How Many Cooks Spoil the Soup?

Othon Michail Paul G. Spirakis

Department of Computer Science, University of Liverpool, UK Computer Technology Institute & Press "Diophantus" (CTI)

23rd International Colloquium on Structural Information and Communication Complexity (SIROCCO) July 19-21, 2016 Helsinki, Finland

Othon Michail, Paul G. Spirakis

- A task of outstanding importance for distributed algorithms
- Typical approach to solve a higher-level task A:
 - Devise an algorithm that elects a leader
 - 2 Devise an algorithm for A that assumes a pre-elected leader
 - **3** Compose the two algorithms
- Steps 1 and 3 usually enclose the full difficulty of task A

Question: Can we solve A without ever electing a leader?

Population Protocols [AADFP06]

- Compute the semilinear predicates
- The generic protocol elects a unique leader in every execution
- All known generic constructions "fundamentally rely on the election of a single leader node, which coordinates phases of computation" [AG15]
- Worst-case Dynamic Networks [KLO10]
 - *k*-token dissemination in O(nk) rounds with $O(\log n)$ bits/message
 - The algorithm elects a leader in every execution
 - No algorithm is known to avoid this

- Curiosity: Is it really necessary?
- Fault-tolerance: A unique leader's crash can be fatal
- Parallelism: Symmetry-breaking and "centralized" coordination usually cost in time

Generalized Question: Can we solve A without ever having fewer than k processes in a given "role"?

- Meaningful definitions heavily depend on the model/application
- A leader role is typically the value of a local *leader* variable
- Could be defined as the complete local history of a process
- Or in terms of the external interface of a process
- In population protocols can be simply defined as the local state
 - *u*, *v* have the same role at a given time *t* iff, at that time, their local states are the same
 - makes them a good candidate to start this study

Difficulties:

- There are events controlled by the scheduler
 - even if the protocol has no inherent mechanism of breaking symmetry, the scheduler can always force it
 - we want to isolate the symmetry that is only due to the protocol
 - inherent symmetry vs. observed symmetry
- The sequential scheduler is problematic
 - $(r, r) \rightarrow (g, g)$, even rs initially
 - If a single interaction occurs, the new configuration has only 2 gs; symmetry breaking = n 2
 - On the other hand, a perfect matching converts all *r*s to *g*s in one step; symmetry breaking = 0

Othon Michail, Paul G. Spirakis

Othon Michail, Paul G. Spirakis

Parallel Scheduler

Parallel Scheduler

Othon Michail, Paul G. Spirakis

Parallel Scheduler

Othon Michail, Paul G. Spirakis

Goal: Define a measure of the inherent symmetry of a population protocol

- Schedulers that can be maximally parallel
 - May select from a single interaction to a maximum matching per step
- To isolate the inherent symmetry
 - Focus on schedules that maximize symmetry for the given protocol
 - Introduce as much symmetry as possible to observe the maximum symmetry breaking that the protocol has to perform
 - Does not affect correctness: still under all fair schedules

- A new measure of the inherent symmetry of a population protocol
- Main positive result (partial characterization):
 - A wide subclass of semilinear predicates can be computed with symmetry $\Theta(N_{min})$, which is asymptotically optimal
 - N_{min} : minimum multiplicity of a state in the initial configuration
 - i.e., the initial symmetry
- Strong negative result:
 - The symmetry of any protocol that stably computes parity, is upper bounded by an integer depending only on the size of the protocol

- The role of symmetry in static anonymous systems has been deeply investigated [An80,YK96,Kr97,FMS98]
- This is not true for static systems with UIDs and dynamic systems
- Homonyms: restricted type of symmetry in systems with IDs [DFGKRT11]
- Systems not suffering from a necessity for global symmetry breaking:
 Shared Memory with Atomic Snapshots, Quorums, LOCAL model
- In population protocols, avoiding to ever elect a unique leader has not been followed before
 - Only the common question of dropping a pre-elected leader

- X and Y: finite input and output alphabets
- **2** Q: finite set of states
- **3** $I: X \to Q$: input function
- $O: Q \to Y$: output function
- **(**) $\delta: Q \times Q \rightarrow Q \times Q$: transition function

If $\delta(p,q) = (p',q')$, we write (p,q)
ightarrow (p',q')

Definition

A predicate $p: X^* \to \{0, 1\}$ is stably computable if there exists a protocol s.t. for all $x \in X^*$, any fair execution beginning from $c_0 = I(x)$ reaches an output stable configuration c_s in which each node outputs p(x).

- symmetry of configuration c: $s(c) = \min_{q \in Q : c[q] > 1} \{c[q]\}$
 - e.g. if c = (0, 4, 12, 0, 52) then s(c) = 4
- $\Gamma(c_0)$: all fair executions of \mathcal{A} that begin from c_0 , up to stability
- symmetry of \mathcal{A} on $\alpha \in \Gamma(c_0)$: $s(\mathcal{A}, \alpha) = \min_{c \in \alpha} \{s(c)\}$

Definition

Define the symmetry of \mathcal{A} on c_0 as $s(\mathcal{A}, c_0) = \max_{\alpha \in \Gamma(c_0)} \{s(\mathcal{A}, \alpha)\}.$

Remark

To estimate the inherent symmetry of A on a c_0 , execute A against an imaginary symmetry maximizing scheduler.

