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Motivation

A great variety of systems are dynamic:

Modern communication networks:
inherently dynamic, dynamicity may be
of high rate

mobile ad hoc, sensor, peer-to-peer,
opportunistic, and delay-tolerant
networks

Social networks: social relationships
between individuals change, existing
individuals leave, new individuals enter

Transportation networks: transportation units change their positions
in the network as time passes

Physical systems: e.g. systems of interacting particles
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Temporal Graphs

Definition (Temporal Graph)

A temporal graph (or dynamic graph) D is an ordered pair of disjoint sets
(V ,A) such that A ⊆

(V
2

)
× N. The set V is the set of nodes and the set

A is the set of time-edges.

Loosely speaking a graph that changes with time

Labels indicate availability times of edges

t = 4

1, 4 2, 4

3
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Time-Respecting Paths

Paths with strictly increasing labels

a.k.a. journeys

A journey:

1 3 4 7 18 25
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Time-Respecting Paths

Paths with strictly increasing labels

a.k.a. journeys

A non-journey:

1 3 4 4 18 15
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State of the Art

The structural and algorithmic properties of temporal graphs are not
well understood yet

Many dynamic languages derived from NP-complete languages can
be shown to be PSPACE-complete [Orlin, STOC ’81]

max-flow min-cut holds with unit capacities [Berman, Networks ’96]

Classical Menger’s theorem is violated [KKK, STOC ’00]

Reformulation of Menger’s theorem valid for all temporal graphs &
parameters for optimal temporal network design [MMCS, ICALP ’13]

Distributed Computing on Dynamic Networks
Worst-case dynamicity [KLO, STOC ’10], [MCS, JPDC ’14]

Population Protocols (interacting automata) [AADFP, Distr. Comp.
’06], [MCS, Book, ’11], [MS, PODC ’14]

Randomly Dynamic Networks [CMMPS, PODC ’08]
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Overview-Contribution

Introduce the notion of time to well-known combinatorial
optimization problems

Main focus on temporal analogues of traveling salesman problems

Exploring the nodes of a temporal graph as soon as possible

Cannot be approximated within cn, for some constant c > 0, in general
temporal graphs

and within (2− ε), for every constant ε > 0, in the special case in
which D(t) is connected for all 1 ≤ t ≤ l

TTSP(1,2) (best approximations):

(1.7 + ε)-factor for the generic TTSP(1,2)

(13/8 + ε)-factor when the lifetime is restricted to n

In the way, we introduce and study temporal versions of other
fundamental combinatorial optimization problems
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Temporal (Node) Exploration

Problem (TEXP)

Given a temporal graph D = (V ,A) and a source node s ∈ V , find a
temporal walk that begins from s and visits all nodes minimizing the
arrival time.

Temporal version of the well-known Graphic TSP

In the static case, there is a (3/2− ε)-approximation for undirected
graphs [GSS, FOCS ’11] and a O(log n/ log log n) for directed
[AGMGS, SODA ’10]. In contrast:

Theorem

There exists some constant c > 0 such that TEXP cannot be
approximated within cn unless P = NP.
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Temporal Exploration

Theorem

For every constant ε > 0, there is no (2− ε)-approximation for TEXP in
continuously (strongly) connected temporal graphs unless P = NP.

Proof.

Reduction from Hampath (input graph G , source s)

D consists of 3 strongly connected static graphs T1, T2, T3 persisting
for the intervals [1, n1 − 1], [n1, n2 − 1], [n2, 2n2 + 1], resp.

