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The Systems

A communication graph G = (V ,E ).

V : A population of |V | = n agents (sensor nodes).

E : The permissible pairwise interactions between the agents.

Each agent is a self-contained package consisting of

sensor, control unit, constant memory, low-power wireless
communication mechanism, limited power supply.
Agents are passively mobile.
Communicate when they come sufficiently close to each other.

Agents are represented as communicating finite-state machines.
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Formal Definition of Population Protocols
[Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC ’04]

A PP A consists of

finite input and output alphabets X and Y ,

finite set of states Q,

input function I : X → Q,

output function O : Q → Y ,

transition function δ : Q × Q → Q × Q.

δ(p, q) = (p′, q′) or simply (p, q)→ (p′, q′) is called a transition.
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Significant Properties

Uniformity: Protocol descriptions are independent of the population
size n.

Anonymity: There is no room in the state of an agent to store a
unique identifier.
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Fairness Assumption

A communication graph G = (V ,E ) describes the permissible
interactions.

First graph considered: all-pairs (complete directed communication
graph).

Corresponding model: basic population protocol model.

Model passive movement by an adversary scheduler that picks
members of E .

Make the scheduler “computation-friendly” by a fairness assumption

Do not allow avoidance of a possible step forever.
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Computation

C : V → Q, population configuration specifying the state of each
agent

C
e→ C ′, C can go to C ′ in one step via encounter e ∈ E .

C → C ′, C can go to C ′ in one step, i.e there exists e ∈ E s.t.
C

e→ C ′.
C
∗→ C ′, C ′ is reachable from C

(there exists sequence C = C0, C1, . . . , Ck = C ′ s.t. Ci → Ci+1 for all
0 ≤ i < k).

Execution: Finite or infinite sequence C0,C1,C2, . . ., s.t. Ci → Ci+1 for
all i .
Fairness Formally: For all C , C ′ s.t. C → C ′, if C occurs infinitely
often in the execution the same holds for C ′.
Computation: Infinite fair execution.
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Why use in Sensor Nets

Each agent is severely limited.

Constant storage capacity (independent of n).

The designer cannot control the interactions between agents.

Models societies of networked mobile tiny artefacts.

Limited sensing, signal processing and communication capabilities.
Limited energy.

Pervasive, adaptive and scalable systems.
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Stable Computation

Population protocols do not halt.

No fixed time to view the output of the population.

Instead we talk about stability.

Stability ensures that the computation reaches a point after which
no agent can change its output.
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Stable Computation

X : the set of all input assignments.

Y : the set of all output assignments.

If x ∈ X then I (x) is the input configuration corresponding to x .

Each configuration C has a corresponding output assignment
O(C ) = yC ∈ Y.
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Stable Computation

C is output-stable if O(C ′) = O(C ) for all C ′ reachable from C
(no agent changes its output).

A computation that contains an output-stable configuration C
stabilizes to output yC .
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Stable Computation

A PP A stably computes a function FA : X → Y iff for every
x ∈ X and every computation that starts from I (x) (initial
configuration) the computation reaches an output-stable
configuration C , where O(C ) = FA(x).

If FA : X → {0, 1} and Y = {0, 1}, then we call FA a stably
computable predicate.

predicate output convention: we require that all agents eventually
agree on the correct output value.
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A Canonical Example

Assume a complete G .

“Find if at least 5 sensors have detected elevated temperature.”

Each agent senses the temperature of a distinct bird after a global
start signal.

If detected elevated temperature input 1, else 0 (i.e. X = {0, 1}).

We want every agent to eventually output

1, if at least 5 birds were found sick,
0, otherwise.
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A Protocol

X = Y = {0, 1}, Q = {q0, q1, . . . , q5},
I (0) = q0 and I (1) = q1,

O(qi ) = 0, for 0 ≤ i ≤ 4, and O(q5) = 1,

δ:

(qi , qj)→ (qi+j , q0), if i + j < 5

→ (q5, q5), otherwise.
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Why it Works...

Due to fairness, all agents with non-zero state index will eventually
interact with each other.

In each such interaction one of them keeps the sum.

