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Motivation

A great variety of systems are dynamic:

@ Modern communication networks:
inherently dynamic, dynamicity may be
of high rate

e mobile ad hoc, sensor, peer-to-peer,

opportunistic, and delay-tolerant
networks

@ Social networks: social relationships
between individuals change, existing
individuals leave, new individuals enter

@ Transportation networks: transportation units change their positions
in the network as time passes

@ Physical systems: e.g. systems of interacting particles
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Temporal Graphs

Definition (Temporal Graph)

A temporal graph (or dynamic graph) D is an ordered pair of disjoint sets
(V,A) such that A C (\2/) x N. The set V is the set of nodes and the set

A is the set of time-edges.

o Loosely speaking a graph that changes with time

@ Labels indicate availability times of edges

1,4 2,4
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Temporal Graphs

Definition (Temporal Graph)

A temporal graph (or dynamic graph) D is an ordered pair of disjoint sets
(V,A) such that A C (\2/) x N. The set V is the set of nodes and the set

A is the set of time-edges.

o Loosely speaking a graph that changes with time

@ Labels indicate availability times of edges

t=1
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Temporal Graphs

Definition (Temporal Graph)

A temporal graph (or dynamic graph) D is an ordered pair of disjoint sets
(V,A) such that A C (\2/) x N. The set V is the set of nodes and the set

A is the set of time-edges.

o Loosely speaking a graph that changes with time

@ Labels indicate availability times of edges

t=2
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Temporal Graphs

Definition (Temporal Graph)

A temporal graph (or dynamic graph) D is an ordered pair of disjoint sets
(V,A) such that A C (\2/) x N. The set V is the set of nodes and the set

A is the set of time-edges.

o Loosely speaking a graph that changes with time
@ Labels indicate availability times of edges

(0]

t=3
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Temporal Graphs

Definition (Temporal Graph)

A temporal graph (or dynamic graph) D is an ordered pair of disjoint sets
(V,A) such that A C (\2/) x N. The set V is the set of nodes and the set

A is the set of time-edges.

o Loosely speaking a graph that changes with time

@ Labels indicate availability times of edges

t=4

Traveling Salesman Problems in Temporal Graphs 3/25

Michail, Spirakis



Time-Respecting Paths

@ Paths with strictly increasing labels
o a.k.a. journeys

@ A journey:
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Time-Respecting Paths

@ Paths with strictly increasing labels
@ a.k.a. journeys

@ A non-journey:

//\‘ A
1 ) .
3 4 4 18 15

Michail, Spirakis Traveling Salesman Problems in Temporal Graphs 4/25



State of the Art

@ The structural and algorithmic properties of temporal graphs are not
well understood yet

@ Many dynamic languages derived from NP-complete languages can
be shown to be PSPACE-complete [Orlin, STOC '81]

e max-flow min-cut holds with unit capacities [Berman, Networks '96]
@ Classical Menger's theorem is violated [KKK, STOC '00]

@ Reformulation of Menger's theorem valid for all temporal graphs &
parameters for optimal temporal network design [MMCS, ICALP '13]

@ Distributed Computing on Dynamic Networks
e Worst-case dynamicity [KLO, STOC '10], [MCS, JPDC '14]

e Population Protocols (interacting automata) [AADFP, Distr. Comp.
'06], [MCS, Book, '11], [MS, PODC '14]

e Randomly Dynamic Networks [CMMPS, PODC '08]
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Overview-Contribution

@ Introduce the notion of time to well-known combinatorial
optimization problems

@ Main focus on temporal analogues of traveling salesman problems

@ Exploring the nodes of a temporal graph as soon as possible
e Cannot be approximated within cn, for some constant ¢ > 0, in general
temporal graphs

e and within (2 — ), for every constant & > 0, in the special case in
which D(t) is connected for all 1 <t </

e TTSP(1,2) (best approximations):
e (1.7 + &)-factor for the generic TTSP(1,2)

e (13/8 + ¢)-factor when the lifetime is restricted to n

@ In the way, we introduce and study temporal versions of other
fundamental combinatorial optimization problems
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Temporal (Node) Exploration

Problem (TEXP)

Given a temporal graph D = (V,A) and a source node s € V, find a
temporal walk that begins from s and visits all nodes minimizing the
arrival time.

