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Monitoring Cows’ Health

Equip each cow in a heard with a sensor
detecting influenza

The sensor gives output 1{
1, if the cow is infected
0, if it is not
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Monitoring Cows’ Health

Question: Are there at least 5 infected cows?

A solution:

The base station informs all agents to sense their environment
When 2 cows come close to each other their agents interact
The initiator takes the sum of the values and the responder takes 0
If a sum reaches 5 the output value 1 is propagated, otherwise forever
remains 0
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Outstanding Properties of PPs
[AADFP ’04]

The agents

have constant memory (uniformity)

do not have uids (anonymity)

are passively mobile
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A Correct Population Protocol

Input alphabet X = {0, 1}
Output alphabet Y = {0, 1}
Set of states Q = {q0, q1, . . . , q5}
Input function I : X → Q, defined as I (σ) = qσ,

Output function O : Q → Y , defined as O(q5) = 1 and O(q) = 0 for all
q ∈ Q − {q5}
Transition function δ:

(qi , qj)→ (qi+j , q0), if i + j < 5

→ (q5, q5), otherwise
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The Code

q0 q1 q2 q3 q4 q5

q0 (q0, q0) (q1, q0) (q2, q0) (q3, q0) (q4, q0) (q5, q5)
q1 (q1, q0) (q2, q0) (q3, q0) (q4, q0) (q5, q5) (q5, q5)
q2 (q2, q0) (q3, q0) (q4, q0) (q5, q5) (q5, q5) (q5, q5)
q3 (q3, q0) (q4, q0) (q5, q5) (q5, q5) (q5, q5) (q5, q5)
q4 (q4, q0) (q5, q5) (q5, q5) (q5, q5) (q5, q5) (q5, q5)
q5 (q5, q5) (q5, q5) (q5, q5) (q5, q5) (q5, q5) (q5, q5)
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A Typo Occured

q0 q1 q2 q3 q4 q5

q0 (q0, q0) (q1, q0) (q2, q0) (q3, q0) (q4, q0) (q5, q5)
q1 (q1, q0) (q2, q0) (q3, q0) (q4, q0) (q5, q5) (q5, q5)
q2 (q2, q0) (q3, q0) (q4, q0) (q5, q5) (q5, q5) (q5, q5)
q3 (q3, q0) (q4, q0) (q5, q5) (q5, q5) (q5, q5) (q5, q5)
q4 (q4, q0) (q5, q5) (q5, q5) (q5, q5) (q4, q0) (q5, q5)
q5 (q5, q5) (q5, q5) (q5, q5) (q5, q5) (q5, q5) (q5, q5)
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A Typo Occured

q0 q1 q2 q3 q4 q5

q0 (q0, q0) (q1, q0) (q2, q0) (q3, q0) (q4, q0) (q5, q5)
q1 (q1, q0) (q2, q0) (q3, q0) (q4, q0) (q5, q5) (q5, q5)
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q3 (q3, q0) (q4, q0) (q5, q5) (q5, q5) (q5, q5) (q5, q5)
q4 (q4, q0) (q5, q5) (q5, q5) (q5, q5) (q4, q0) (q5, q5)
q5 (q5, q5) (q5, q5) (q5, q5) (q5, q5) (q5, q5) (q5, q5)

400 cows are all sick

It is possible that 100 agents go to q4 and the rest to q0

But now the farmer will never be alarmed of the problem (alarm state q5

never appears)

Interestingly, the protocol also has an erroneous computation for only 8 cows
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Algorithmic Verification

We want to algorithmically verify our protocols in order to avoid such total or
partial failures, particularly in critical applications

Problem (GBPVER)

Given a population protocol A for the basic model for which YA = {0, 1} and a
first-order logical formula φ in Presburger arithmetic representing the
specifications of A determine whether A conforms to φ.

Conforms : For any input assignment x , and no matter how the computation
proceeds, an output-stable configuration is eventually reached under which all
agents output φ(x)
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BPVER

We mainly focus on the somewhat easier BPVER problem:

An integer n ≥ 2 is also provided as part of the input
Here we want to determine whether A conforms to φ on Kn (complete
communication digraph of n agents)

Since a computation is infinite and there is a finite number of configurations,
at least one configuration appears infinitely often

It is known [AADFP ’06] that those configurations form a final strongly
connected component of the transition graph G(C,E), where C is the set of all
configurations and (c, c ′) ∈ E iff c → c ′, e.g.
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BPVER

We first focus on the somewhat easier BPVER problem (‘B’: Basic model,
‘P’: Predicate):

An integer n ≥ 2 is also provided as part of the input.
Here we want to determine whether A conforms to φ on Kn (complete
communication digraph of n agents).

Since a computation is infinite and there is a finite number of configurations,
at least one configuration appears infinitely often.

It is known that those configurations form a final strongly connected
component of the transition graph G(C,E), where C is the set of all
configurations and (c, c ′) ∈ E iff c → c ′, e.g.