Restrict attention to instances of Hampath of order at least 2/ε

Set n2 = n2
1 + n1

If G is hamiltonian, then OPT = n1 + n2 − 1 = n2
1 + 2n1 − 1 while if

G is not hamiltonian, then OPT ≥ 2n2 + 1 = 2(n2
1 + n1) + 1>

2(n2
1 + n1) which can be shown to introduce the desired (2− ε) gap
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Temporal Exploration: Graph T1

G1 = G

s

V2

steps [1, n1 − 1]
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Temporal Exploration: Graph T2

V1

V2

steps [n1, n2 − 1]
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Temporal Exploration: Graph T3

V1

V2

steps [n2, 2n2 + 1]

s
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Temporal Exploration

On the positive side:

Theorem

We provide a d-approximation algorithm for TEXP restricted to temporal
graphs with dynamic diameter ≤ d and lifetime ≥ (n − 1)d.
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Temporal Traveling Salesman with Costs One and Two

Problem (TTSP(1,2))

Given a complete temporal graph D = (V ,A) and a cost function
c : A→ {1, 2} find a temporal TSP tour of minimum total cost. A TSP
tour (u1, t1, u2, t2, . . . , tn−1, un, tn, u1) is temporal if ti < ti+1 for all
1 ≤ i ≤ n − 1. The cost of such a TSP tour is

∑
1≤i≤n c((ui , ui+1), ti ),

where un+1 = u1.

APX-hard as a generalization of the well known (A)TSP(1,2) to
weighted temporal graphs [PY, Math. Oper. Res. ’93]

Cannot be approximated within any factor less than 207/206 [KS,
CATS ’13]
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TTSP(1,2): Example
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Approximating TTSP(1,2): Our Approach

Compute a temporal matching M using as many 1s as possible and
then patch the edges of M in a time-respecting way to obtain a
TTSP tour

This approach gives a (3/2)-factor approximation for ATSP(1,2) (the
best currently known is 5/4 [Bläser ’04])

However:

Computing temporal matchings is NP-hard.
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Max-TEM(≥k) is NP-hard

Definition (Max-TEM(≥k))

Given a temporal graph D = (V ,A) find a maximum cardinality temporal
matching M = {(e1, t1), (e2, t2), . . . , (eh, th)} satisfying that there is a
permutation ti1 , ti2 , . . . , tih of the tjs s.t. ti(l+1)

≥ til + k for all
1 ≤ l ≤ h − 1.

Theorem

Max-TEM(≥k) is NP-hard for every independent of the lifetime
polynomial-time computable k ≥ 1.

Proof.

Reduction from Balanced 3SAT in which every variable xi appears ni

times negated and ni times non-negated.
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Approximating TTSP(1,2): Our Approach

We approximate TTSP(1,2) by approximating temporal matchings.
We follow 2 approaches:

1 Via independent sets in k-claw free graphs

2 Via k-Set Packing
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Via Independent Sets

Theorem

There is a (3/5)-approximation algorithm for Max-TEM(≥1).

Proof

Consider the static expansion H = (S ,E ) of D and an edge
e = (u(i−1)j , uij ′) ∈ E

Conflicts (edges that cannot be taken together in the matching):
1 Edges of the same row as e

2 Edges of the same column as u(i−1)j

3 Edges of the same column as uij′

Consider the graph G = (E ,K ) where (e1, e2) ∈ K iff e1 and e2
satisfy some of the above constraints

Temporal matchings of D are now equivalent to independent sets of G
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Via Independent Sets

G is 4-claw free ⇒ there is no 4-independent set in the neighborhood
of any node

Take any e ∈ E and any set {e1, e2, e3, e4} of four neighbors of e in G

There are only 3 constraints thus at least two of the neighbors, say ei
and ej , must be connected to e by the same constraint

But then ei and ej must also satisfy the same constraint with each
other ⇒ they are also connected by an edge in G

From [Halldórsson, SODA ’95] we have a factor of 3/5 for MIS in
4-claw free graphs (1/(h/2 + ε) in (h + 1)-claw free graphs, h ≥ 4)

Lemma

There is a 1
2+ε -approximation algorithm for Max-TEM(≥2).
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Via Independent Sets
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Via Independent Sets

Lemma

An (1/c)-factor approximation for Max-TEM(≥2) implies a
(2− 1

2c )-factor approximation for TTSP(1,2).

