
Temporal Network Optimization Subject to
Connectivity Constraints

Paul G. Spirakis

joint work with
George B. Mertzios

Othon Michail
Ioannis Chatzigiannakis

Computer Technology Institute & Press “Diophantus” (CTI), Greece
Department of Computer Science, University of Liverpool, UK

School of Engineering and Computing Sciences, Durham University, UK

40th International Colloquium on Automata, Languages and
Programming (ICALP)

July 8-12, 2013, Riga, Latvia
1 / 28



Temporal Networks

Definition (Temporal Graph)

Let G = (V ,E ) be a (di)graph and λ : E → 2N be a labeling of G . Then
λ(G ) is the temporal graph (or dynamic graph) of G w.r.t. λ.
Furthermore, G is the underlying graph of λ(G ).

Loosely speaking a network that changes with time

Labels indicate availability times of edges
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Time-Respecting Paths

Paths with strictly increasing labels

a.k.a. journeys

A journey:

1 3 4 7 18 25
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Time-Respecting Paths

Paths with strictly increasing labels

a.k.a. journeys

A non-journey:

1 3 4 4 18 15
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Motivation

A great variety of systems are dynamic:

Modern communication networks:
inherently dynamic, dynamicity may be
of high rate

mobile ad hoc, sensor, peer-to-peer,
opportunistic, and delay-tolerant
networks

Social networks: social relationships
between individuals change, existing
individuals leave, new individuals enter

Transportation networks: transportation units change their positions
in the network as time passes

Physical systems: e.g. systems of interacting particles
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State of the Art

Traditional communication networks: topology modifications are rare

The structural and algorithmic properties of temporal graphs are not
well understood yet

Single-label temporal graphs
The max-flow min-cut theorem holds with unit capacities [Berman, ’96]

Menger’s theorem is violated [Kempe, Kleinberg, Kumar, STOC, ’00]

Continuous availabilities (intervals)
natural model but different techniques (e.g. journey problems [Xuan et
al., IJFCS, ’03], dynamic flows [Fleischer, Tardos, Op. Res. Let., ’98])

Distributed Computing on Dynamic Networks
Worst-case dynamicity [Kuhn, Lynch, Oshman, STOC, ’10], [Michail,
Chatzigiannakis, Spirakis, JPDC, ’13]

Population Protocols (interacting automata) [Angluin et al., Distr.
Comp., ’06], [Michail, Chatzigiannakis, Spirakis, Book, ’11]

Randomly Dynamic Networks [Clementi et al., PODC, ’08] 5 / 28



Overview-Contribution

We give efficient algorithms for shortest journeys

We state a temporal analogue of Menger’s theorem and prove it valid
for arbitrary temporal graphs

We define cost minimization parameters for temporal network design
temporality, temporal cost, and age

satisfy some connectivity property: all paths and all reachabilities

We provide upper and lower bounds for basic graph families, e.g. rings,
DAGs, trees, and a trade-off between temporality and age

We give a generic method for lower-bounding the temporality

APX-hardness result for temporal cost and an approximation algorithm

Just the tip of the iceberg...
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Journey Problems

Foremost (u, v)-journey (e1, l1), (e2, l2), . . . , (ek , lk) from time t
l1 ≥ t and

lk is minimized

1 3 7 9

4 10

4

7

u v

Theorem

Let λ(G ) be a temporal graph, s ∈ V be a source node, and tstart a time
s.t. λmin ≤ tstart ≤ λmax. We provide an algorithm that correctly
computes for all v ∈ V \{s} a foremost (s, v)-journey from time tstart . The
running time of the algorithm is O(nα3(λ) + |λ|).