All indices are eventually aggregated in one agent’s state index j
(assuming that no faults can happen).

If j < 5, then q5 cannot occur, thus no agent ever outputs 1.

Otherwise, state q5 appears and floods the population (2nd rule),
i.e. eventually every agent outputs 1.
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Semilinear Predicates - Presburger Arithmetic

Semilinear Predicates

A predicate on input assignments is semilinear if its support (input
assignments mapped to 1) is a semilinear set.

Presburger Arithmetic [Presburger 1929]

Arithmetic on natural numbers with addition but not
multiplication.

Formulas involving addition, <, mod-k congruence relation ≡k for
each constant k and usual logical connectives ∨, ∧ and ¬.

Semilinear sets are those that can be defined in Presburger
arithmetic [Ginsburg and Spanier, 1966].
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Exact Characterization

Theorem

A predicate is computable in the basic population protocol model if and
only if it is semilinear [Angluin et al. 2004, 2006].

Stably Computable (semilinear)

“The number of a’s is greater than 5” (i.e. Na > 5).

(Na = Nb) ∨ (¬(Nb > Nc)).

Non-stably computable (non-semilinear)

“The number of c ’s is the product of the number of a’s and the
number of b’s” (i.e. Nc = Na · Nb).
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Formal Definition of Mediated Population Protocols
[I. Chatzigiannakis, O. Michail, and P. G. Spirakis, ICALP ’09]

Population V of |V | = n agents forming a communication graph
G = (V ,E ). A MPP A consists of

finite input and output alphabets X and Y ,

finite set of agent states Q, agent input function I : X → Q,
agent output function O : Q → Y ,

finite set of edge states S , edge input function ι : X → S , edge
output function ω : S → Y ,

output instruction r ,

(totally ordered cost set K , cost function c : E → K ) optional,
and

transition function δ : Q × Q × K × S → Q × Q × K × S .
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Mediated Population Protocols

Transition function δ : Q × Q × S → Q × Q × S

Assume that costs are not defined.

When agents u1, u2 in states a, b, respectively, interact through
(u1, u2) in state s then (a, b, s)→ (a′, b′, s ′) is applied and

a goes to a′,
b goes to b′, and
s goes to s ′.
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New Assumptions about Edges...

We assume that each edge is equipped with a buffer of O(1) storage
capacity (independent of the population).

Each pair of communicating agents shares a memory of constant
size.

During interaction (u, υ) the corresponding agents read the memory
contents and update it according to δ.
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Network Configurations

A network configuration is a mapping C : V ∪ E → Q ∪ S
specifying the agent state of each agent in the population and the
edge state of each edge in the communication graph.
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r-stability

Problem: “Given an undirected communication graph G = (V ,E )
and a useful cost function c : E → K on the set of edges, design a
protocol that will find the minimum cost edges of E ”.

Example of instruction r : “Get each e ∈ E for which ω(se) = 1
(where se is the state of e)”.

A configuration C is called r-stable if one of the following holds:

If the problem concerns a subgraph to be found, then C should fix a
subgraph that will not change in any configuration C ′ reachable
from C .

If the problem concerns a function to be computed by the agents,
then an r-stable configuration drops down to an agent output-stable
configuration.

Permits protocols that construct subgraphs of G .
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Stable Computation

Definition

A protocol A stably solves a problem Π, if for every instance I of Π and
every computation of A on I , the network reaches an r-stable
configuration C that gives the correct solution for I if interpreted
according to the output instruction r . If Π is a function f to be
computed we say instead that A stably computes f .

