Algorithmic Verification of Population Protocols

Othon Michail

Joint work with: Ioannis Chatzigiannakis Paul Spirakis

Research Academic Computer Technology Institute (RACTI)

SSS 2010 September 2010

O. Michail, I. Chatzigiannakis, and P. G. Spirakis

- Equip each cow in a heard with a sensor detecting influenza
- The sensor gives output 1
 - if the cow is infected
 if it is not

- Equip each cow in a heard with a sensor detecting influenza
- The sensor gives output 1
 - $\left\{ \begin{array}{ll} 1, & \text{if the cow is infected} \\ 0, & \text{if it is not} \end{array} \right.$

• Question: Are there at least 5 infected cows?

A solution:

- The base station informs all agents to sense their environment
- When 2 cows come close to each other their agents interact
- The initiator takes the sum of the values and the responder takes 0
- If a sum reaches 5 the output value 1 is propagated, otherwise forever remains 0

- Question: Are there at least 5 infected cows?
- A solution:
 - The base station informs all agents to sense their environment
 - When 2 cows come close to each other their agents interact
 - The initiator takes the sum of the values and the responder takes 0
 - If a sum reaches 5 the output value 1 is propagated, otherwise forever remains 0

- Question: Are there at least 5 infected cows?
- A solution:
 - The base station informs all agents to sense their environment
 - When 2 cows come close to each other their agents interact
 - The initiator takes the sum of the values and the responder takes 0
 - If a sum reaches 5 the output value 1 is propagated, otherwise forever remains 0

- Question: Are there at least 5 infected cows?
- A solution:
 - The base station informs all agents to sense their environment
 - When 2 cows come close to each other their agents interact
 - The initiator takes the sum of the values and the responder takes 0
 - If a sum reaches 5 the output value 1 is propagated, otherwise forever remains 0

- Question: Are there at least 5 infected cows?
- A solution:
 - The base station informs all agents to sense their environment
 - When 2 cows come close to each other their agents interact
 - The initiator takes the sum of the values and the responder takes 0
 - If a sum reaches 5 the output value 1 is propagated, otherwise forever remains 0

- Question: Are there at least 5 infected cows?
- A solution:
 - The base station informs all agents to sense their environment
 - When 2 cows come close to each other their agents interact
 - The initiator takes the sum of the values and the responder takes 0
 - $\bullet~$ If a sum reaches 5 the output value 1 is propagated, otherwise forever remains 0

Outstanding Properties of PPs [AADFP '04]

The agents

- have constant memory (uniformity)
- do not have uids (anonymity)
- are passively mobile

Outstanding Properties of PPs [AADFP '04]

The agents

- have constant memory (uniformity)
- do not have uids (anonymity)
- are passively mobile

Outstanding Properties of PPs [AADFP '04]

The agents

- have constant memory (uniformity)
- do not have uids (anonymity)
- are passively mobile

- Input alphabet $X = \{0, 1\}$
- Output alphabet $Y = \{0, 1\}$
- Set of states $Q = \{q_0, q_1, ..., q_5\}$
- Input function $I: X \to Q$, defined as $I(\sigma) = q_{\sigma}$,
- Output function $O: Q \to Y$, defined as $O(q_5) = 1$ and O(q) = 0 for all $q \in Q \{q_5\}$
- Transition function δ :

$$(q_i, q_j) \rightarrow (q_{i+j}, q_0), \text{ if } i+j < 5$$

 $\rightarrow (q_5, q_5), \text{ otherwise}$

- Input alphabet $X = \{0, 1\}$
- Output alphabet $Y = \{0, 1\}$
- Set of states $Q = \{q_0, q_1, \ldots, q_5\}$
- Input function $I: X \to Q$, defined as $I(\sigma) = q_{\sigma}$,
- Output function $O: Q \to Y$, defined as $O(q_5) = 1$ and O(q) = 0 for all $q \in Q \{q_5\}$
- Transition function δ :

$$(q_i, q_j) \rightarrow (q_{i+j}, q_0), \text{ if } i+j < 5$$

 $\rightarrow (q_5, q_5), \text{ otherwise}$

- Input alphabet *X* = {0,1}
- Output alphabet $Y = \{0, 1\}$
- Set of states $Q = \{q_0, q_1, \dots, q_5\}$
- Input function $I: X \to Q$, defined as $I(\sigma) = q_{\sigma}$,
- Output function $O: Q \to Y$, defined as $O(q_5) = 1$ and O(q) = 0 for all $q \in Q \{q_5\}$
- Transition function δ :

$$(q_i, q_j) \rightarrow (q_{i+j}, q_0), \text{ if } i+j < 5$$

 $\rightarrow (q_5, q_5), \text{ otherwise}$

- Input alphabet *X* = {0,1}
- Output alphabet $Y = \{0, 1\}$
- Set of states $Q = \{q_0, q_1, \dots, q_5\}$
- Input function $I: X \to Q$, defined as $I(\sigma) = q_{\sigma}$,
- Output function $O: Q \rightarrow Y$, defined as $O(q_5) = 1$ and O(q) = 0 for all $q \in Q \{q_5\}$
- Transition function δ :

$$(q_i, q_j) \rightarrow (q_{i+j}, q_0), \text{ if } i+j < 5$$

 $\rightarrow (q_5, q_5), \text{ otherwise}$

- Input alphabet *X* = {0,1}
- Output alphabet $Y = \{0, 1\}$
- Set of states $Q = \{q_0, q_1, \dots, q_5\}$
- Input function $I: X \to Q$, defined as $I(\sigma) = q_{\sigma}$,
- Output function $O: Q \to Y$, defined as $O(q_5) = 1$ and O(q) = 0 for all $q \in Q \{q_5\}$
- Transition function δ :