α(λ) = λmax − λmin + 1: the age of a temporal graph
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Journey Problems

Weighted temporal graph: In addition to λ a positive weight w(e) is
assigned to every e ∈ E

Shortest Journey: Minimizes the sum of the weights of its edges

Let λ(G ) be a weighted single-label temporal graph (i.e. |λ(e)| = 1
for all e ∈ E )

Theorem

For any two nodes s, v ∈ V , we can compute a shortest journey between s
and v in λ(G ) (or report that no such journey exists) in
O(m log m +

∑
u∈V δ

2
u) = O(n3) time.

δu is the degree of node u, m = |E |
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Menger’s Analogue for Temporal Graphs

Theorem (Menger’s theorem)

The maximum number of node-disjoint s-v paths is equal to the minimum
number of nodes needed to separate s from v.

Does it carry over to temporal graphs?

Previous known result was negative

Theorem (Kempe, Kleinberg, Kumar, STOC ’00)

There is no analogue of Menger’s theorem, at least in its original
formulation, for arbitrary single-label temporal networks.
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Menger’s Analogue for Temporal Graphs

A violation of Menger’s theorem

v

v3

v4

v2

v1 2 6

7
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4
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There are no two disjoint time-respecting paths from v1 to v4 but

After deleting any one node (other than v1 or v4) there still remains a
time-respecting v1-v4 path
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Menger’s Analogue for Temporal Graphs

We give a positive result

An analogue of Menger’s theorem valid for all temporal networks

Two journeys are out-disjoint if they never leave from the same node
at the same time

Remove departure time t from node u:

for all edges (u,w), remove label t from (u,w) (if it exists)

Theorem

Take any temporal graph λ(G ) with two distinguished nodes s and v. The
maximum number of out-disjoint journeys from s to v is equal to the
minimum number of node departure times needed to separate s from v.
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Menger’s Analogue: An Example

3 out-disjoint journeys from s to v

u1

u3

u2

u4s = = v

1,2

3

3

4,5

2,3
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3 5
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Menger’s Analogue: An Example
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Max out-disjoint journeys = Max-flow = 3
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Menger’s Analogue: Distributed Token Gathering

Distributed Model
λ(G , t) is connected at all times t ∈ N

k ≤ n tokens assigned to some given source nodes S ⊆ V

In each (discrete, synchronous) round i , each node broadcasts a single
token to all its current neighbors (i.e. those defined by E (i))

Lemma (Dutta et al., SODA, ’13)

All the tokens can be sent to any given v in O(n) rounds.

We substantially simplify the proof via Menger’s Temporal Analogue.

Given a mapping N : S → N≥1 so that
∑

s∈S N(s) = k, we prove:

Lemma

Let the age be α(λ) = n + k. There are at least k out-disjoint journeys
from S to any given v such that N(si ) journeys leave from each source
node si .

According to a reviewer: “A main value of temporal networks is that
they allow us to make the analysis of many distributed protocols
much more precise”
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Cost Minimization Parameters

(Di)graph G = (V ,E ), αmax ∈ N: upper bound on the age,
Connectivity property P

Definition (Temporality)

The temporality of (G ,P, αmax) is

τ(G ,P, αmax) = min
λ∈P∩LG ,αmax

max
e∈E
|λ(e)|

i.e. minimize the maximum number of labels of an edge while
satisfying P and having age at most αmax

Definition (Temporal Cost)

The temporal cost of (G ,P, αmax) is

κ(G ,P, αmax) = min
λ∈P∩LG ,αmax

∑
e∈E
|λ(e)|

i.e. minimize the total number of labels used 14 / 28



Cost Minimization Parameters

Similarly we define the age optimization criterion

τmax ∈ N: upper bound on the temporality

Definition (Age)

The age of (G ,P, τmax) is

α(G ,P, τmax) = min
λ∈P∩LG ,τmax

α(λ)

i.e. minimize the age while satisfying P and having temporality at
most τmax

Minimizing such parameters is crucial for many real networks
Establishing and maintaining a connection does not come for free

e.g. in WSNs cost of edges is directly related to: power consumption of
keeping nodes awake, broadcasting, listening, resolving collisions
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Connectivity Properties

λ preserves path P if it gives a journey on P

We investigate the following connectivity properties

all-paths(G )= {λ ∈ LG : for all simple paths P of G , λ preserves P}

reach(G )= {λ ∈ LG : for all u, v ∈ V where v is reachable from u in
G , λ preserves at least one simple path from u to v}.