@ Temporal version of the well-known Graphic TSP

@ In the static case, there is a (3/2 — ¢)-approximation for undirected
graphs [GSS, FOCS '11] and a O(log n/ loglog n) for directed
[AGMGS, SODA '10]. In contrast:

There exists some constant ¢ > 0 such that TEXP cannot be
approximated within cn unless P = NP.
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Temporal Exploration

For every constant € > 0, there is no (2 — €)-approximation for TEXP in
continuously (strongly) connected temporal graphs unless P = NP.
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Temporal Exploration

Theorem

For every constant € > 0, there is no (2 — €)-approximation for TEXP in
continuously (strongly) connected temporal graphs unless P = NP.

@ Reduction from HAMPATH (input graph G, source s)

@ D consists of 3 strongly connected static graphs T1, T2, T3 persisting
for the intervals [1, ny — 1], [n1, no — 1], [n2,2n2 + 1], resp.

@ Restrict attention to instances of HAMPATH of order at least 2 /e
@ Set n2:n%+n1

@ If G is hamiltonian, then OPT = ny +np — 1 = n% + 2n1 — 1 while if
G is not hamiltonian, then OPT > 2np +1 = 2(n? + ny) + 1>
2(n? + n1) which can be shown to introduce the desired (2 — ¢) gap

y
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Temporal Exploration: Graph T;
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Temporal Exploration: Graph T,

steps [y, ng — 1]
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Temporal Exploration: Graph T3

steps [ng, 2ny + 1]

Vs
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Temporal Exploration

On the positive side:

We provide a d-approximation algorithm for TEXP restricted to temporal
graphs with dynamic diameter < d and lifetime > (n — 1)d.

Michail, Spirakis Traveling Salesman Problems in Temporal Graphs 10 / 25



Temporal Traveling Salesman with Costs One and Two

Problem (TTSP(1,2))

Given a complete temporal graph D = (V, A) and a cost function

c: A—{1,2} find a temporal TSP tour of minimum total cost. A TSP
tour (uy, t1, Up, to, ..., th_1, Upn, tn, u1) is temporal if t; < tiyq for all
1<i<n—1. The cost of such a TSP tour is ) ;. c((ui, uit+1), ti),
where upy1 = U3. o

@ APX-hard as a generalization of the well known (A)TSP(1,2) to
weighted temporal graphs [PY, Math. Oper. Res. '93]

e Cannot be approximated within any factor less than 207,/206 [KS,
CATS '13]
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TTSP(1,2): Example
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Approximating TTSP(1,2): Our Approach

@ Compute a temporal matching M using as many 1s as possible and
then patch the edges of M in a time-respecting way to obtain a
TTSP tour

@ This approach gives a (3/2)-factor approximation for ATSP(1,2) (the
best currently known is 5/4 [Blaser '04])

However:

@ Computing temporal matchings is NP-hard.

Michail, Spirakis Traveling Salesman Problems in Temporal Graphs 13 /25



Max-TEM(> k) is NP-hard

Definition (Max-TEM(> k))

Given a temporal graph D = (V/, A) find a maximum cardinality temporal

matching M = {(e1, t1), (€2, t2), - .., (en, tn)} satisfying that there is a
permutation t;, tj,, ..., tj, of the tjs s.t. tj, . > tj + k for all
1</<h-1

| \

Theorem

Max-TEM(> k) is NP-hard for every independent of the lifetime
polynomial-time computable k > 1.

Proof.

Reduction from BALANCED 3SAT in which every variable x; appears n;
times negated and n; times non-negated. O

| A\

v
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Approximating TTSP(1,2): Our Approach

e We approximate TTSP(1,2) by approximating temporal matchings.
We follow 2 approaches:

@ Via independent sets in k-claw free graphs

© Via k-Set Packing
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Via Independent Sets

Theorem

There is a (3/5)-approximation algorithm for Max-TEM(> 1).

e Consider the static expansion H = (S, E) of D and an edge
e = (u(i—l)ja U,'j/) e E

e Conflicts (edges that cannot be taken together in the matching):
© Edges of the same row as e

© Edges of the same column as U(i—1);

© Edges of the same column as ujj

e Consider the graph G = (E, K) where (e1, ) € K iff e; and e;
satisfy some of the above constraints

@ Temporal matchings of D are now equivalent to independent sets of G
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Via Independent Sets

@ G is 4-claw free = there is no 4-independent set in the neighborhood
of any node
e Take any e € E and any set {e1, e, e3, €4} of four neighbors of e in G

o There are only 3 constraints thus at least two of the neighbors, say e;
and ej, must be connected to e by the same constraint

o But then e; and e; must also satisfy the same constraint with each
other = they are also connected by an edge in G

e From [Halldérsson, SODA '95] we have a factor of 3/5 for MIS in
4-claw free graphs (1/(h/2 + €) in (h+ 1)-claw free graphs, h > 4)
Ol

v

Lemma

There is a Zi%—approximation algorithm for Max-TEM(> 2).
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Via Independent Sets
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Via Independent Sets

An (1/c)-factor approximation for Max-TEM(> 2) implies a
(2 — & )-factor approximation for TTSP(1,2).