Definition

In the special case where Π is an optimization problem (like minimum
cost edges), a protocol that stably solves Π will be called an optimizing
population protocol for problem Π.
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Formal Definition of Approximation Protocols

Definition

Let Π be a minimization problem, and let δ be a positive real number,
δ ≥ 1. A protocol A is said to be a δ factor approximation protocol for
Π if on each instance I of Π, and every fair execution of A on I , the
network reaches an r-stable configuration C , that if interpreted according
to the output instruction r of A gives a feasible solution s for I such that:

fΠ(I , s) ≤ δ · OPT(I ).
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Maximal Matching Problem

Problem

(Maximal matching) Given an undirected communication graph
G = (V ,E ), find a maximal matching, i.e., a set E ′ ⊆ E such that no
two members of E ′ share a common end point in V and, moreover, there
is no e ∈ E − E ′ such that e shares no common end point with every
member of E ′.
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A protocol

MaximalMatching

X = {0},
Y = {0, 1},
Q = {q0, q1},
I (0) = q0,

O(q0) = 0, O(q1) = 1,

S = {0, 1},
ι(0) = 0,

ω(0) = 0, ω(1) = 1,

r : “Get each e ∈ E for which ω(se) = 1 (where se is the state of e)”,

δ:

(q0, q0, 0)→ (q1, q1, 1)
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Proof of correctness

Theorem

Protocol MaximalMatching stably solves the maximal matching
problem.

Proof.

M: set of edges in state 1. Two interactions happening in parallel cannot
concern adjacent edges (natural assumption about scheduler). e = (u, υ)
gets in M iff both endpoints are in q0. Then u, υ go to q1 to indicate
adjacency with an edge of M. So any edge conflicting with M cannot get
in M and M is always a matching. Any edge e′ = (u′, υ′) not conflicting
with M will eventually get in M because of fairness and because
q(u′) = q(υ′) = q0 and s(e′) = 0, so M eventually will become
maximal.
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Minimum Vertex Cover Problem

Problem

(Minimum vertex cover) Given an undirected communication graph
G = (V ,E ), find a minimum cardinality vertex cover, i.e., a set V ′ ⊆ V
such that every edge has at least one end point incident at V ′.

The protocol VertexCover agrees on everything to
MaximalMatching except for a new instruction
r : “Get each υ ∈ V for which O(qυ) = 1 (where qυ is the state of
υ)”.

Theorem: By collecting the end points of edges in M,
VertexCover protocol is clearly a 2 approximation protocol for

the minimum vertex cover problem [see Vazirani 2001].
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Transitive Closure

Problem

(Transitive Closure) Given a communication graph G = (V ,E ) in Gd
All

with a precomputed subgraph G ′ = (V ′,E ′), find the transitive closure of
G ′, that is, find a new edge set E∗ that will contain a directed edge
(u, υ) joining any nodes u, υ for which there is a non-null path from u to
υ in G ′ (note that always E ′ ⊆ E∗).

We assume the existence of a unique leader in state l in the initial
configuration.
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A Protocol

TranClos

X = Y = {0, 1},
Q = {l , q0, q1, q

′
1, q2, q

′
2, q3}, S = {0, 1},

controlled input assignment: “W (e′) = 1, for all e′ ∈ E ′, and
W (e) = 0, for all e ∈ E − E ′”,

ι(x) = x , for all x ∈ X , ω(s) = s, for all s ∈ S ,

r : “Get each e ∈ E for which ω(se) = 1 (where se is the state of e)”,

δ:

(l , q0, 0) → (q0, l , 0) (q2, q0, 1) → (q′2, q3, 1)
(l , q0, 1) → (q1, q2, 1) (q1, q3, x) → (q′1, q0, 1), for x ∈ {0, 1}

(q1, q2, 1) → (q0, l , 1) (q′1, q
′
2, 1) → (q0, l , 1)
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Why it Works...

Initially (due to the controlled input assignment) all arcs in E ′ are in
state 1 and all the other arcs in state 0.

The protocol tries to find two consecutive arcs (e.g. (u1, u2) and
(u2, u3)) both in state 1.

If it does, it waits until interaction (u1, u3) happens. Then (u1, u3)
goes to state 1 (transivity) and the population remains again with a
unique leader.

Eventually, due to fairness, all consequtive arcs in state 1 will be
visited by the leader and the transitive closure is correctly
constructed.

The leader does not get stuck since the rule (q1, q2, 1)→ (q0, l , 1)
backtracks the protocol.
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MPP is stronger than PP

Obviously, PP model is a special case of MPP model.

Ignore edge functions, states, costs, and instruction r to get PP.