$$(q_i, q_j) \rightarrow (q_{i+j}, q_0), \text{ if } i+j < 5$$

 $\rightarrow (q_5, q_5), \text{ otherwise}$

- Input alphabet *X* = {0,1}
- Output alphabet $Y = \{0, 1\}$
- Set of states $Q = \{q_0, q_1, \dots, q_5\}$
- Input function $I: X \to Q$, defined as $I(\sigma) = q_{\sigma}$,
- Output function $O: Q \to Y$, defined as $O(q_5) = 1$ and O(q) = 0 for all $q \in Q \{q_5\}$
- Transition function δ :

$$egin{aligned} (q_i,q_j) &
ightarrow (q_{i+j},q_0), ext{ if } i+j < 5 \ &
ightarrow (q_5,q_5), ext{ otherwise} \end{aligned}$$

The Code

	q_0	$ q_1$	q_2	q_3	q_4	q_5
q_0	(q_0, q_0)	(q_1, q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_{5}, q_{5})
q_1	(q_1, q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_{5}, q_{5})
q_2	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})
<i>q</i> ₃	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})
q_4	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})	(q_{5}, q_{5})
q_5	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})	(q_5, q_5)

	q_0	q_1	q_2	q 3	q_4	q_5
q_0	(q_0, q_0)	(q_1, q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)
q_1	(q_1, q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)
q_2	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)
q 3	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)
q_4	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_4, q_0)	(q_5, q_5)
q_5	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})	(q_{5}, q_{5})

	q_0	q_1	q_2	<i>q</i> ₃	q_4	q_5
q_0	(q_0, q_0)	(q_1,q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)
q_1	(q_1,q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_{5}, q_{5})
q_2	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)
q 3	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)
q_4	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_4, q_0)	(q_5, q_5)
q_5	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)

	q_0	$ q_1$	q_2	q_3	q_4	q_5
q_0	(q_0, q_0)	(q_1, q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_{5}, q_{5})
q_1	(q_1,q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_{5}, q_{5})
q_2	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})
q 3	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})
q_4	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_4, q_0)	(q_{5}, q_{5})
q_5	(q_5, q_5)	(q_{5}, q_{5})				

• 400 cows are all sick

- It is possible that 100 agents go to q_4 and the rest to q_0
- But now the farmer will never be alarmed of the problem (alarm state q₅ never appears)
- Interestingly, the protocol also has an erroneous computation for only 8 cd

	q_0	q_1	q_2	q_3	q_4	q_5
q_0	(q_0, q_0)	(q_1, q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_{5}, q_{5})
q_1	(q_1,q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_{5}, q_{5})
q_2	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_{5}, q_{5})	(q_5, q_5)	(q_{5}, q_{5})
q 3	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_{5}, q_{5})	(q_5, q_5)	(q_{5}, q_{5})
q_4	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})	(q_4, q_0)	(q_{5}, q_{5})
q_5	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})	(q_5, q_5)	(q_{5}, q_{5})

- 400 cows are all sick
- It is possible that 100 agents go to q_4 and the rest to q_0
- But now the farmer will never be alarmed of the problem (alarm state q₅ never appears)
- Interestingly, the protocol also has an erroneous computation for only 8 cd

	q_0	q_1	q_2	q_3	q_4	q_5
q_0	(q_0, q_0)	(q_1, q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_{5}, q_{5})
q_1	(q_1,q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_{5}, q_{5})
q_2	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_{5}, q_{5})	(q_5, q_5)	(q_{5}, q_{5})
q 3	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_{5}, q_{5})	(q_5, q_5)	(q_{5}, q_{5})
q_4	(q_4, q_0)	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})	(q_4, q_0)	(q_{5}, q_{5})
q_5	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})

- 400 cows are all sick
- It is possible that 100 agents go to q_4 and the rest to q_0
- But now the farmer will never be alarmed of the problem (alarm state q₅ never appears)
- Interestingly, the protocol also has an erroneous computation for only 8

	q_0	q_1	q_2	q_3	q_4	q_5
q_0	(q_0, q_0)	(q_1, q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_{5}, q_{5})
q_1	(q_1, q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_{5}, q_{5})	(q_{5}, q_{5})
q_2	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_{5}, q_{5})	(q_{5}, q_{5})
q 3	(q_3, q_0)	(q_4, q_0)	(q_{5}, q_{5})	(q_5, q_5)	(q_{5}, q_{5})	(q_{5}, q_{5})
q_4	(q_4, q_0)	(q_{5}, q_{5})	(q_{5}, q_{5})	(q_5, q_5)	(q_4, q_0)	(q_{5}, q_{5})
q_5	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})

- 400 cows are all sick
- It is possible that 100 agents go to q_4 and the rest to q_0
- But now the farmer will never be alarmed of the problem (alarm state q₅ never appears)
- Interestingly, the protocol also has an erroneous computation for only 8 courses

Algorithmic Verification

• We want to algorithmically verify our protocols in order to avoid such total or partial failures, particularly in critical applications

Problem (GBPVER)

Given a population protocol A for the basic model for which $Y_A = \{0, 1\}$ and a first-order logical formula ϕ in Presburger arithmetic representing the specifications of A determine whether A conforms to ϕ .

• Conforms : For any input assignment x, and no matter how the computation proceeds, an output-stable configuration is eventually reached under which all agents output $\phi(x)$

Algorithmic Verification

 We want to algorithmically verify our protocols in order to avoid such total or partial failures, particularly in critical applications

Problem (GBPVER)

Given a population protocol A for the basic model for which $Y_A = \{0, 1\}$ and a first-order logical formula ϕ in Presburger arithmetic representing the specifications of A determine whether A conforms to ϕ .