Theorem

There is a (7/4 + ε)-approximation algorithm for TTSP(1, 2).

Theorem

There is a (12/7 + ε)-factor approximation algorithm for TTSP(1, 2) when
α(D) = n.

Proof.

Approximate Temporal Path Packing via reduction to MIS in 8-claw
free graphs.
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Via Set Packing

Theorem

There is a (1.7 + ε)-approximation algorithm for TTSP(1, 2).

Proof

Suffices to give a 3
5+ε -approximation algorithm for Max-TEM(≥2)

Express the temporal matching problem as a 4-Set Packing

k-Set Packing can be approximated within 3/(k + 1 + ε) [Cygan,
FOCS ’13] yielding 3/(5 + ε) for k = 4

k-Set Packing: Given family F ⊆ 2U of sets of size at most k, (U
is some universe) find a maximum size subfamily of F of pairwise
disjoint sets

Given D = (V ,A), set U = V ∪ {1, 2, . . . , α(D)}
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Via Set Packing

Let H = (S ,E ) be the static expansion of D

Construct F : For every (uij , u(i+1)j ′) ∈ E set
F ← F ∪ {{uj , uj ′ , i − 1, i}}
{uj , uj ′ , (i − 1), i} ∈ 2U because uj , uj ′ , i − 1, and i are pairwise
distinct elements, thus F ⊆ 2U

Also every set contains 4 elements, thus we have an instance of
4-Set Packing

Observe now that there is a temporal matching of size h in D iff there
is a packing of F of size h
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Via Set Packing

Theorem

There is a (13/8 + ε)-factor approximation algorithm for TTSP(1, 2) when
α(D) = n.

Proof

Every TTSP tour must use precisely the time-labels 1, 2, . . . , n,
otherwise it cannot cover all nodes in n steps

So, the optimum TTSP tour can be partitioned into two temporal
matchings MO (odd) and ME (even) both with time differences ≥ 2
between consecutive labels

o(D ′): number of edges of cost one of a single-label subgraph D ′ of
the temporal graph D. We have o(MO) + o(ME ) = 2n − OPTTTSP

We now approximate the maximum odd (OPTO) and maximum even
(OPTE ) matchings of D by expressing it as a 3-Set Packing
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Via Set Packing

We get: ALGO ≥ 3
4OPTO and ALGE ≥ 3

4OPTE . From the two
computed matchings we keep the one with maximum cardinality.
Denote its cardinality by ALGM . Clearly, 2ALGM ≥ ALGO + ALGE ,
so we have

ALGM≥
1

2
(ALGO + ALGE ) ≥ 1

2
· 3

4
(OPTO + OPTE ) =

3

8
(OPTO + OPTE )

≥ 3

8
[o(MO) + o(ME )] =

3

8
(2n − OPTTTSP) =

6

8
n − 3

8
OPTTTSP

Complete the matching arbitrarily with the missing edges to obtain a
TTSP tour. ALGTTSP : cost of the produced TTSP tour.

ALGTTSP≤2n − ALGM ≤ 2n − 6

8
n +

3

8
OPTTTSP =

10

8
n +

3

8
OPTTTSP

≤ 10

8
OPTTTSP +

3

8
OPTTTSP =

13

8
OPTTTSP .
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Open Problems

Find a (3/2)-approximation for the general TTSP(1,2) or for the
special case with lifetime restricted to n

Approximations for temporal path packings and temporal cycle covers
Have proved very useful for approximating TSP in the static case

How does the generic metric TSP behave in temporal graphs?
Is there some temporal analogue of triangle inequality or some other
computationally equivalent natural assumption?

Temporal graphs defined by the mobility patterns of mobile wireless
entities modeled by a sequence of unit disk graphs

Well-motivated as a natural source of temporal graphs

May allow for better approximations

Our results are a first step towards answering the following
fundamental question:

To what extent can algorithmic and structural results of
graph theory be carried over to temporal graphs?
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Thank You!
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