$

$$C_{i}(v_{2}) = C'_{2i}(u_{2}) = C'_{2i}(u_{4})$$

$$C_{i}(e_{1}) = C'_{2i}(t_{1}) = C'_{2i}(t_{3})$$

$$C_{i}(e_{2}) = C'_{2i}(t_{2}) = C'_{2i}(t_{4})$$

for any finite $i \ge 0$.

Proof: The proof is by induction on *i*

Theorem

2C is not stably decidable by GDMPPs with stabilizing states.

Proof

- \bullet Assume that a GDMPP ${\cal A}$ stably decides 2C with stabilizing states
- When A runs in a fair manner on G, after finitely many steps all agents output the value 1 (i.e. A accepts G)
- But according to the previous Lemma there exists some unfair execution of A on G' simulating that of A on G

Theorem

2C is not stably decidable by GDMPPs with stabilizing states.

Proof

- \bullet Assume that a GDMPP ${\mathcal A}$ stably decides 2C with stabilizing states
- When A runs in a fair manner on G, after finitely many steps all agents output the value 1 (i.e. A accepts G)

But according to the previous Lemma there exists some unfair execution of A on G' simulating that of A on G

Theorem

2C is not stably decidable by GDMPPs with stabilizing states.

Proof

- \bullet Assume that a GDMPP ${\mathcal A}$ stably decides 2C with stabilizing states
- When A runs in a fair manner on G, after finitely many steps all agents output the value 1 (i.e. A accepts G)
- But according to the previous Lemma there exists some unfair execution of A on G' simulating that of A on G

- Since the states of A on G have stabilized there exists no transition to fix the wrong decision that A has made on G'
- If we allow now the scheduler on G' to decome fair we have a fair execution that also accepts G'
- But this is a contradiction
 - \mathcal{A} stably decides 2C so it cannot accept $G' \notin 2C$

- Since the states of ${\cal A}$ on G have stabilized there exists no transition to fix the wrong decision that ${\cal A}$ has made on G'
- If we allow now the scheduler on G' to decome fair we have a fair execution that also accepts G'
- But this is a contradiction
 - \mathcal{A} stably decides 2*C* so it cannot accept $G' \notin 2C$

- Since the states of ${\cal A}$ on G have stabilized there exists no transition to fix the wrong decision that ${\cal A}$ has made on G'
- If we allow now the scheduler on G' to decome fair we have a fair execution that also accepts G'
- But this is a contradiction
 - \mathcal{A} stably decides 2*C* so it cannot accept $G' \notin 2C$

- Since the states of ${\cal A}$ on G have stabilized there exists no transition to fix the wrong decision that ${\cal A}$ has made on G'
- If we allow now the scheduler on G' to decome fair we have a fair execution that also accepts G'
- But this is a contradiction
 - \mathcal{A} stably decides 2*C* so it cannot accept $G' \notin 2C$

\bullet Here the universe is ${\cal H}$ containing all directed graphs

• also those that are disconnected

Theorem (General Impossibility Result)

Any nontrivial graph language $L \subset \mathcal{H}$ is not stably decidable.

Nontrivial: $L \neq \emptyset$ and $L \neq \mathcal{H}$

\bullet Here the universe is ${\cal H}$ containing all directed graphs

• also those that are disconnected

Theorem (General Impossibility Result)

Any nontrivial graph language $L \subset \mathcal{H}$ is not stably decidable.

Nontrivial: $L \neq \emptyset$ and $L \neq \mathcal{H}$

\bullet Here the universe is ${\cal H}$ containing all directed graphs

• also those that are disconnected

Theorem (General Impossibility Result)

Any nontrivial graph language $L \subset \mathcal{H}$ is not stably decidable.

Nontrivial: $L \neq \emptyset$ and $L \neq \mathcal{H}$

 \bullet Here the universe is ${\cal H}$ containing all directed graphs

• also those that are disconnected

Theorem (General Impossibility Result)

Any nontrivial graph language $L \subset \mathcal{H}$ is not stably decidable.

Nontrivial: $L \neq \emptyset$ and $L \neq \mathcal{H}$

Lemma

For any nontrivial graph language L

- \exists disconnected graph $G \in L$ where at least one component of G does not belong to L, or
- \exists disconnected graph $G'\in\overline{L}$ where at least one component of G' does not belong to \overline{L}
- or both

Lemma

For any nontrivial graph language L

- \exists disconnected graph $G \in L$ where at least one component of G does not belong to L, or
- \exists disconnected graph $G'\in\overline{L}$ where at least one component of G' does not belong to \overline{L}

or both

Lemma

For any nontrivial graph language L

- \exists disconnected graph $G \in L$ where at least one component of G does not belong to L, or
- \exists disconnected graph $G' \in \overline{L}$ where at least one component of G' does not belong to \overline{L}
- or both

Lemma

For any nontrivial graph language L

- \exists disconnected graph $G \in L$ where at least one component of G does not belong to L, or
- \exists disconnected graph $G' \in \overline{L}$ where at least one component of G' does not belong to \overline{L}
- or both

Proof.