 Conforms : For any input assignment x, and no matter how the computation proceeds, an output-stable configuration is eventually reached under which all agents output φ(x)

Algorithmic Verification

 We want to algorithmically verify our protocols in order to avoid such total or partial failures, particularly in critical applications

Problem (GBPVER)

Given a population protocol A for the basic model for which $Y_A = \{0, 1\}$ and a first-order logical formula ϕ in Presburger arithmetic representing the specifications of A determine whether A conforms to ϕ .

• Conforms : For any input assignment x, and no matter how the computation proceeds, an output-stable configuration is eventually reached under which all agents output $\phi(x)$

• We mainly focus on the somewhat easier BPVER problem:

- An integer $n \ge 2$ is also provided as part of the input
- Here we want to determine whether A conforms to ϕ on K_n (complete communication digraph of n agents)
- Since a computation is infinite and there is a finite number of configurations, at least one configuration appears infinitely often
 - It is known [AADFP '06] that those configurations form a final strongly connected component of the transition graph G(C, E), where C is the set of all configurations and (c, c') ∈ E iff c → c', e.g.

• We mainly focus on the somewhat easier *BPVER* problem:

- An integer $n \ge 2$ is also provided as part of the input
- Here we want to determine whether A conforms to ϕ on K_n (complete communication digraph of n agents)
- Since a computation is infinite and there is a finite number of configurations, at least one configuration appears infinitely often
 - It is known [AADFP '06] that those configurations form a final strongly connected component of the transition graph G(C, E), where C is the set of all configurations and (c, c') ∈ E iff c → c', e.g.

- We mainly focus on the somewhat easier *BPVER* problem:
 - An integer $n \ge 2$ is also provided as part of the input
 - Here we want to determine whether A conforms to ϕ on K_n (complete communication digraph of n agents)
- Since a computation is infinite and there is a finite number of configurations, at least one configuration appears infinitely often
 - It is known [AADFP '06] that those configurations form a final strongly connected component of the transition graph G(C, E), where C is the set of all configurations and (c, c') ∈ E iff c → c', e.g.

- We mainly focus on the somewhat easier *BPVER* problem:
 - An integer $n \ge 2$ is also provided as part of the input
 - Here we want to determine whether A conforms to φ on K_n (complete communication digraph of n agents)
- Since a computation is infinite and there is a finite number of configurations, at least one configuration appears infinitely often
 - It is known [AADFP '06] that those configurations form a final strongly connected component of the transition graph G(C, E), where C is the set of all configurations and (c, c') ∈ E iff c → c', e.g.

- We mainly focus on the somewhat easier *BPVER* problem:
 - An integer $n \ge 2$ is also provided as part of the input
 - Here we want to determine whether A conforms to ϕ on K_n (complete communication digraph of n agents)
- Since a computation is infinite and there is a finite number of configurations, at least one configuration appears infinitely often
 - It is known [AADFP '06] that those configurations form a final strongly connected component of the transition graph G(C, E), where C is the set of all configurations and (c, c') ∈ E iff c → c', e.g.

- We first focus on the somewhat easier *BPVER* problem ('B': Basic model, 'P': Predicate):
 - An integer $n \ge 2$ is also provided as part of the input.
 - Here we want to determine whether A conforms to ϕ on K_n (complete communication digraph of n agents).
- Since a computation is infinite and there is a finite number of configurations, at least one configuration appears infinitely often.
 - It is known that those configurations form a final strongly connected component of the transition graph G(C, E), where C is the set of all configurations and (c, c') ∈ E iff c → c', e.g.

Figure: $(c_i)_{i=0,...,5}$, c_i denotes the number of agents in state q_i

Another Typo

	q_0	$ q_1$	q_2	q 3	q_4	q_5
q_0	(q_0, q_0)	(q_1, q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_{5}, q_{5})
q_1	(q_1,q_0)	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_{5}, q_{5})	(q_{5}, q_{5})
q_2	(q_2, q_0)	(q_3, q_0)	(q_4, q_0)	(q_5, q_5)	(q_{5}, q_{5})	(q_{5}, q_{5})
q 3	(q_3, q_0)	(q_4, q_0)	(q_{5}, q_{5})	(q_5, q_5)	(q_{5}, q_{5})	(q_{5}, q_{5})
q_4	(q_3, q_0)	(q_5, q_5)	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})	(q_{5}, q_{5})
q_5	(q_5, q_5)	(q_5, q_5)	(q_{5}, q_{5})	(q_5, q_5)	(q_{5}, q_{5})	(q_{5}, q_{5})

• It should be $(q_4, q_0)
ightarrow (q_4, q_0)$ instead, because now one counter is decreased without a reason

Algorithmic Verification of Population Protocols
Theorem

- The reduction is from HAMPATH (directed)
- Given $\langle D, s, t \rangle$
- We construct a protocol A that does not conform to $(N_x < 0)$ on K_n iff D contains a directed hamiltonian path from s to t
- Also return n = k 1, where k = |V(D)|
- The input alphabet X consists of the edges of D

Theorem

- The reduction is from *HAMPATH* (directed)
- Given $\langle D, s, t \rangle$
- We construct a protocol A that does not conform to $(N_x < 0)$ on K_n iff D contains a directed hamiltonian path from s to t
- Also return n = k 1, where k = |V(D)|
- The input alphabet X consists of the edges of D

Theorem

- The reduction is from *HAMPATH* (directed)
- Given $\langle D, s, t \rangle$
- We construct a protocol A that does not conform to $(N_x < 0)$ on K_n iff D contains a directed hamiltonian path from s to t
- Also return n = k 1, where k = |V(D)|
- The input alphabet X consists of the edges of D

Theorem

- The reduction is from *HAMPATH* (directed)
- Given $\langle D, s, t \rangle$
- We construct a protocol A that does not conform to $(N_x < 0)$ on K_n iff D contains a directed hamiltonian path from s to t
- Also return n = k 1, where k = |V(D)|
- The input alphabet X consists of the edges of D

Theorem

BPVER is coNP-hard.

