Traveling Salesman Problems in Temporal Graphs

Othon Michail

joint work with Paul G. Spirakis

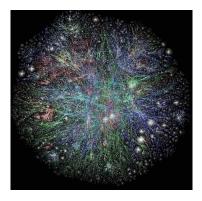
Computer Technology Institute & Press "Diophantus" (CTI) Department of Computer Science, University of Liverpool, UK

39th International Symposium on Mathematical Foundations of Computer Science (MFCS) August 25-29, 2014 Budapest, Hungary

Michail, Spirakis

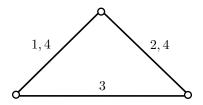
Motivation

- A great variety of systems are dynamic:
 - Modern communication networks: inherently dynamic, dynamicity may be of high rate
 - mobile ad hoc, sensor, peer-to-peer, opportunistic, and delay-tolerant networks
 - Social networks: social relationships between individuals change, existing individuals leave, new individuals enter

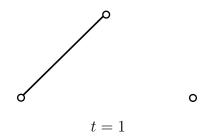


- Transportation networks: transportation units change their positions in the network as time passes
- Physical systems: e.g. systems of interacting particles

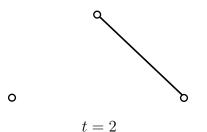
- Loosely speaking a graph that changes with time
- Labels indicate availability times of edges



- Loosely speaking a graph that changes with time
- Labels indicate availability times of edges

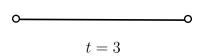


- Loosely speaking a graph that changes with time
- Labels indicate availability times of edges



A temporal graph (or dynamic graph) D is an ordered pair of disjoint sets (V, A) such that $A \subseteq {V \choose 2} \times \mathbb{N}$. The set V is the set of nodes and the set A is the set of time-edges.

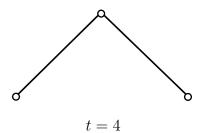
- Loosely speaking a graph that changes with time
- Labels indicate availability times of edges



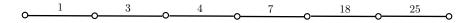
0

Michail, Spirakis

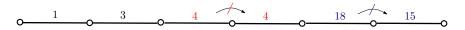
- Loosely speaking a graph that changes with time
- Labels indicate availability times of edges



- Paths with strictly increasing labels
- a.k.a. journeys
- A journey:



- Paths with strictly increasing labels
- a.k.a. journeys
- A non-journey:



- The structural and algorithmic properties of temporal graphs are not well understood yet
- Many dynamic languages derived from **NP**-complete languages can be shown to be **PSPACE**-complete [Orlin, STOC '81]
- max-flow min-cut holds with unit capacities [Berman, Networks '96]
- Classical Menger's theorem is violated [KKK, STOC '00]
- Reformulation of Menger's theorem valid for all temporal graphs & parameters for optimal temporal network design [MMCS, ICALP '13]
- Distributed Computing on Dynamic Networks
 - Worst-case dynamicity [KLO, STOC '10], [MCS, JPDC '14]
 - Population Protocols (interacting automata) [AADFP, Distr. Comp. '06], [MCS, Book, '11], [MS, PODC '14]
 - Randomly Dynamic Networks [CMMPS, PODC '08]

Michail, Spirakis

- Introduce the notion of time to well-known combinatorial optimization problems
- Main focus on temporal analogues of traveling salesman problems
- Exploring the nodes of a temporal graph as soon as possible
 - Cannot be approximated within *cn*, for some constant *c* > 0, in general temporal graphs
 - and within (2 − ε), for every constant ε > 0, in the special case in which D(t) is connected for all 1 ≤ t ≤ l
- TTSP(1,2) (best approximations):
 - $(1.7 + \varepsilon)$ -factor for the generic TTSP(1,2)
 - $(13/8 + \varepsilon)$ -factor when the lifetime is restricted to *n*
- In the way, we introduce and study temporal versions of other fundamental combinatorial optimization problems

Michail, Spirakis

Problem (TEXP)

Given a temporal graph D = (V, A) and a source node $s \in V$, find a temporal walk that begins from s and visits all nodes minimizing the arrival time.

- Temporal version of the well-known Graphic TSP
- In the static case, there is a (3/2 ε)-approximation for undirected graphs [GSS, FOCS '11] and a O(log n/ log log n) for directed [AGMGS, SODA '10]. In contrast:

Theorem

There exists some constant c > 0 such that TEXP cannot be approximated within cn unless P = NP.

Michail, Spirakis

For every constant $\varepsilon > 0$, there is no $(2 - \varepsilon)$ -approximation for TEXP in continuously (strongly) connected temporal graphs unless $\mathbf{P} = \mathbf{NP}$.