If the statement does not hold: Any disconnected graph in L has all its components in L and any disconnected graph in \overline{L} has all its components in \overline{L} .

- All connected graphs belong to L. Then \overline{L} contains at least one disconnected graph (since it is nontrivial) that has all its components in L (contradiction)
- (a) All connected graphs belong to \overline{L} (contradiction by symmetry)
- L and L contain connected graphs G and G', respectively. Their disjoint union U = (V ∪ V', E ∪ E') is disconnected, belongs to L or L but one of its components belongs to L and the other to L (contradiction by assumption both components should belong to the same language)

Proof.

If the statement does not hold: Any disconnected graph in L has all its components in L and any disconnected graph in \overline{L} has all its components in \overline{L} .

• All connected graphs belong to L. Then \overline{L} contains at least one disconnected graph (since it is nontrivial) that has all its components in L (contradiction)

(a) All connected graphs belong to \overline{L} (contradiction by symmetry)

I and L contain connected graphs G and G', respectively. Their disjoint union U = (V ∪ V', E ∪ E') is disconnected, belongs to L or L but one of its components belongs to L and the other to L (contradiction - by assumption both components should belong to the same language)

Proof.

If the statement does not hold: Any disconnected graph in L has all its components in L and any disconnected graph in \overline{L} has all its components in \overline{L} .

- All connected graphs belong to L. Then \overline{L} contains at least one disconnected graph (since it is nontrivial) that has all its components in L (contradiction)
- **2** All connected graphs belong to \overline{L} (contradiction by symmetry)

• L and \overline{L} contain connected graphs G and G', respectively. Their disjoint union $U = (V \cup V', E \cup E')$ is disconnected, belongs to L or \overline{L} but one of its components belongs to L and the other to \overline{L} (contradiction - by assumption both components should belong to the same language)

Proof.

If the statement does not hold: Any disconnected graph in L has all its components in L and any disconnected graph in \overline{L} has all its components in \overline{L} .

- All connected graphs belong to L. Then \overline{L} contains at least one disconnected graph (since it is nontrivial) that has all its components in L (contradiction)
- **2** All connected graphs belong to \overline{L} (contradiction by symmetry)
- L and L contain connected graphs G and G', respectively. Their disjoint union U = (V ∪ V', E ∪ E') is disconnected, belongs to L or L but one of its components belongs to L and the other to L (contradiction by assumption both components should belong to the same language)

Theorem

Any nontrivial graph language $L \subset \mathcal{H}$ is not stably decidable.

Proof

Assume that GDMPP \mathcal{A} stably decides a nontrivial graph language L

- Closure under complement implies that \exists GDMPP \mathcal{B} stably deciding \overline{L}
- By previous Lemma, \exists disconnected *G* in *L* with some component in \overline{L}
- or in *L* with some component in *L*

Theorem

Any nontrivial graph language $L \subset \mathcal{H}$ is not stably decidable.

Proof

Assume that GDMPP \mathcal{A} stably decides a nontrivial graph language L

- Closure under complement implies that \exists GDMPP \mathcal{B} stably deciding \overline{L}
- By previous Lemma, ∃ disconnected G in L with some component in L
 or in L with some component in L

Theorem

Any nontrivial graph language $L \subset \mathcal{H}$ is not stably decidable.

Proof

Assume that GDMPP \mathcal{A} stably decides a nontrivial graph language L

- Closure under complement implies that \exists GDMPP \mathcal{B} stably deciding \overline{L}
- By previous Lemma, ∃ disconnected G in L with some component in L

 or in L with some component in L

Theorem

Any nontrivial graph language $L \subset \mathcal{H}$ is not stably decidable.

Proof

Assume that GDMPP \mathcal{A} stably decides a nontrivial graph language L

- Closure under complement implies that \exists GDMPP \mathcal{B} stably deciding \overline{L}
- By previous Lemma, \exists disconnected G in L with some component in \overline{L}
- or in \overline{L} with some component in L

L contains such a G

- Since A stably decides L all agents of G should eventually answer accept
- But A runs on a component that belongs to L whose agents cannot communicate with the other components
- Thus \mathcal{A} answers reject in this component (contradiction)
- ⁽²⁾ \overline{L} contains such a *G* (contradiction by symmetry)

L contains such a G

- $\bullet\,$ Since ${\cal A}$ stably decides L all agents of G should eventually answer accept
- But A runs on a component that belongs to L whose agents cannot communicate with the other components
- Thus \mathcal{A} answers reject in this component (contradiction)
- ⁽²⁾ \overline{L} contains such a *G* (contradiction by symmetry)

L contains such a G

- $\bullet\,$ Since ${\cal A}$ stably decides L all agents of G should eventually answer accept
- But A runs on a component that belongs to \overline{L} whose agents cannot communicate with the other components
- Thus \mathcal{A} answers reject in this component (contradiction)
- I contains such a G (contradiction by symmetry)

- L contains such a G
 - $\bullet\,$ Since ${\cal A}$ stably decides L all agents of G should eventually answer accept
 - But A runs on a component that belongs to \overline{L} whose agents cannot communicate with the other components
 - Thus A answers reject in this component (contradiction)

 \bigcirc *L* contains such a *G* (contradiction by symmetry)

- L contains such a G
 - $\bullet\,$ Since ${\mathcal A}$ stably decides L all agents of G should eventually answer accept
 - But A runs on a component that belongs to \overline{L} whose agents cannot communicate with the other components
 - Thus \mathcal{A} answers reject in this component (contradiction)
- **2** \overline{L} contains such a *G* (contradiction by symmetry)

An Immediate Consequence

Corollary

Connectivity is not stably decidable.