The edge buffers enable each pair of agents to remember a pairwise
history of up to O(1) interactions.
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For Example...

Assume a complete directed graph G = (V ,E ).

Nc = Na · Nb.

“The number of c’s is the product of the number of a’s and
the number of b’s”

Rephrase it: “Is Nc equal to the number of links leading from
agents with input a to agents with input b?”

This predicate is not semilinear, since Presburger arithmetic does
not allow multiplication of variables.
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Nc = Na · Nb protocol

VarProduct

X = {a, b, c , 0},
Y = {0, 1},
Q = {a, ȧ, b, c , c̄ , 0},
I (x) = x , for all x ∈ X ,

O(a) = O(b) = O(c̄) = O(0) = 1, and O(c) = O(ȧ) = 0,

S = {0, 1},
ι(x) = 0, for all x ∈ X ,

r : “If there is at least one agent with output 0, reject, else accept.”,

δ:

(a, b, 0)→ (ȧ, b, 1)

(c , ȧ, 0)→ (c̄ , a, 0)

(ȧ, c , 0)→ (a, c̄ , 0)
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Proof Sketch

For each a the protocol tries to erase b c’s.

Each a is able to remember the b’s that has already counted by
marking the corresponding links.

If the c ’s are less than the product then at least one ȧ remains and if
the c ’s are more at least one c remains. In both cases at least one
agent that outputs 0 remains.

If Nc = Na · Nb then every agent eventually outputs 1.
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Discussion

A MPP strongly stably computes a predicate if in every
computation all agents eventually agree on the correct output value.

This is not the case for VarProduct (sometimes only one agent
eventually gives output 0 and the answer is “reject”).

But it is easy to see that that VarProduct has stabilizing states:

In every computation all agents eventually stop changing their state
(stronger than stabilizing outputs).

Moreover, instruction r defines a semilinear predicate on
multisets of VarProduct’s states (we can write it formally as
(Nc > 0) ∨ (Nȧ > 0)).

We exploit these properties to prove that with a slight modification
VarProduct strongly stably computes Nc = Na · Nb.
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Composition Theorem

Theorem

Any MPP A, that stably computes a predicate p with stabilizing states in
some family of directed and connected communication graphs G,
containing an instruction r that defines a semilinear predicate t on
multisets of A’s agent states, can be composed with a provably existing
MPP B, that strongly stably computes t with stabilizing inputs in G, to
give a new MPP C satisfying the following properties:

C is formed by the composition of A and B,

its input is A’s input,

its output is B’s output, and

C strongly stably computes p in G.
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Non-uniform Upper Bounds

Let DMP be the class of predicates stably computable by the MPP
model in any family of directed communication graphs.

Theorem

All predicates in DMP are also in NSPACE (m).

Proof

Any network configuration can be represented explicitly by storing a state
per node and a state per edge. This takes O(m) space since G is always
connected. Any stably computable predicate corresponds to a unique
stably computable language (its support). Let L be a stably computable
language. We present a NTM MA that decides L in space O(m). To
accept input x, MA must verify two conditions:

1 That there exists a configuration C reachable from I (x) satisfying r .

2 There is no C ′ reachable from C in which r is violated.
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Non-uniform Upper Bounds

The first condition is verified by guessing Ci+1 to replace Ci . Obviously, a
C satisfying r can be found by using at most O(m) space in any branch
of the MA’s computation. The second condition is the complement of the
similar reachability problem: ”There is some C ′ reachable from C in
which r is violated” and NSPACE is closed under complement for all
space functions ≥ log n [Immerman 1988].
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Graph Decision MPPs (GDM model)
[I. Chatzigiannakis, O. Michail, and P. G. Spirakis, To appear in DISC ’09]

A GDM is simply a special case of MPP.

binary output alphabet Y = {0, 1},
finite set of agent states Q,

agent output function O : Q → Y ,

finite set of edge states S ,

output instruction r ,

initial agent state q0 ∈ Q,

initial edge state s0 ∈ S , and

transition function δ : Q × Q × S → Q × Q × S .

Initially all agents are in q0 and all edges in s0 (no input).
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Graph Languages

A graph universe U is any set of communication graphs.