•
$$C(N_{min})$$
: all initial configurations c_0 s.t. $s(c_0) = N_{min}$

Definition

Define \mathcal{A} 's symmetry on $\mathcal{C}(N_{min})$ as $s(\mathcal{A}, N_{min}) = \min_{c_0 \in \mathcal{C}(N_{min})} \{s(\mathcal{A}, c_0)\}.$

- min-max-min problem
- symmetry breaking $b(A, N_{min}) = N_{min} s(A, N_{min})$
- To show that \mathcal{A} is $\geq g(N_{min})$ symmetric asymptotically
 - $\forall c_0 \in C(N_{min}) \exists$ an execution on c_0 that drops the initial symmetry by at most $N_{min} g(N_{min})$
 - or at all, if $g(N_{min}) = N_{min}$
- To show that \mathcal{A} is $\leq g(N_{min})$ symmetric
 - a symmetry breaking $\geq N_{min} g(N_{min})$ on infinitely many N_{min}

Othon Michail, Paul G. Spirakis

- If we establish that a predicate p is $\geq g(N_{min})$ symmetric
 - \exists protocol A stably computing p without an inherent mechanism of dropping symmetry more than $N_{min} g(N_{min})$
 - e.g. if N_{min} = n and g(N_{min}) = log n, A does not inherently try to break symmetry more than n - log n
- If we establish that a predicate p is $\leq g(N_{min})$ symmetric
 - Any protocol A that stably computes p has to drop symmetry by at least $N_{min} g(N_{min})$ in every execution
 - e.g. if $g(N_{min}) = 1$, \mathcal{A} elects a unique leader in every execution
- This definition leads to very strong impossibility results
 - upper bounds are also upper bounds on the observed symmetry
 - hold under any scheduler

Othon Michail, Paul G. Spirakis

An Example: Count-to-x

• $X = \{0, 1\}, Q = \{q_0, q_1, q_2 \dots, q_x\},$

•
$$I(0) = q_0$$
 and $I(1) = q_1$,

•
$$O(q_{\scriptscriptstyle X})=1$$
 and $O(q)=0$, for $q\in Qackslash\{q_{\scriptscriptstyle X}\}$, and

$$\delta$$
:
 $(q_i,q_j)
ightarrow (q_{i+j},q_0), ext{ if } i+j < x$
 $ightarrow (q_{\mathsf{x}},q_{\mathsf{x}}), ext{ otherwise}$

Proposition

The symmetry of Protocol Count-to-x, for any x = O(1), is at least $(2/3)\lfloor N_{min}/x \rfloor - (x-1)/3$, when $x \ge 2$, and N_{min} , when x = 1; i.e., it is $\Theta(N_{min})$ for any x = O(1).

Othon Michail, Paul G. Spirakis

- N_1 : #nodes initially in q_1
- The scheduler forms $\lfloor N_1/x \rfloor$ groups of x q_1 s each, and $r \le x 1$ q_1 s residue
- Sequential gathering to one of the nodes in each group
 - goes through states $q_1, q_2, \ldots, q_{x-1}$
 - in parallel to all groups, so cardinalities of states are always $\geq \lfloor N_1/x \rfloor$
- Cannot pick a perfect bipartite matching between q₁s and q_{x-1}s to obtain alarm states
 - could leave the symmetry-breaking residue of q_1s
- Instead, match in one step as many as possible so that, after the corresponding transitions, $N_x(t') \ge N_1(t')$

- If we match approx. 1/3 of the (q₁, q_{x-1}) pairs, then we will have as many q_x as we need in order to eliminate all q₁s in one step and all remaining q_{x-1}s in another step.
- The min symmetry in the whole course of this schedule is

$$egin{aligned} \mathsf{V}_{\mathrm{x}-1}(t') &= \lfloor \mathsf{N}_1/x
floor - \mathsf{y} = \lfloor \mathsf{N}_1/x
floor - rac{\lfloor \mathsf{N}_1/x
floor + r}{3} \ &= rac{2}{3} \lfloor \mathsf{N}_1/x
floor - rac{r}{3} \geq rac{2}{3} \lfloor \mathsf{N}_1/x
floor - rac{x-1}{3}. \end{aligned}$$

- Similar strategy if there are also q_0 s initially
- In all cases, symmetry
 - $\geq (2/3)\lfloor N_{min}/x \rfloor + (x-1)/3 = \Theta(N_{min})$, for $x \geq 2$, and
 - = N_{min} , for x = 1

