
Schedulers
Equivalence
Conclusions

Not All Fair Probabilistic Schedulers are Equivalent

Othon Michail, Ioannis Chatzigiannakis,
Shlomi Dolev, Sándor Fekete, and Paul Spirakis

Research Academic Computer Technology Institute (RACTI)
Department of Computer Science, Ben-Gurion University of the Negev

Department of Computer Science, Braunschweig University of Technology

OPODIS ’09
December 2009

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 1 / 23

Schedulers
Equivalence
Conclusions

Outline I

1 Schedulers
Intro - Population Protocols
Fair Probabilistic Schedulers
Proposed Schedulers

2 Equivalence
Time Equivalence
Computational Equivalence

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 2 / 23

Schedulers
Equivalence
Conclusions

Intro - Population Protocols
Fair Probabilistic Schedulers
Proposed Schedulers

Population Protocol Model
[Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC ’04]

A communication graph G = (V ,E), where V is a population of
n agents (finite-state machines with sensing capabilities) and E
represents the permissible interactions.

Agents interact in pairs under the commands of some adversary
scheduler.

The scheduler is only required to be fair.

During interaction the states of the agents are updated according to
a global transition function δ.

A configuration C : V → Q is simply a snapshot of the population
states.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 3 / 23

Schedulers
Equivalence
Conclusions

Intro - Population Protocols
Fair Probabilistic Schedulers
Proposed Schedulers

The Transition Graph
[Angluin, Aspnes, Diamadi, Fischer, and Peralta, Dist. Comp. ’06]

T (A,G), A is a population protocol and G is a communication
graph.

node set V (T): set of all possible configurations C = QV .

edge set E (T): (C ,C ′) ∈ E (T) iff C → C ′.

directed graph, possibly containing self-loops.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 4 / 23

Schedulers
Equivalence
Conclusions

Intro - Population Protocols
Fair Probabilistic Schedulers
Proposed Schedulers

Probabilistic Schedulers

Definition (Generic Definition of Probabilistic Schedulers)

A probabilistic scheduler defines for each C ∈ V (T) an infinite
sequence of probability distributions (dC

1 , d
C
2 , . . .) over the set

Γ+(C) = {C ′ | C → C ′}.

Thus, for all t ∈ Z+ and C ∈ V (T) it holds that

dC
t : Γ+(C)→ [0, 1], and∑

C ′∈Γ+(C) dC
t (C ′) = 1.

dC
l (C ′): denotes the probability that C goes to C ′ when C is

encountered for the lth time during the execution.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 5 / 23

Schedulers
Equivalence
Conclusions

Intro - Population Protocols
Fair Probabilistic Schedulers
Proposed Schedulers

Consistent Schedulers

Definition (Consistency)

We call a probabilistic scheduler consistent, w.r.t. a transition graph
T (A,G), if for all C ∈ V (T) and all t, t ′ ∈ Z+ it holds that

dC
t = dC

t′ = dC .

That is, any time the scheduler encounters configuration C it
chooses the next configuration with the same probability distribution
dC over Γ+(C), and this holds for all C (each with its own
distribution).

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 6 / 23

Schedulers
Equivalence
Conclusions

Intro - Population Protocols
Fair Probabilistic Schedulers
Proposed Schedulers

Consistent Schedulers

A consistent scheduler is simply a labeling P : E (T)→ [0, 1] on the
arcs of T ,

such that
P

j∈Γ+(i) P(i , j) = 1 for any i ∈ V (T).

Let C be the current configuration.

Here the probability distribution according to which the next
neighbor-configuration is selected, is invariant of the number of
times C has already occured in the execution.

It is defined by the labels of the arcs leaving C .

Remark

By removing all e ∈ E (T) for which P(e) = 0 we obtain the underlying
graph of a finite Markov chain where the state space is C and for all
i , j ∈ C, if i → j then IPij = P(i , j), otherwise IPij = 0.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 7 / 23

Schedulers
Equivalence
Conclusions

Intro - Population Protocols
Fair Probabilistic Schedulers
Proposed Schedulers

Fair Consistent Schedulers

Fair Execution (Computation): If C ∈ C appears infinitely often in the
execution and C → C ′ then C ′ also appears infinitely often in the
execution.

Theorem

Any consistent scheduler, for which it holds that IPij > 0, for any
protocol A, any communication graph G , and all configurations
i , j ∈ V (T (A,G)) where i → j and i 6= j , is fair with probability 1.