- The reduction is from *HAMPATH* (directed)
- Given $\langle D, s, t \rangle$
- We construct a protocol A that does not conform to $(N_x < 0)$ on K_n iff D contains a directed hamiltonian path from s to t
- Also return n = k 1, where k = |V(D)|

• The input alphabet X consists of the edges of D

Theorem

- The reduction is from *HAMPATH* (directed)
- Given $\langle D, s, t \rangle$
- We construct a protocol A that does not conform to $(N_x < 0)$ on K_n iff D contains a directed hamiltonian path from s to t
- Also return n = k 1, where k = |V(D)|
- The input alphabet X consists of the edges of D

• The protocol tries to verify whether its input assignment is a legal hamiltonian path

- If it encounters some violation, it rejects (otherwise, remains to an accepting output)
- Obviously
 - If D ∉ HAMPATH then no input assignment is a hamiltonian path and the protocol conforms to φ (always finds some violation and rejects)
 - If D ∈ HAMPATH then the hamiltonian path is a possible input assignment and the resulting computation will be accepting

- The protocol tries to verify whether its input assignment is a legal hamiltonian path
- If it encounters some violation, it rejects (otherwise, remains to an accepting output)
- Obviously
 - If $D \notin HAMPATH$ then no input assignment is a hamiltonian path and the protocol conforms to ϕ (always finds some violation and rejects)
 - If D ∈ HAMPATH then the hamiltonian path is a possible input assignment and the resulting computation will be accepting

- The protocol tries to verify whether its input assignment is a legal hamiltonian path
- If it encounters some violation, it rejects (otherwise, remains to an accepting output)
- Obviously
 - If D ∉ HAMPATH then no input assignment is a hamiltonian path and the protocol conforms to φ (always finds some violation and rejects)
 - If D ∈ HAMPATH then the hamiltonian path is a possible input assignment and the resulting computation will be accepting

- The protocol tries to verify whether its input assignment is a legal hamiltonian path
- If it encounters some violation, it rejects (otherwise, remains to an accepting output)
- Obviously
 - If D ∉ HAMPATH then no input assignment is a hamiltonian path and the protocol conforms to φ (always finds some violation and rejects)
 - If D ∈ HAMPATH then the hamiltonian path is a possible input assignment and the resulting computation will be accepting

- The protocol tries to verify whether its input assignment is a legal hamiltonian path
- If it encounters some violation, it rejects (otherwise, remains to an accepting output)
- Obviously
 - If D ∉ HAMPATH then no input assignment is a hamiltonian path and the protocol conforms to φ (always finds some violation and rejects)
 - If $D \in HAMPATH$ then the hamiltonian path is a possible input assignment and the resulting computation will be accepting

- The protocol tries to verify whether its input assignment is a legal hamiltonian path
- If it encounters some violation, it rejects (otherwise, remains to an accepting output)
- Obviously
 - If D ∉ HAMPATH then no input assignment is a hamiltonian path and the protocol conforms to φ (always finds some violation and rejects)
 - If D ∈ HAMPATH then the hamiltonian path is a possible input assignment and the resulting computation will be accepting

Theorem *GBPVER is* coNP-hard.

• BBPIVER problem:

- X is restricted to {0,1}
- a specific input assignment is provided as part of the input
- we ask whether the protocol is correct for that input assignment
- The bad news: even for this restricted version, hardness insists

• We can only hope for exponential-time algorithms that are efficient in practice

• or for other interesting special cases that are efficiently solvable

Theorem

GBPVER is coNP-hard.

• BBPIVER problem:

- X is restricted to $\{0,1\}$
- a specific input assignment is provided as part of the input
- we ask whether the protocol is correct for that input assignment
- The bad news: even for this restricted version, hardness insists
- We can only hope for exponential-time algorithms that are efficient in practice
 - or for other interesting special cases that are efficiently solvable

Theorem

GBPVER is coNP-hard.

• BBPIVER problem:

- X is restricted to $\{0,1\}$
- a specific input assignment is provided as part of the input
- we ask whether the protocol is correct for that input assignment
- The bad news: even for this restricted version, hardness insists
- We can only hope for exponential-time algorithms that are efficient in practice
 - or for other interesting special cases that are efficiently solvable

Theorem

GBPVER is coNP-hard.

• BBPIVER problem:

- X is restricted to $\{0,1\}$
- a specific input assignment is provided as part of the input
- we ask whether the protocol is correct for that input assignment
- The bad news: even for this restricted version, hardness insists

• We can only hope for exponential-time algorithms that are efficient in practice

• or for other interesting special cases that are efficiently solvable

Theorem

GBPVER is coNP-hard.

• *BBPIVER* problem:

- X is restricted to $\{0,1\}$
- a specific input assignment is provided as part of the input
- we ask whether the protocol is correct for that input assignment
- The bad news: even for this restricted version, hardness insists

• We can only hope for exponential-time algorithms that are efficient in practice

• or for other interesting special cases that are efficiently solvable

Theorem

GBPVER is coNP-hard.