Figure: (ci )i=0,...,5, ci denotes the number of agents in state qi
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Another Typo

q0 q1 q2 q3 q4 q5

q0 (q0, q0) (q1, q0) (q2, q0) (q3, q0) (q4, q0) (q5, q5)
q1 (q1, q0) (q2, q0) (q3, q0) (q4, q0) (q5, q5) (q5, q5)
q2 (q2, q0) (q3, q0) (q4, q0) (q5, q5) (q5, q5) (q5, q5)
q3 (q3, q0) (q4, q0) (q5, q5) (q5, q5) (q5, q5) (q5, q5)
q4 (q3, q0) (q5, q5) (q5, q5) (q5, q5) (q5, q5) (q5, q5)
q5 (q5, q5) (q5, q5) (q5, q5) (q5, q5) (q5, q5) (q5, q5)

It should be (q4, q0)→ (q4, q0) instead, because now one counter is
decreased without a reason
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Another Typo: (q4, q0)→ (q3, q0)
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Hardness of BPVER

Theorem
BPVER is coNP-hard.

The reduction is from HAMPATH (directed)

Given 〈D, s, t〉
We construct a protocol A that does not conform to (Nx < 0) on Kn iff D
contains a directed hamiltonian path from s to t

Also return n = k − 1, where k = |V (D)|
The input alphabet X consists of the edges of D
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Hardness of BPVER

The protocol tries to verify whether its input assignment is a legal
hamiltonian path

If it encounters some violation, it rejects (otherwise, remains to an accepting
output)

Obviously

If D /∈ HAMPATH then no input assignment is a hamiltonian path and the
protocol conforms to φ (always finds some violation and rejects)
If D ∈ HAMPATH then the hamiltonian path is a possible input assignment
and the resulting computation will be accepting

Remark: A is a PP because though its size depends on k , k is independent of the
population size n
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Other Hardness Results

Theorem
GBPVER is coNP-hard.

BBPIVER problem:

X is restricted to {0, 1}
a specific input assignment is provided as part of the input
we ask whether the protocol is correct for that input assignment

The bad news: even for this restricted version, hardness insists

We can only hope for exponential-time algorithms that are efficient in
practice

or for other interesting special cases that are efficiently solvable
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Protocol Correctness Criteria

1 φ(c) = −1 for some c ∈ CI

2 ∃c , c ′ ∈ CI such that c
∗→ c ′ and φ(c) 6= φ(c ′)

3 ∃c ∈ CI and c ′ ∈ CF such that c
∗→ c ′ and O(c ′) = −1

4 ∃c ∈ CI and c ′ ∈ CF such that c
∗→ c ′ and φ(c) 6= O(c ′)

5 ∃B ′ ∈ FS such that O(B ′) = −1

6 ∃B ∈ IS and B ′ ∈ FS such that B
∗→ B ′ and φ(B) 6= O(B ′) (possibly

B = B ′)

Theorem (Complete Verifier)

Any algorithm checking criteria 1, 5, and 6 decides BPVER.
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An Exponential Algorithm for BPVER

Find the reachable portion of the transition graph

To find the initial configurations we can use Fenichel’s algorithm [1968] for
finding the distributions of indistinguishable objects (agents) into
distinguisable slots (initial states)

Partition the induced graph into its strongly connected components by e.g.
Tarjan’s algorithm [1972]

Replace each component with a node to obtain a dag

Initial strongly connected component: contains at least one initial
configuration

0-initial: all its initial configurations expect the all-0 output
1-initial: all its initial configurations expect the all-1 output
mixed: reject
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An Exponential Algorithm for BPVER

Final strongly connected component: has no outgoing edges

0-final: all its configurations give the all-0 output
1-final: all its configurations give the all-1 output
mixed: reject

If there is a directed path from a x-initial component to a |x − 1|-final
component reject, otherwise accept

An erroneous computation in the original graph begins from an initial
configuration c expecting all-x output w.r.t. φ and leads to a final strongly
connected component which contains a configuration that does not give the
all-x output
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Conclusions

Most natural verification problems concerning population protocols are
coNP-hard

There are easily checkable criteria for determining correctness

Checking any of these defines a possibly non-complete verifier

Checking 3 of these defines a complete verifier

All of them are exponential since they are based on searching the transition
graph

We have implemented the first verification tool for population protocols

C++
Some non-complete and 1 complete verifier

Experiments show that the running time can be greatly improved in the reject
case if the transition graph is constructed on the fly
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Some Thoughts

Can we avoid searching the huge transition graph by somehow looking inside
the protocol?

There is a constructive proof [AADFP ’06] that a semilinear predicate is
stably computable by the basic model

Unfortunately, there exists an unbounded number of correct protocols for the
same predicate (we can simply add an unbounded number of dummy states
and transitions)
e.g. replace (q0, q1)→ (q1, q0) with

(q0, q1)→ (q1, qd1 )

(qd1 , q)→ (qd2 , q)

...

(qdt , q)→ (q0, q)
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Some Thoughts

Can we somehow compare the default protocol (given by the constructive
proof) with the provided one?

Possibly by truncating the unnecessary states

Design verifiers that are not based on transition graph searching

For noncomplete communication graphs, protocols with stabilizing inputs
[AACFJP ’05], MPPs [CMS ’09] and protocols using non-constant space
(PM protocols) [CMNPS ’10] we do not have such constructive proofs

Study verification of protocols in these models

Model checking
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Thank You!
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