Proof.

If i is persistent then all its out-neighbors are persistent with probability 1
because they occur with nonzero probability.

Remark: This holds also if we require IPij > 0 only for persistent
configurations i .

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 8 / 23

Schedulers
Equivalence
Conclusions

Intro - Population Protocols
Fair Probabilistic Schedulers
Proposed Schedulers

Random Scheduler
[Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC ’04]

Let E be the set of edges of the communication graph G .

Definition (Random Scheduler)

Under Ci picks an ordered pair of agents (u, υ) ∈ E at random,
independently and uniformly. Then the agents generate Ci+1 by applying
the transition function to (Ci (u),Ci (υ)).

It is a protocol-oblivious (or agnostic) scheduler.

Constructs the interaction pattern without any knowledge on
the protocol executed.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 9 / 23

Schedulers
Equivalence
Conclusions

Intro - Population Protocols
Fair Probabilistic Schedulers
Proposed Schedulers

The Random Scheduler is Fair

Theorem

The Random Scheduler is fair with probability 1.

Proof.

1 It is consistent: If i is current configuration and i → j , j is selected
with probability IPij = |Kij |/|E |, Kij = {e | e ∈ E and i

e→ j}.
2 For all i , j ∈ C s.t. i → j , from definition of ‘→’ ⇒ ∃e ∈ E s.t.

i
e→ j , thus |Kij | > 0 and IPij > 0.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 10 / 23

Schedulers
Equivalence
Conclusions

Intro - Population Protocols
Fair Probabilistic Schedulers
Proposed Schedulers

State Scheduler

(q, q′) ∈ Q2 interaction candidate under C : ∃(u, υ) ∈ E s.t. C (u) = q
and C (υ) = q′.

Definition (State Scheduler)

Under Ci draws an interaction candidate (q, q′) uniformly at random and
then a (u, υ) ∈ E s.t. Ci (u) = q and Ci (υ) = q′ uniformly at random.
Then the agents generate Ci+1 by applying the transition function to
(Ci (u),Ci (υ)).

It is a protocol-aware scheduler.

Takes into account information concerning the underlying
protocol.
It inspects the protocol’s set of states Q.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 11 / 23

Schedulers
Equivalence
Conclusions

Intro - Population Protocols
Fair Probabilistic Schedulers
Proposed Schedulers

Transition Function Scheduler

δ̇: the reflexive reduction of the binary transition relation δ over Q2;
identity rules are excluded.

Definition (Transition Function Scheduler)

Under Ci draws a ((q1, q2), (q′1, q
′
2)) ∈ δ̇, s.t. (q1, q2) is an interaction

candidate, uniformly at random (if no such exists, becomes Random
Scheduler and remains in Ci forever) and then a (u, υ) ∈ E s.t.
Ci (u) = q1 and Ci (υ) = q2 uniformly at random. Then the agents
generate Ci+1 by applying the transition relation to (Ci (u),Ci (υ)).

It is a protocol-aware scheduler.

It inspects the protocol’s transition relation δ and set of states Q.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 12 / 23

Schedulers
Equivalence
Conclusions

Intro - Population Protocols
Fair Probabilistic Schedulers
Proposed Schedulers

State Scheduler and Transition Function Scheduler are Fair

Theorem

The State Scheduler and the Transition Function Scheduler are both fair
with probability 1.

Proof.

Simply show that both are consistent and assign nonzero probabilities to
all edges of the transition graph that are not self-loops.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 13 / 23

Schedulers
Equivalence
Conclusions

Time Equivalence
Computational Equivalence

Time Equivalent Schedulers

Definition (Time Equivalent Schedulers)

Two fair probabilistic schedulers S1 and S2 are called time equivalent
w.r.t. a protocol A iff, for any initial configuration C0, the expected time
(number of steps) to convergence of A under S1 when the initial
configuration is C0 is asymptotically the same as the expected time to
convergence under S2 when the initial configuration is again C0.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 14 / 23

Schedulers
Equivalence
Conclusions

Time Equivalence
Computational Equivalence

Time Equivalence

Theorem

Not all fair probabilistic schedulers are time equivalent.

Proof.

Consider the OR protocol:

(x , x)→ (x , x) (y , x)→ (y , y)

(x , y)→ (y , y) (y , y)→ (y , y)

Ny : number of ys in the initial configuration.

If Ny = 0 or Ny = n, then the system is already stable (0 steps).