Othon Michail, Paul G. Spirakis

Comparison to Observed Symmetry

• random parallel schedulers

- e.g. in every step a maximum matching uniformly at random
- "What is the average symmetry achieved by a protocol under such a scheduler?"
- The expected observed symmetry of *Count-to-5*
 - if counted until q_5 becomes absolute majority, seems to grow faster than \sqrt{n}
 - if counted up to stability, seems to grow as fast as log *n*

Othon Michail, Paul G. Spirakis

Theorem

Any predicate of the form $\sum_{i \in [k]} a_i N_i \ge c$, for integer constants $k \ge 1$, $a_i \ge 1$, and $c \ge 0$, can be computed with symmetry more than $\lfloor N_{min}/(c/\sum_{j\in L} a_j + 2) \rfloor - 2 = \Theta(N_{min}).$

Protocol Positive-Linear-Combination

$$egin{aligned} Q &= \{q_0, q_1, q_2, \dots, q_c\} \ &I(\sigma_i) = q_{a_i}, ext{ for all } \sigma_i \in X \ &O(q_c) = 1 ext{ and } O(q) = 0, ext{ for all } q \in Q ackslash \{q_c\} \ &\delta: \ &(q_i, q_j)
ightarrow (q_{i+j}, q_0), ext{ if } i+j < c \ &
ightarrow (q_c, q_c), ext{ otherwise} \end{aligned}$$

Theorem

Let \mathcal{A} be a protocol with a reachable disseminating state q and let \mathcal{C}_0^d be the subset of its initial configurations that may produce q. Then the symmetry of \mathcal{A} on \mathcal{C}_0^d is $\Theta(N_{min})$.

- i.e., disseminating states can be exploited for maximum symmetry
- immediately applies to single-signed linear combinations
 - passing a threshold results in the appearance of a disseminating state
- does not apply to linear combinations with mixed signs:

Proposition

Let p be a predicate of the form $\sum_{i \in [k]} a_i N_i \ge c$ such that at least two $a_i s$ have opposite signs. Then there is no protocol, having a reachable output-stable state, that stably computes p.

- Predicates that do not allow for output-stable states
 - mixed-signed linear combinations, like majority
 - modulo predicates, like parity
 - not captured by the previous characterization
- The majority predicate $N_a N_b > 0$ can be computed with symmetry $\min\{N_{min}, |N_a N_b|\}$
 - generalizes to any predicate with mixed signs
- For every constant $k \ge 1$, majority can be computed with symmetry k

• Parity: all nodes start from q_1 , true iff the number of nodes is odd

Theorem

Let A be a protocol with set of states Q, that solves parity. Then the symmetry of A is less than $2^{|Q|-1}$.

Proof

- Assume A solves it with symmetry $f(n) \geq 2^{|Q|-1}$
- Take any initial C_n for any sufficiently large odd n
- ∃ execution α on C_n that reaches stability without ever dropping the minimum cardinality of an existing state below f(n)
- C_{stable} : the first output-stable configuration of α
 - all nodes give output 1 and output 0 cannot be produced
 - every $q \in Q$ that appears in C_{stable} has multiplicity $C_{stable}[q] \ge f(n)$

- Consider C_{2n}, i.e., the unique initial configuration on 2n nodes
- even n, thus parity is false
- Partition C_{2n} into two parts of size n
- Finite prefix β of a fair execution on C_{2n} :
 - simulate α in each part, until it reaches C_{stable}
 - 2C_{stable}: consists precisely of two copies of C_{stable}
- Any fair execution on $2C_{stable}$ must produce a state q_0 with output 0
- q₀ must also be reachable from a sub-configuration C_{small} of 2C_{stable} of size at most 2^{|Q|-1} (by a proposition)
- But C_{small} is also a sub-configuration of C_{stable}
 - So, q_0 can also be produced by C_{stable}
 - Contradicts the fact that C_{stable} is output-stable with output 1

 C_n : *n* odd

Othon Michail, Paul G. Spirakis

 C_{2n} : 2n even

Othon Michail, Paul G. Spirakis

How Many Cooks Spoil the Soup?

24 / 26

 $2C_{stable}$: unstable

after a while, an output 0 appears

due to interactions inside a $C_{small} \subset 2C_{stable}$

Othon Michail, Paul G. Spirakis

but also $C_{small} \subset C_{stable}$

but also $C_{small} \subset C_{stable}$

Othon Michail, Paul G. Spirakis

- The impossibility excludes any protocol that would solve parity with symmetry depending on N_{min}
 - could be solvable with symmetry k, for any constant $k \ge 1$
- Exact characterization of the symmetry of all semilinear predicates
- Constant symmetry for parity can be achieved given auxiliary nodes
 - Can they be dropped? How is symmetry affected by auxiliary nodes?
- Networked systems (static or dynamic), much memory and/or UIDs
 - UIDs provide an *a priori* maximum symmetry breaking
 - Still, solving a task and avoiding an election may be highly non-trivial
 - How to define the "role" of a process here?
- More experimental and analytic work on the observed symmetry

Thank You!

Othon Michail, Paul G. Spirakis