• *BBPIVER* problem:

- X is restricted to $\{0,1\}$
- a specific input assignment is provided as part of the input
- we ask whether the protocol is correct for that input assignment
- The bad news: even for this restricted version, hardness insists

• We can only hope for exponential-time algorithms that are efficient in practice

or for other interesting special cases that are efficiently solvable

Theorem

GBPVER is coNP-hard.

• *BBPIVER* problem:

- X is restricted to $\{0,1\}$
- a specific input assignment is provided as part of the input
- we ask whether the protocol is correct for that input assignment
- The bad news: even for this restricted version, hardness insists
- We can only hope for exponential-time algorithms that are efficient in practice
 - or for other interesting special cases that are efficiently solvable

Theorem

GBPVER is coNP-hard.

• *BBPIVER* problem:

- X is restricted to $\{0,1\}$
- a specific input assignment is provided as part of the input
- we ask whether the protocol is correct for that input assignment
- The bad news: even for this restricted version, hardness insists
- We can only hope for exponential-time algorithms that are efficient in practice
 - or for other interesting special cases that are efficiently solvable

• $\phi(c) = -1$ for some $c \in C_I$

- $\ \, @ \ \, \exists c,c'\in C_{\mathsf{I}} \ \, {\rm such \ that} \ \, c\stackrel{*}{\to} c' \ \, {\rm and} \ \, \phi(c)\neq\phi(c')$
- (i) $\exists c \in C_I$ and $c' \in C_F$ such that $c \stackrel{*}{\to} c'$ and O(c') = -1
- $\exists c \in C_I$ and $c' \in C_F$ such that $c \stackrel{*}{\rightarrow} c'$ and $\phi(c) \neq O(c')$
- $\exists B' \in F_S$ such that O(B') = -1
- ◎ $\exists B \in I_S$ and $B' \in F_S$ such that $B \xrightarrow{*} B'$ and $\phi(B) \neq O(B')$ (possibly B = B')

Theorem (Complete Verifier)

- $\phi(c) = -1$ for some $c \in C_l$
- $\exists c,c' \in C_I \text{ such that } c \xrightarrow{*} c' \text{ and } \phi(c) \neq \phi(c')$
- (i) $\exists c \in C_I$ and $c' \in C_F$ such that $c \stackrel{*}{\to} c'$ and O(c') = -1
- $\exists c \in C_I$ and $c' \in C_F$ such that $c \stackrel{*}{\rightarrow} c'$ and $\phi(c) \neq O(c')$
- $\exists B' \in F_S$ such that O(B') = -1
- ◎ $\exists B \in I_S$ and $B' \in F_S$ such that $B \xrightarrow{*} B'$ and $\phi(B) \neq O(B')$ (possibly B = B')

Theorem (Complete Verifier)

- $\phi(c) = -1$ for some $c \in C_I$
- $\exists c,c' \in C_I \text{ such that } c \xrightarrow{*} c' \text{ and } \phi(c) \neq \phi(c')$
- $\ \ \, {\bf 3} \ \, {\bf 3} c \in {\it C_I} \ \, {\rm and} \ \, c' \in {\it C_F} \ \, {\rm such \ that} \ \, c \xrightarrow{*} c' \ \, {\rm and} \ \, O(c') = -1 \ \,$
- $\exists c \in C_I$ and $c' \in C_F$ such that $c \stackrel{*}{\rightarrow} c'$ and $\phi(c) \neq O(c')$
- $\exists B' \in F_S$ such that O(B') = -1
- ◎ $\exists B \in I_S$ and $B' \in F_S$ such that $B \xrightarrow{*} B'$ and $\phi(B) \neq O(B')$ (possibly B = B')

Theorem (Complete Verifier)

- $\phi(c) = -1$ for some $c \in C_I$
- $\exists c,c' \in C_I \text{ such that } c \stackrel{*}{\to} c' \text{ and } \phi(c) \neq \phi(c')$
- $\ \ \, {\bf 3} \ \, {\bf 3} c \in {\it C_I} \ \, {\rm and} \ \, c' \in {\it C_F} \ \, {\rm such \ that} \ \, c \xrightarrow{*} c' \ \, {\rm and} \ \, {\it O}(c') = -1 \ \,$
- $\ \ \, { \bigcirc } \ \, \exists c \in \mathit{C}_{\mathit{I}} \ \, { \rm and } \ \, c' \in \mathit{C}_{\mathit{F}} \ \, { \rm such } \ \, { \rm that } \ \, c \xrightarrow{*} c' \ \, { \rm and } \ \phi(c) \neq \mathit{O}(c') \ \,$
- $\exists B' \in F_S$ such that O(B') = -1
- ◎ $\exists B \in I_S$ and $B' \in F_S$ such that $B \xrightarrow{*} B'$ and $\phi(B) \neq O(B')$ (possibly B = B')

Theorem (Complete Verifier)

- $\phi(c) = -1$ for some $c \in C_I$
- $\exists c,c' \in C_I \text{ such that } c \xrightarrow{*} c' \text{ and } \phi(c) \neq \phi(c')$
- $\ \ \, {\bf 3} \ \, {\bf 3} c \in {\it C_I} \ \, {\rm and} \ \, c' \in {\it C_F} \ \, {\rm such \ that} \ \, c \xrightarrow{*} c' \ \, {\rm and} \ \, {\it O}(c') = -1 \ \,$
- $\ \, { \ \, { 3 } \ \, c \in C_{\sf I} \ \, { and } \ \, c' \in C_{\sf F} \ \, { such that } \ \, c \xrightarrow{*} c' \ \, { and } \ \phi(c) \neq O(c') }$
- $\exists B' \in F_S$ such that O(B') = -1
- ◎ $\exists B \in I_S$ and $B' \in F_S$ such that $B \xrightarrow{*} B'$ and $\phi(B) \neq O(B')$ (possibly B = B')