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 15 / 23

Schedulers
Equivalence
Conclusions

Time Equivalence
Computational Equivalence

Time Equivalence

If 0 < Ny < n, then
1 Transition Function Scheduler: can only choose from the rules

(x , y)→ (y , y) and (y , x)→ (y , y), thus in each step increases the
number of ys by one, and takes n − Ny steps to convergence.

2 State Scheduler: progress is always made with probability 1/2,
because the lhs (x , y) and (y , x) are always interaction candidates,
thus 2(n − Ny) steps to convergence.

Corollary: The State Scheduler and the Transition Function
Scheduler are time equivalent.

In fact, both have optimal behavior w.r.t. to the OR protocol by
exploiting the fact that they are protocol-aware.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 16 / 23

Schedulers
Equivalence
Conclusions

Time Equivalence
Computational Equivalence

Time Equivalence

Now, consider the Modified Scheduler:

The same as the State Scheduler except for the fact that it selects
from the class of identity interaction candidates with probability
1− ε and from all the remaining rules with probability ε, where
0 < ε < 1.

It is also fair with probability 1.

It turns out that when Ny = 2, the Modified Scheduler needs an
expected number of n−2

ε steps to convergence.

But n−2
ε

can be made arbitrarily large, because ε can be arbitrarily
close to 0.

Implies that the Modified Scheduler is not time equivalent to
the others (being aware of the protocol is not always an advantage).

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 17 / 23

Schedulers
Equivalence
Conclusions

Time Equivalence
Computational Equivalence

Computationally Equivalent Schedulers

Definition (Computationally Equivalent Schedulers)

Two fair probabilistic schedulers S1 and S2 are called computationally
equivalent w.r.t. a protocol A iff, for any initial configuration C0, A
under S1, when the initial configuration is C0, stabilizes w.h.p. to an
output assignment y ∈ Y V iff A under S2, when the initial configuration
is again C0, stabilizes w.h.p. to the same output assignment.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 18 / 23

Schedulers
Equivalence
Conclusions

Time Equivalence
Computational Equivalence

Computational Equivalence

Theorem

Not all fair probabilistic schedulers are computationally equivalent.

Proof.

Consider the MAJORITY protocol:

(x , b)→ (x , x) (x , y)→ (x , b)

(y , b)→ (y , y) (y , x)→ (y , b)

Under the Random Scheduler w.h.p. the majority wins provided that
its initial margin is ω(

√
n log n) [Angluin, Aspnes, and Eisenstat,

DISC ’07].

Under the Transition Function Scheduler, for the same margin, the
majority may lose with constant probability.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 19 / 23

Schedulers
Equivalence
Conclusions

Conclusions

For most natural systems of this kind we will know some
probabilistic mobility patterns (or possibly some good
approximations for them).

The first crucial question will always be: “Are those patterns
fair?”

We provided a fairly easy to use, general theoretical framework
for proving probabilistic fairness.

We defined the protocol-aware and protocol-oblivious scheduler
classes, and proposed three protocol-aware schedulers that are fair.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 20 / 23

Schedulers
Equivalence
Conclusions

Conclusions

We defined equivalence between schedulers w.r.t. to performance
and computability, and proved that not all fair probabilistic
schedulers are equivalent.

This implies something fundamental: Even minor modifications of
the mobility pattern may render our protocols useless.

Is there some other stronger notion of fairness that prohibits
such modifications?

In fact, most natural systems do not follow a unique mobility
pattern.

Agents may skip interactions due to battery or signal degradation.
Agent’s carriers may change their mobility habits due to various
reasons, e.g. environment modification.

How can we make our protocols adapt to such changes in
order to continue being fast and/or correct?

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 21 / 23

Schedulers
Equivalence
Conclusions

FRONTS

This work has been partially supported by the ICT Programme of
the European Union under contract number ICT-2008-215270
(FRONTS).

FRONTS is a joint effort of eleven academic and research institutes
in foundational algorithmic research in Europe.

The effort is towards establishing the foundations of adaptive
networked societies of tiny artefacts.

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 22 / 23

Schedulers
Equivalence
Conclusions

Thank You!

O. Michail, I. Chatzigiannakis, S. Dolev, S. Fekete, and P. Spirakis Not All Fair Probabilistic Schedulers are Equivalent 23 / 23

	Schedulers
	Intro - Population Protocols
	Fair Probabilistic Schedulers
	Proposed Schedulers

	Equivalence
	Time Equivalence
	Computational Equivalence

	Conclusions