Proof.

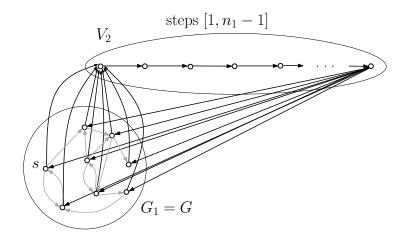
- Reduction from HAMPATH (input graph *G*, source *s*)
- *D* consists of 3 strongly connected static graphs *T*₁, *T*₂, *T*₃ persisting for the intervals $[1, n_1 1]$, $[n_1, n_2 1]$, $[n_2, 2n_2 + 1]$, resp.
- Restrict attention to instances of HAMPATH of order at least 2/arepsilon
- Set $n_2 = n_1^2 + n_1$
- If G is hamiltonian, then OPT = $n_1 + n_2 1 = n_1^2 + 2n_1 1$ while if G is not hamiltonian, then OPT $\ge 2n_2 + 1 = 2(n_1^2 + n_1) + 1 > 2(n_1^2 + n_1)$ which can be shown to introduce the desired (2ε) gap

For every constant $\varepsilon > 0$, there is no $(2 - \varepsilon)$ -approximation for TEXP in continuously (strongly) connected temporal graphs unless $\mathbf{P} = \mathbf{NP}$.

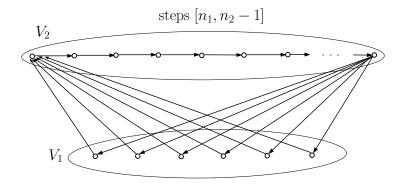
Proof.

- Reduction from HAMPATH (input graph G, source s)
- D consists of 3 strongly connected static graphs T₁, T₂, T₃ persisting for the intervals [1, n₁ 1], [n₁, n₂ 1], [n₂, 2n₂ + 1], resp.
- Restrict attention to instances of HAMPATH of order at least 2/arepsilon
- Set $n_2 = n_1^2 + n_1$
- If G is hamiltonian, then $OPT = n_1 + n_2 1 = n_1^2 + 2n_1 1$ while if G is not hamiltonian, then $OPT \ge 2n_2 + 1 = 2(n_1^2 + n_1) + 1 > 2(n_1^2 + n_1)$ which can be shown to introduce the desired (2ε) gap

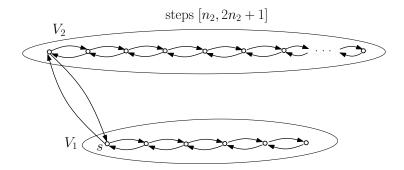
Temporal Exploration: Graph T_1



Temporal Exploration: Graph T_2



Temporal Exploration: Graph T_3



On the positive side:

Theorem

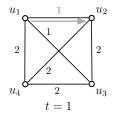
We provide a *d*-approximation algorithm for TEXP restricted to temporal graphs with dynamic diameter $\leq d$ and lifetime $\geq (n-1)d$.

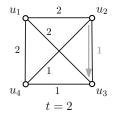
Problem (TTSP(1,2))

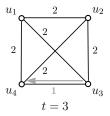
Given a complete temporal graph D = (V, A) and a cost function $c : A \rightarrow \{1, 2\}$ find a temporal TSP tour of minimum total cost. A TSP tour $(u_1, t_1, u_2, t_2, ..., t_{n-1}, u_n, t_n, u_1)$ is temporal if $t_i < t_{i+1}$ for all $1 \le i \le n-1$. The cost of such a TSP tour is $\sum_{1 \le i \le n} c((u_i, u_{i+1}), t_i)$, where $u_{n+1} = u_1$.

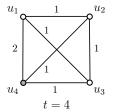
- **APX-hard** as a generalization of the well known (A)TSP(1,2) to weighted temporal graphs [PY, Math. Oper. Res. '93]
- Cannot be approximated within any factor less than 207/206 [KS, CATS '13]

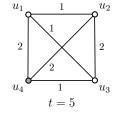
TTSP(1,2): Example

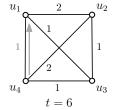












- Compute a temporal matching *M* using as many 1s as possible and then patch the edges of *M* in a time-respecting way to obtain a TTSP tour
- This approach gives a (3/2)-factor approximation for ATSP(1,2) (the best currently known is 5/4 [Bläser '04])

However:

• Computing temporal matchings is NP-hard.