Theorem (Complete Verifier)

- $\phi(c) = -1$ for some $c \in C_I$
- $\exists c,c' \in C_I \text{ such that } c \stackrel{*}{\to} c' \text{ and } \phi(c) \neq \phi(c')$
- $\ \ \, {\bf 3} \ \, {\bf 3} c \in {\it C_I} \ \, {\rm and} \ \, c' \in {\it C_F} \ \, {\rm such \ that} \ \, c \xrightarrow{*} c' \ \, {\rm and} \ \, {\it O}(c') = -1 \ \,$
- $\ \, { \ \, { 3 } \ \, c \in C_{\sf I} \ \, { and } \ \, c' \in C_{\sf F} \ \, { such that } \ \, c \xrightarrow{*} c' \ \, { and } \ \phi(c) \neq O(c') }$
- $\exists B' \in F_S$ such that O(B') = -1
- $\exists B \in I_S$ and $B' \in F_S$ such that $B \xrightarrow{*} B'$ and $\phi(B) \neq O(B')$ (possibly B = B')

Theorem (Complete Verifier)

•
$$\phi(c) = -1$$
 for some $c \in C_I$

- $\ \ \, {\bf 3} \ \, {\bf 3} c \in {\it C_I} \ \, {\rm and} \ \, c' \in {\it C_F} \ \, {\rm such \ that} \ \, c \xrightarrow{*} c' \ \, {\rm and} \ \, {\it O}(c') = -1 \ \,$
- $\exists B' \in F_S$ such that O(B') = -1
- $\exists B \in I_S$ and $B' \in F_S$ such that $B \xrightarrow{*} B'$ and $\phi(B) \neq O(B')$ (possibly B = B')

Theorem (Complete Verifier)

- To find the initial configurations we can use Fenichel's algorithm [1968] for finding the distributions of indistinguishable objects (agents) into distinguisable slots (initial states)
- Partition the induced graph into its strongly connected components by e.g. Tarjan's algorithm [1972]
- Replace each component with a node to obtain a dag
- Initial strongly connected component: contains at least one initial configuration
 - 0-initial: all its initial configurations expect the all-0 output
 - 1-initial: all its initial configurations expect the all-1 output
 - mixed: reject

- To find the initial configurations we can use Fenichel's algorithm [1968] for finding the distributions of indistinguishable objects (agents) into distinguisable slots (initial states)
- Partition the induced graph into its strongly connected components by e.g. Tarjan's algorithm [1972]
- Replace each component with a node to obtain a dag
- Initial strongly connected component: contains at least one initial configuration
 - 0-initial: all its initial configurations expect the all-0 output
 - 1-initial: all its initial configurations expect the all-1 output
 - mixed: reject

- To find the initial configurations we can use Fenichel's algorithm [1968] for finding the distributions of indistinguishable objects (agents) into distinguisable slots (initial states)
- Partition the induced graph into its strongly connected components by e.g. Tarjan's algorithm [1972]
- Replace each component with a node to obtain a dag
- Initial strongly connected component: contains at least one initial configuration
 - 0-initial: all its initial configurations expect the all-0 output
 - 1-initial: all its initial configurations expect the all-1 output
 - mixed: reject

- To find the initial configurations we can use Fenichel's algorithm [1968] for finding the distributions of indistinguishable objects (agents) into distinguisable slots (initial states)
- Partition the induced graph into its strongly connected components by e.g. Tarjan's algorithm [1972]
- Replace each component with a node to obtain a dag
- Initial strongly connected component: contains at least one initial configuration
 - 0-initial: all its initial configurations expect the all-0 output
 - 1-initial: all its initial configurations expect the all-1 output
 - mixed: reject

- To find the initial configurations we can use Fenichel's algorithm [1968] for finding the distributions of indistinguishable objects (agents) into distinguisable slots (initial states)
- Partition the induced graph into its strongly connected components by e.g. Tarjan's algorithm [1972]
- Replace each component with a node to obtain a dag
- Initial strongly connected component: contains at least one initial configuration
 - 0-initial: all its initial configurations expect the all-0 output
 - 1-initial: all its initial configurations expect the all-1 output
 - mixed: reject

- To find the initial configurations we can use Fenichel's algorithm [1968] for finding the distributions of indistinguishable objects (agents) into distinguisable slots (initial states)
- Partition the induced graph into its strongly connected components by e.g. Tarjan's algorithm [1972]
- Replace each component with a node to obtain a dag
- Initial strongly connected component: contains at least one initial configuration
 - 0-initial: all its initial configurations expect the all-0 output
 - 1-initial: all its initial configurations expect the all-1 output
 - mixed: reject

- To find the initial configurations we can use Fenichel's algorithm [1968] for finding the distributions of indistinguishable objects (agents) into distinguisable slots (initial states)
- Partition the induced graph into its strongly connected components by e.g. Tarjan's algorithm [1972]
- Replace each component with a node to obtain a dag
- Initial strongly connected component: contains at least one initial configuration
 - 0-initial: all its initial configurations expect the all-0 output
 - 1-initial: all its initial configurations expect the all-1 output
 - mixed: reject

- To find the initial configurations we can use Fenichel's algorithm [1968] for finding the distributions of indistinguishable objects (agents) into distinguisable slots (initial states)
- Partition the induced graph into its strongly connected components by e.g. Tarjan's algorithm [1972]
- Replace each component with a node to obtain a dag
- Initial strongly connected component: contains at least one initial configuration
 - 0-initial: all its initial configurations expect the all-0 output
 - 1-initial: all its initial configurations expect the all-1 output
 - mixed: reject