A graph language L is a subset of U containing communication
graphs that share some common property.

e.g. L = {G ∈ U | G contains a directed hamiltonian path}.
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Deciding Graph Languages

Definition

A GDM A stably computes a predicate p : U → {0, 1} with the
predicate output convention, if for any input graph G ∈ U s.t.
p(G ) = 1 and any computation of A on G the protocol reaches an
output-stable configuration C , where yC (u) = 1 for all u ∈ V and for any
G ′ ∈ U s.t. p(G ′) = 0 and any computation of A on G ′ the protocol
reaches an output-stable configuration C ′, where yC ′(u) = 0 for all
u ∈ V .

Definition

We say that a GDM A decides a graph language L if it stably computes
the predicate p : U → {0, 1}, defined as p(G ) = 1 iff G ∈ L, with the
predicate output convention (i.e. in every computation, all agents
eventually agree in the correct output value).
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Decidable Graph Languages

Some examples:

Node Parity.

Edge Parity.

Any node has less than k = O(1) outgoing neighbors (bounded
out-degree).

Some node has more incoming than outgoing neighbors.

G has some directed path of length at least k = O(1).
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Path of Constant Length

Theorem

(Directed Path of Constant Length) The graph language
Pk = {G ∈ G | G has at least one directed path of at least k edges} is
decidable for any k = O(1) (the same holds for Pk).

Proof

If k = 1 the protocol that decides P1 is trivial, since it accepts iff at least
one interaction happens (in fact it can always accept since all graphs have
at least two nodes and they are weakly connected, and thus P1 = G). We
give a general protocol, DirPath, that decides Pk for any constant k > 1.
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Path of Constant Length

DirPath

Q = {q0, q1, 1, . . . , k}, S = {0, 1},
O(k) = 1, O(q) = 0, for all q ∈ Q − {k},
r : “Get any u ∈ V and read its output”,

δ:

(q0, q0, 0)→ (q1, 1, 1)

(q1, x , 1)→ (x − 1, q0, 0), if x ≥ 2

→ (q0, q0, 0), if x = 1

(x , q0, 0)→ (q1, x + 1, 1), if x + 1 < k

→ (k , k , 0), if x + 1 = k

(k , ·, ·)→ (k , k , ·)
(·, k , ·)→ (k , k , ·)
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Path of Constant Length

The protocol expands non-communicating active paths.

The head of each path p counts its length lp.

If lp becomes equal to k then state k giving output 1 is propagated.

All the other states give output 0.

To avoid getting stuck, the protocol keeps backtracking and even
totally releasing the active paths (the graph is not necessarily
complete).

Due to fairness, if a path of length at least k exists, then DirPath
eventually finds it.
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Closure Results

The class of decidable graph languages (those for which exists some
GDM decider) is closed under

complement,

(constant) union, and

(constant) intersection operations.

Paul G. Spirakis Recent Advances in Population Protocols 48 / 61



Population Protocols
Mediated Population Protocols

Deciding Graph Languages
Epilogue

Definition
Decidable Graph Languages
Undecidability

An Impossibility Result

Here the universe is G containing all weakly connected graphs.

2C = {G ∈ G | G has at least two nodes u, υ s.t. both
(u, υ), (υ, u) ∈ E (G ) (in other words, G has at least one 2-cycle)}.

(a) Graph G (b) Graph G ′

Figure: G ∈ 2C , G ′ /∈ 2C .
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An Impossibility Result

Lemma

For any GDM A and any computation (infinite fair execution)
C0,C1,C2, . . . of A on G (Figure 1(a)) there exists a computation
C ′0,C

′
1,C

′
2, . . . ,C

′
i , . . . of A on G ′ (Figure 1(b)) s.t.

Ci (υ1) = C ′2i (u1) = C ′2i (u3)

Ci (υ2) = C ′2i (u2) = C ′2i (u4)

Ci (e1) = C ′2i (t1) = C ′2i (t3)

Ci (e2) = C ′2i (t2) = C ′2i (t4)

for any finite i ≥ 0.