Definition (Max-TEM($\geq k$))

Given a temporal graph D = (V, A) find a maximum cardinality temporal matching $M = \{(e_1, t_1), (e_2, t_2), \dots, (e_h, t_h)\}$ satisfying that there is a permutation $t_{i_1}, t_{i_2}, \dots, t_{i_h}$ of the t_j s s.t. $t_{i_{(l+1)}} \ge t_{i_l} + k$ for all $1 \le l \le h-1$.

Theorem

Max-TEM($\geq k$) is **NP**-hard for every independent of the lifetime polynomial-time computable $k \geq 1$.

Proof.

Reduction from BALANCED 3SAT in which every variable x_i appears n_i times negated and n_i times non-negated.

- We approximate TTSP(1,2) by approximating temporal matchings. We follow 2 approaches:
 - Via independent sets in k-claw free graphs
 - Via k-Set Packing

There is a (3/5)-approximation algorithm for Max-TEM(≥ 1).

Proof

 Consider the static expansion H = (S, E) of D and an edge e = (u_{(i−1)j}, u_{ij'}) ∈ E

• Conflicts (edges that cannot be taken together in the matching):

- Edges of the same row as e
- Edges of the same column as u_{(i-1)j}
- **6** Edges of the same column as $u_{ij'}$
- Consider the graph G = (E, K) where (e₁, e₂) ∈ K iff e₁ and e₂ satisfy some of the above constraints
- Temporal matchings of D are now equivalent to independent sets of G

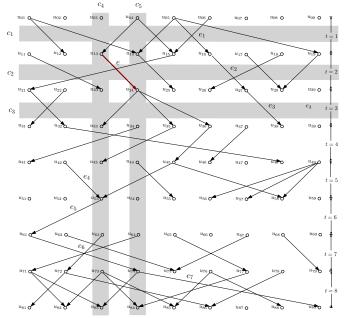
- *G* is 4-claw free ⇒ there is no 4-independent set in the neighborhood of any node
 - Take any $e \in E$ and any set $\{e_1, e_2, e_3, e_4\}$ of four neighbors of e in G
 - There are only 3 constraints thus at least two of the neighbors, say e_i and e_j, must be connected to e by the same constraint
 - But then e_i and e_j must also satisfy the same constraint with each other ⇒ they are also connected by an edge in G
- From [Halldórsson, SODA '95] we have a factor of 3/5 for MIS in 4-claw free graphs $(1/(h/2 + \varepsilon) \text{ in } (h + 1)\text{-claw free graphs, } h \ge 4)$

Lemma

There is a $\frac{1}{2+\varepsilon}$ -approximation algorithm for Max-TEM(≥ 2).

Michail, Spirakis

Via Independent Sets



Michail, Spirakis

Traveling Salesman Problems in Temporal Graphs

18 / 25

Lemma

An (1/c)-factor approximation for Max-TEM(≥ 2) implies a $(2 - \frac{1}{2c})$ -factor approximation for TTSP(1,2).

Theorem

There is a $(7/4 + \varepsilon)$ -approximation algorithm for TTSP(1, 2).

Theorem

There is a $(12/7 + \varepsilon)$ -factor approximation algorithm for TTSP(1, 2) when $\alpha(D) = n$.

Proof.

Approximate TEMPORAL PATH PACKING via reduction to ${\rm MIS}$ in 8-claw free graphs. $\hfill \Box$

Michail, Spirakis

There is a $(1.7 + \varepsilon)$ -approximation algorithm for TTSP(1,2).

Proof

- Suffices to give a $\frac{3}{5+\varepsilon}$ -approximation algorithm for Max-TEM(≥ 2)
- Express the temporal matching problem as a 4-SET PACKING
- k-SET PACKING can be approximated within 3/(k + 1 + ε) [Cygan, FOCS '13] yielding 3/(5 + ε) for k = 4
- k-SET PACKING: Given family F ⊆ 2^U of sets of size at most k, (U is some universe) find a maximum size subfamily of F of pairwise disjoint sets
- Given D = (V, A), set $U = V \cup \{1, 2, ..., \alpha(D)\}$

Michail, Spirakis

There is a $(1.7 + \varepsilon)$ -approximation algorithm for TTSP(1, 2).