• Final strongly connected component: has no outgoing edges

- 0-final: all its configurations give the all-0 output
- I-final: all its configurations give the all-1 output
- mixed: reject
- If there is a directed path from a x-initial component to a |x 1|-final component reject, otherwise accept
- An erroneous computation in the original graph begins from an initial configuration c expecting all-x output w.r.t. φ and leads to a final strongly connected component which contains a configuration that does not give the all-x output

- 0-final: all its configurations give the all-0 output
- 1-final: all its configurations give the all-1 output
- mixed: reject
- If there is a directed path from a x-initial component to a |x 1|-final component reject, otherwise accept
- An erroneous computation in the original graph begins from an initial configuration c expecting all-x output w.r.t. φ and leads to a final strongly connected component which contains a configuration that does not give the all-x output

- 0-final: all its configurations give the all-0 output
- 1-final: all its configurations give the all-1 output
- mixed: reject
- If there is a directed path from a x-initial component to a |x 1|-final component reject, otherwise accept
- An erroneous computation in the original graph begins from an initial configuration c expecting all-x output w.r.t. φ and leads to a final strongly connected component which contains a configuration that does not give the all-x output

- 0-final: all its configurations give the all-0 output
- 1-final: all its configurations give the all-1 output
- mixed: reject
- If there is a directed path from a x-initial component to a |x 1|-final component reject, otherwise accept
- An erroneous computation in the original graph begins from an initial configuration c expecting all-x output w.r.t. φ and leads to a final strongly connected component which contains a configuration that does not give the all-x output

- 0-final: all its configurations give the all-0 output
- 1-final: all its configurations give the all-1 output
- mixed: reject
- If there is a directed path from a x-initial component to a |x 1|-final component reject, otherwise accept
- An erroneous computation in the original graph begins from an initial configuration c expecting all-x output w.r.t. φ and leads to a final strongly connected component which contains a configuration that does not give the all-x output

- 0-final: all its configurations give the all-0 output
- 1-final: all its configurations give the all-1 output
- mixed: reject
- If there is a directed path from a x-initial component to a |x 1|-final component reject, otherwise accept
- An erroneous computation in the original graph begins from an initial configuration c expecting all-x output w.r.t. φ and leads to a final strongly connected component which contains a configuration that does not give the all-x output

 \bullet Most natural verification problems concerning population protocols are ${\rm coNP-hard}$

- There are easily checkable criteria for determining correctness
- Checking any of these defines a possibly non-complete verifier
- Checking 3 of these defines a complete verifier
- All of them are exponential since they are based on searching the transition graph
- We have implemented the first verification tool for population protocols
 - C++
 - Some non-complete and 1 complete verifier
- Experiments show that the running time can be greatly improved in the reject case if the transition graph is constructed on the fly

- Most natural verification problems concerning population protocols are coNP-hard
- There are easily checkable criteria for determining correctness
- Checking any of these defines a possibly non-complete verifier
- Checking 3 of these defines a complete verifier
- All of them are exponential since they are based on searching the transition graph
- We have implemented the first verification tool for population protocols
 - C++
 - Some non-complete and 1 complete verifier
- Experiments show that the running time can be greatly improved in the reject case if the transition graph is constructed on the fly

- Most natural verification problems concerning population protocols are coNP-hard
- There are easily checkable criteria for determining correctness
- Checking any of these defines a possibly non-complete verifier
- Checking 3 of these defines a complete verifier
- All of them are exponential since they are based on searching the transition graph
- We have implemented the first verification tool for population protocols
 - C++
 - Some non-complete and 1 complete verifier
- Experiments show that the running time can be greatly improved in the reject case if the transition graph is constructed on the fly

- Most natural verification problems concerning population protocols are coNP-hard
- There are easily checkable criteria for determining correctness
- Checking any of these defines a possibly non-complete verifier
- Checking 3 of these defines a complete verifier
- All of them are exponential since they are based on searching the transition graph
- We have implemented the first verification tool for population protocols
 - C++
 - Some non-complete and 1 complete verifier
- Experiments show that the running time can be greatly improved in the reject case if the transition graph is constructed on the fly

- Most natural verification problems concerning population protocols are coNP-hard
- There are easily checkable criteria for determining correctness
- Checking any of these defines a possibly non-complete verifier
- Checking 3 of these defines a complete verifier
- All of them are exponential since they are based on searching the transition graph
- We have implemented the first verification tool for population protocols
 - C++
 - Some non-complete and 1 complete verifier
- Experiments show that the running time can be greatly improved in the reject case if the transition graph is constructed on the fly

- Most natural verification problems concerning population protocols are coNP-hard
- There are easily checkable criteria for determining correctness
- Checking any of these defines a possibly non-complete verifier
- Checking 3 of these defines a complete verifier
- All of them are exponential since they are based on searching the transition graph
- We have implemented the first verification tool for population protocols
 - C++
 - Some non-complete and 1 complete verifier
- Experiments show that the running time can be greatly improved in the reject case if the transition graph is constructed on the fly

- Most natural verification problems concerning population protocols are coNP-hard
- There are easily checkable criteria for determining correctness
- Checking any of these defines a possibly non-complete verifier
- Checking 3 of these defines a complete verifier
- All of them are exponential since they are based on searching the transition graph
- We have implemented the first verification tool for population protocols
 - C++
 - Some non-complete and 1 complete verifier
- Experiments show that the running time can be greatly improved in the reject case if the transition graph is constructed on the fly