20/24

O. Michail, I. Chatzigiannakis, and P. G. Spirakis

- An exact characterization of the class of stably decidable graph languages
- An alternative: A general method for impossibility results that suits the GDMPP model
 - Ad-hoc proofs require a lot of effort
 - e.g. Herlihy's method based on simplicial complexes
- In real-life aplications the probability distribution of interactions may change
 - This can cause performance and correctness problems
 - Can we make our protocols adapt to such changes?

- An exact characterization of the class of stably decidable graph languages
- An alternative: A general method for impossibility results that suits the GDMPP model
 - Ad-hoc proofs require a lot of effort
 - e.g. Herlihy's method based on simplicial complexes
- In real-life aplications the probability distribution of interactions may change
 - This can cause performance and correctness problems
 - Can we make our protocols adapt to such changes?

- An exact characterization of the class of stably decidable graph languages
- An alternative: A general method for impossibility results that suits the GDMPP model
 - Ad-hoc proofs require a lot of effort
 - e.g. Herlihy's method based on simplicial complexes
- In real-life aplications the probability distribution of interactions may change
 - This can cause performance and correctness problems
 - Can we make our protocols adapt to such changes?

- An exact characterization of the class of stably decidable graph languages
- An alternative: A general method for impossibility results that suits the GDMPP model
 - Ad-hoc proofs require a lot of effort
 - e.g. Herlihy's method based on simplicial complexes
- In real-life aplications the probability distribution of interactions may change
 - This can cause performance and correctness problems
 - Can we make our protocols adapt to such changes?

- An exact characterization of the class of stably decidable graph languages
- An alternative: A general method for impossibility results that suits the GDMPP model
 - Ad-hoc proofs require a lot of effort
 - e.g. Herlihy's method based on simplicial complexes
- In real-life aplications the probability distribution of interactions may change
 - This can cause performance and correctness problems
 - Can we make our protocols adapt to such changes?

- An exact characterization of the class of stably decidable graph languages
- An alternative: A general method for impossibility results that suits the GDMPP model
 - Ad-hoc proofs require a lot of effort
 - e.g. Herlihy's method based on simplicial complexes
- In real-life aplications the probability distribution of interactions may change
 - This can cause performance and correctness problems
 - Can we make our protocols adapt to such changes?

- An exact characterization of the class of stably decidable graph languages
- An alternative: A general method for impossibility results that suits the GDMPP model
 - Ad-hoc proofs require a lot of effort
 - e.g. Herlihy's method based on simplicial complexes
- In real-life aplications the probability distribution of interactions may change
 - This can cause performance and correctness problems
 - Can we make our protocols adapt to such changes?

- The GDMPP model that aditionally assumes a unique leader seems to be stronger (no proof exists)
- The Passively mobile Machines (PM) model [CMNPS '10] extends the PP model so that each agent
 - is a multitape Turing machine
 - has unbounded memory (and define space bounded computations)
- What is the class of decidable graph languages by the PM model for each space bound?

- The GDMPP model that aditionally assumes a unique leader seems to be stronger (no proof exists)
- The Passively mobile Machines (PM) model [CMNPS '10] extends the PP model so that each agent
 - is a multitape Turing machine
 - has unbounded memory (and define space bounded computations)
- What is the class of decidable graph languages by the PM model for each space bound?

- The GDMPP model that aditionally assumes a unique leader seems to be stronger (no proof exists)
- The Passively mobile Machines (PM) model [CMNPS '10] extends the PP model so that each agent
 - is a multitape Turing machine
 - has unbounded memory (and define space bounded computations)
- What is the class of decidable graph languages by the PM model for each space bound?

- The GDMPP model that aditionally assumes a unique leader seems to be stronger (no proof exists)
- The Passively mobile Machines (PM) model [CMNPS '10] extends the PP model so that each agent
 - is a multitape Turing machine
 - has unbounded memory (and define space bounded computations)
- What is the class of decidable graph languages by the PM model for each space bound?

- The GDMPP model that aditionally assumes a unique leader seems to be stronger (no proof exists)
- The Passively mobile Machines (PM) model [CMNPS '10] extends the PP model so that each agent
 - is a multitape Turing machine
 - has unbounded memory (and define space bounded computations)
- What is the class of decidable graph languages by the PM model for each space bound?

FRONTS

- This work has been partially supported by the ICT Programme of the European Union under contract number ICT-2008-215270 (FRONTS).
- FRONTS is a joint effort of eleven academic and research institutes in foundational algorithmic research in Europe.
- The effort is towards establishing the foundations of adaptive networked societies of tiny artefacts.

Thank You!

O. Michail, I. Chatzigiannakis, and P. G. Spirakis