Proof

- Suffices to give a $\frac{3}{5+\epsilon}$ -approximation algorithm for Max-TEM(≥ 2)
- Express the temporal matching problem as a 4-SET PACKING
- k-SET PACKING can be approximated within $3/(k + 1 + \varepsilon)$ [Cygan, FOCS '13] yielding $3/(5 + \varepsilon)$ for k = 4
- k-SET PACKING: Given family F ⊆ 2^U of sets of size at most k, (U is some universe) find a maximum size subfamily of F of pairwise disjoint sets

• Given
$$D = (V, A)$$
, set $U = V \cup \{1, 2, ..., \alpha(D)\}$

Michail, Spirakis

- Let H = (S, E) be the static expansion of D
- Construct F: For every $(u_{ij}, u_{(i+1)j'}) \in E$ set $F \leftarrow F \cup \{\{u_j, u_{j'}, i-1, i\}\}$
- {u_j, u_{j'}, (i − 1), i} ∈ 2^U because u_j, u_{j'}, i − 1, and i are pairwise distinct elements, thus F ⊆ 2^U
- Also every set contains 4 elements, thus we have an instance of 4-SET PACKING
- Observe now that there is a temporal matching of size h in D iff there is a packing of F of size h

There is a $(13/8 + \varepsilon)$ -factor approximation algorithm for TTSP(1,2) when $\alpha(D) = n$.

Proof

- Every TTSP tour must use precisely the time-labels 1, 2, ..., n, otherwise it cannot cover all nodes in n steps
- So, the optimum TTSP tour can be partitioned into two temporal matchings M_O (odd) and M_E (even) both with time differences ≥ 2 between consecutive labels
- o(D'): number of edges of cost one of a single-label subgraph D' of the temporal graph D. We have $o(M_O) + o(M_E) = 2n OPT_{TTSP}$
- We now approximate the maximum odd (OPT_O) and maximum even (OPT_E) matchings of D by expressing it as a 3-SET PACKING

Michail, Spirakis

There is a $(13/8 + \varepsilon)$ -factor approximation algorithm for TTSP(1,2) when $\alpha(D) = n$.

Proof

- Every TTSP tour must use precisely the time-labels 1, 2, ..., n, otherwise it cannot cover all nodes in n steps
- So, the optimum TTSP tour can be partitioned into two temporal matchings M_O (odd) and M_E (even) both with time differences ≥ 2 between consecutive labels
- o(D'): number of edges of cost one of a single-label subgraph D' of the temporal graph D. We have $o(M_O) + o(M_E) = 2n OPT_{TTSP}$
- We now approximate the maximum odd (OPT_O) and maximum even (OPT_E) matchings of D by expressing it as a 3-SET PACKING

Via Set Packing

• We get: $ALG_O \geq \frac{3}{4}OPT_O$ and $ALG_E \geq \frac{3}{4}OPT_E$. From the two computed matchings we keep the one with maximum cardinality. Denote its cardinality by ALG_M . Clearly, $2ALG_M \geq ALG_O + ALG_E$, so we have

$$ALG_{M} \ge \frac{1}{2}(ALG_{O} + ALG_{E}) \ge \frac{1}{2} \cdot \frac{3}{4}(OPT_{O} + OPT_{E}) = \frac{3}{8}(OPT_{O} + OPT_{E})$$
$$\ge \frac{3}{8}[o(M_{O}) + o(M_{E})] = \frac{3}{8}(2n - OPT_{TTSP}) = \frac{6}{8}n - \frac{3}{8}OPT_{TTSP}$$

• Complete the matching arbitrarily with the missing edges to obtain a TTSP tour. ALG_{TTSP}: cost of the produced TTSP tour.

$$ALG_{TTSP} \le 2n - ALG_M \le 2n - \frac{6}{8}n + \frac{3}{8}OPT_{TTSP} = \frac{10}{8}n + \frac{3}{8}OPT_{TTSP} \\ \le \frac{10}{8}OPT_{TTSP} + \frac{3}{8}OPT_{TTSP} = \frac{13}{8}OPT_{TTSP}.$$

Michail, Spirakis

- Find a (3/2)-approximation for the general TTSP(1,2) or for the special case with lifetime restricted to *n*
- Approximations for temporal path packings and temporal cycle covers
 - Have proved very useful for approximating TSP in the static case
- How does the generic metric TSP behave in temporal graphs?
 - Is there some temporal analogue of triangle inequality or some other computationally equivalent natural assumption?
- Temporal graphs defined by the mobility patterns of mobile wireless entities modeled by a sequence of unit disk graphs
 - Well-motivated as a natural source of temporal graphs
 - May allow for better approximations
- Our results are a first step towards answering the following fundamental question:

To what extent can algorithmic and structural results of graph theory be carried over to temporal graphs?

Michail, Spirakis

Thank You!

Michail, Spirakis