There is a (7/4 + ¢)-approximation algorithm for TTSP(1,2).

There is a (12/7 + &)-factor approximation algorithm for TTSP(1,2) when
a(D) = n.

| N\

Proof.
Approximate TEMPORAL PATH PACKING via reduction to MIS in 8-claw
free graphs. O

v
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Via Set Packing

There is a (1.7 + €)-approximation algorithm for TTSP(1,2).
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Via

There is a (1.7 + ¢)-approximation algorithm for TTSP(1,2).

Set Packing

Suffices to give a %—approximation algorithm for Max-TEM(> 2)
Express the temporal matching problem as a 4-SET PACKING

k-SET PACKING can be approximated within 3/(k + 1+ ¢) [Cygan,
FOCS '13] yielding 3/(5 + €) for k = 4

k-SET PACKING: Given family F C 2Y of sets of size at most k, (U
is some universe) find a maximum size subfamily of F of pairwise
disjoint sets

Given D = (V,A), set U=V U{L1,2,...,a(D)}
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Set Packing

Let H = (S, E) be the static expansion of D

Construct F: For every (ujj, ujy1)i) € E set
F+ FuU {{Uj, UJ'/,I.f 1, I}}

{uj, up, (i —1),i} € 2Y because uj, ujr, i —1, and i are pairwise
distinct elements, thus F C 2V

Also every set contains 4 elements, thus we have an instance of
4-SET PACKING

Observe now that there is a temporal matching of size h in D iff there
is a packing of F of size h

O

v
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Via Set Packing

There is a (13/8 + )-factor approximation algorithm for TTSP(1,2) when
a(D) = n.
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Via Set Packing

Theorem

There is a (13/8 + ¢)-factor approximation algorithm for TTSP(1,2) when
a(D) = n.

@ Every TTSP tour must use precisely the time-labels 1,2, ... n,
otherwise it cannot cover all nodes in n steps

@ So, the optimum TTSP tour can be partitioned into two temporal
matchings Mo (odd) and Mg (even) both with time differences > 2
between consecutive labels

@ o(D'): number of edges of cost one of a single-label subgraph D’ of
the temporal graph D. We have o(Mg) + o(Mg) =2n — OPT1rsp

e We now approximate the maximum odd (OPTp) and maximum even
(OPTEg) matchings of D by expressing it as a 3-SET PACKING

v
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Via Set Packing

o We get: ALGp > %OPTO and ALGg > %OPTE. From the two
computed matchings we keep the one with maximum cardinality.
Denote its cardinality by ALGy,. Clearly, 2ALGy > ALGo + ALGE,

so we have

%(OPTO + OPT¢) = >(OPTo + OPTE)

I\J\»—l

ALGy>> (ALGo +ALGE) >
6 3
> §[O(MO) + O(ME)] (2[7 = OPTTTSP) = én — éOPTTTSP

o Complete the matching arbitrarily with the missing edges to obtain a
TTSP tour. ALGT1sp: cost of the produced TTSP tour.

6 3 10 3
ALGT1sp<2n — ALGp < 2n — gn + gOPTTTSP = En + gOPTTTSP

10 3 13
= 5 OPTrrse + gOPTrrsp = = OPTrTsp.

Michail, Spirakis Traveling Salesman Problems in Temporal Graphs 23 /25



Open Problems

Find a (3/2)-approximation for the general TTSP(1,2) or for the
special case with lifetime restricted to n

Approximations for temporal path packings and temporal cycle covers
e Have proved very useful for approximating TSP in the static case

How does the generic metric TSP behave in temporal graphs?
o Is there some temporal analogue of triangle inequality or some other
computationally equivalent natural assumption?

Temporal graphs defined by the mobility patterns of mobile wireless
entities modeled by a sequence of unit disk graphs
e Well-motivated as a natural source of temporal graphs

e May allow for better approximations

Our results are a first step towards answering the following
fundamental question:
To what extent can algorithmic and structural results of

graph theory be carried over to temporal graphs?
Michail, Spirakis Traveling Salesman Problems in Temporal Graphs 24 /25



Thank You!
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