- Most natural verification problems concerning population protocols are coNP-hard
- There are easily checkable criteria for determining correctness
- Checking any of these defines a possibly non-complete verifier
- Checking 3 of these defines a complete verifier
- All of them are exponential since they are based on searching the transition graph
- We have implemented the first verification tool for population protocols
 - C++
 - Some non-complete and 1 complete verifier
- Experiments show that the running time can be greatly improved in the reject case if the transition graph is constructed on the fly

- Most natural verification problems concerning population protocols are coNP-hard
- There are easily checkable criteria for determining correctness
- Checking any of these defines a possibly non-complete verifier
- Checking 3 of these defines a complete verifier
- All of them are exponential since they are based on searching the transition graph
- We have implemented the first verification tool for population protocols
 - C++
 - Some non-complete and 1 complete verifier
- Experiments show that the running time can be greatly improved in the reject case if the transition graph is constructed on the fly

- Can we avoid searching the huge transition graph by somehow looking inside the protocol?
- There is a constructive proof [AADFP '06] that a semilinear predicate is stably computable by the basic model
 - Unfortunately, there exists an unbounded number of correct protocols for the same predicate (we can simply add an unbounded number of dummy states and transitions)
 - ullet e.g. replace $(q_0,q_1) o (q_1,q_0)$ with

- Can we avoid searching the huge transition graph by somehow looking inside the protocol?
- There is a constructive proof [AADFP '06] that a semilinear predicate is stably computable by the basic model
 - Unfortunately, there exists an unbounded number of correct protocols for the same predicate (we can simply add an unbounded number of dummy states and transitions)
 - ullet e.g. replace $(q_0,q_1)
 ightarrow (q_1,q_0)$ with

$$egin{aligned} (q_0,q_1) & o (q_1,q_{d_1}) \ (q_{d_1},q) & o (q_{d_2},q) \ &dots \ &dots\ \ &dots$$

- Can we avoid searching the huge transition graph by somehow looking inside the protocol?
- There is a constructive proof [AADFP '06] that a semilinear predicate is stably computable by the basic model
 - Unfortunately, there exists an unbounded number of correct protocols for the same predicate (we can simply add an unbounded number of dummy states and transitions)
 - ullet e.g. replace $(q_0,q_1)
 ightarrow (q_1,q_0)$ with

$$egin{aligned} (q_0,q_1) & o (q_1,q_d_1) \ (q_{d_1},q) & o (q_{d_2},q) \ &dots \ &dots\ \ &dots \$$

- Can we avoid searching the huge transition graph by somehow looking inside the protocol?
- There is a constructive proof [AADFP '06] that a semilinear predicate is stably computable by the basic model
 - Unfortunately, there exists an unbounded number of correct protocols for the same predicate (we can simply add an unbounded number of dummy states and transitions)
 - e.g. replace $(q_0,q_1)
 ightarrow (q_1,q_0)$ with

$$egin{aligned} (q_0,q_1) & o (q_1,q_d_1) \ (q_{d_1},q) & o (q_{d_2},q) \ &dots \ &dots\ \ &dots \$$

• Can we somehow compare the default protocol (given by the constructive proof) with the provided one?

- Possibly by truncating the unnecessary states
- Design verifiers that are not based on transition graph searching
- For noncomplete communication graphs, protocols with stabilizing inputs [AACFJP '05], MPPs [CMS '09] and protocols using non-constant space (PM protocols) [CMNPS '10] we do not have such constructive proofs
- Study verification of protocols in these models
- Model checking

- Can we somehow compare the default protocol (given by the constructive proof) with the provided one?
 - Possibly by truncating the unnecessary states
- Design verifiers that are not based on transition graph searching
- For noncomplete communication graphs, protocols with stabilizing inputs [AACFJP '05], MPPs [CMS '09] and protocols using non-constant space (PM protocols) [CMNPS '10] we do not have such constructive proofs
- Study verification of protocols in these models
- Model checking

- Can we somehow compare the default protocol (given by the constructive proof) with the provided one?
 - Possibly by truncating the unnecessary states
- Design verifiers that are not based on transition graph searching
- For noncomplete communication graphs, protocols with stabilizing inputs [AACFJP '05], MPPs [CMS '09] and protocols using non-constant space (PM protocols) [CMNPS '10] we do not have such constructive proofs
- Study verification of protocols in these models
- Model checking

- Can we somehow compare the default protocol (given by the constructive proof) with the provided one?
 - Possibly by truncating the unnecessary states
- Design verifiers that are not based on transition graph searching
- For noncomplete communication graphs, protocols with stabilizing inputs [AACFJP '05], MPPs [CMS '09] and protocols using non-constant space (PM protocols) [CMNPS '10] we do not have such constructive proofs
- Study verification of protocols in these models
- Model checking

- Can we somehow compare the default protocol (given by the constructive proof) with the provided one?
 - Possibly by truncating the unnecessary states
- Design verifiers that are not based on transition graph searching
- For noncomplete communication graphs, protocols with stabilizing inputs [AACFJP '05], MPPs [CMS '09] and protocols using non-constant space (PM protocols) [CMNPS '10] we do not have such constructive proofs
- Study verification of protocols in these models
- Model checking

- Can we somehow compare the default protocol (given by the constructive proof) with the provided one?
 - Possibly by truncating the unnecessary states
- Design verifiers that are not based on transition graph searching
- For noncomplete communication graphs, protocols with stabilizing inputs [AACFJP '05], MPPs [CMS '09] and protocols using non-constant space (PM protocols) [CMNPS '10] we do not have such constructive proofs
- Study verification of protocols in these models
- Model checking

This work has been partially supported by the ICT Programmes of the European Union under contracts number ICT-2008-215270 (FRONTS) and ICT-2010-257245 (VITRO).

Thank You!