Proof: The proof is by induction on i (completely technical).
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An Impossibility Result

Theorem

There exists no GDM with stabilizing states to decide the graph
language 2C .
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An Impossibility Result

Proof.

Assume that a GDM A decides 2C with stabilizing states.

When A runs in a fair manner on G , after finitely many steps all
agents output the value 1 (i.e. A “accepts” G ).

But according to the previous Lemma there exists some unfair
execution of A on G ′ simulating that of A on G .

Since the states of A on G have stabilized there exists no transition
to fix the wrong decision that A has made on G ′.

If we allow the scheduler that runs A on G ′ to decome fair now
(leading to a computation) we have a fair execution that also
“accepts” G ′.

But this is a CONTRADICTION: By assumption A decides 2C so
it cannot “accept” G ′ /∈ 2C .
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An Immediate Consequence

Corollary

There exists no GDM that in any computation on any G ∈ 2C stabilizes
to a single state, e.g. by propagating an alert state when it finds a
2-cycle, to decide the graph language 2C .
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A General Impossibility Result

Here the universe is H containing all directed graphs (also those that
are disconnected).

Lemma

For any nontrivial graph language L (i.e. L 6= ∅ and L 6= H), there exists
some disconnected graph G in L where at least one component of G does
not belong to L or there exists some disconnected graph G ′ in L where at
least one component of G ′ does not belong to L (or both).
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A General Impossibility Result

Proof.

If the statement does not hold: Any disconnected graph in L has all its
components in L and any disconnected graph in L has all its components
in L.

1 All connected graphs belong to L. Then L contains at least one
disconnected graph (since it is nontrivial) that has all its
components in L. CONTRADICTION

2 All connected graphs belong to L. CONTRADICTION by
symmetry

3 L and L contain connected graphs G and G ′, respectively. Their
disjoint union U = (V ∪ V ′,E ∪ E ′) is disconnected, belongs to L or
L but one of its components belongs to L and the other to L.
CONTRADICTION - by assumption both components should
belong to the same language
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A General Impossibility Result

Theorem

Any nontrivial graph language L ⊂ H is undecidable by GDM.

Proof.

Assume that GDM A decides a nontrivial graph language L. Closure
under complement implies that ∃ GDM B deciding L. By previous
Lemma ∃ disconnected G in L with some component in L or in L with
some component in L.

1 L contains such a G . Since A decides L all agents of G should
eventually answer “accept”. But A runs on a component that
belongs to L whose agents cannot communicate with the other
components. Thus A answers “reject” in this component.
CONTRADICTION

2 L contains such a G . CONTRADICTION by symmetry
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An Immediate Consequence

Corollary

GDM cannot decide Connectivity.
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Summary

Population Protocol model was the first step in this widely
unexplored field of societies of tiny networked artefacts.

Our research:

Mediated Population Protocol model: A natural extension of the
basic model gives birth to a promising new area of research.

Many new directions: finding subgraphs, deciding graph
properties, optimization, approximation...

Moreover the MPP model is computationally stronger than the
Population Protocol model.

Some useful graph languages are decidable by MPPs but many
others seem difficult without a leader.

Nothing is decidable if the universe contains disconnected graphs.

Verification is the key for applying such protocols in real, critical
systems.
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Open Problems

Major Open Problem: An exact characterization of the class of
decidable graph languages.

An alternative: A general method for impossibility results that
suits the GDM model.
Ad-hoc proofs require a lot of effort.

The adopted notion of fairness (Angluin et al.) seems to cause
performance and correctness problems in the case of probabilistic
schedulers.

Our research on those problems will appear soon...

Is there some other notion of fairness that would be more suitable
for real-life applications?

Can it resolve the existing problems?

The GDM model that aditionally assumes a unique leader seems to
be stronger (no proof exists).
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FRONTS

This work has been partially supported by the ICT Programme of
the European Union under contract number ICT-2008-215270
(FRONTS).

FRONTS is a joint effort of eleven academic and research institutes
in foundational algorithmic research in Europe.

The effort is towards establishing the foundations of adaptive
networked societies of tiny artefacts.
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