Example

Given: directed ring R = u1, u2, . . . , un

Problem: determine τ(R, all paths), i.e. the temporality of the ring
subject to the all paths property (no constraint on the age here)

i.e. find a labeling λ that (i) preserves every simple path of the ring
and (ii) at the same time minimizes the maximum number of labels of
an edge
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Ring Temporality Subject to All Paths

Increasing labels on P1 ⇒ decreasing
labels on (un−1, un) and (u1, u2)

But P2 uses first (un−1, un) and then
(u1, u2) thus requires an increasing pair
of labels on these edges

To preserve both P1, P2 must use 2
labels on at least one of these two
edges ⇒ τ(R, all paths) ≥ 2

u1

u2

u3u4

u5

un−1

un

P1

P2

The labeling that assigns to each edge (ui , ui+1) the labels {i , n + i}
preserves all simple paths, i.e. τ(R, all paths) ≤ 2

Conclusion: τ(R, all paths) = 2
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Preserving All Paths of a DAG

1

2 4

5

6
u1 u2 u3 u4 u5 u6 u7

1

2

3

3

Proposition

If G is a DAG then τ(G , all paths) = 1.

Proof.

Take a topological sort u1, u2, . . . , un of G

Give to every edge (ui , uj), where i < j , label i
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All Reachabilities

It is sufficient to understand how τ(G , reach), behaves on strongly
connected digraphs

C(G ): the set of all strongly connected components of a digraph G

Lemma

τ(G , reach) ≤ maxC∈C(G) τ(C , reach) for every digraph G .

Using this we prove that

Theorem (Generic Upper Bound)

τ(G , reach) ≤ 2 for all digraphs G .

i.e. we can preserve all reachabilities of any digraph by using at most
2 labels on every edge
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Restricting the Age

Theorem

If T is an undirected tree then τ(T , all paths, d(T )) ≤ 2.

the age above is restricted to be at most the diameter d(T ) of T

Theorem (Age-Temporality Trade-off)

If G is a directed ring and α = (n − 1) + k, where 1 ≤ k ≤ n − 1, then

τ(G , all paths, α) = Θ(n/k)

In particular, b n−1k+1c+ 1 ≤ τ(G , all paths, α) ≤ d n
k+1e+ 1

Moreover, τ(G , all paths, n − 1) = n − 1 (i.e. when k = 0)
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Generic Method for Lower Bounding Temporality

Definition (Edge-kernel)

K = {e1, e2, . . . , ek} ⊆ E (G ) is an edge-kernel of G if for every
permutation π = (ei1 , ei2 , . . . , eik ) of K there is a simple path of G that
visits all edges of K in the ordering defined by π.

e1 e2 e3
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Generic Method for Lower Bounding Temporality

Theorem (Edge-kernel Lower Bound)

If a digraph G contains an edge-kernel of size k then τ(G , all paths) ≥ k.

Proof.

K = {e1, e2, . . . , ek}: an edge-kernel of size k

On every ei sort the labels in an ascending order. λl(e): the lth
smallest label of edge e, e.g. λ(e) = {1, 3, 7} ⇒ λ1(e) = 1,
λ2(e) = 3, λ3(e) = 7

Construct a permutation π = (ej1 , ej2 , . . . , ejk ) of K . ej1 : edge with
max λ1, ej2 : edge with max λ2 between the remaining edges, ...

Observe that π satisfies λi (eji ) ≥ λi (eji+1
) for all 1 ≤ i ≤ k − 1

π cannot use the labels λ1, . . . , λi−1 at edge eji thus at edge ejk it
can use none of the k − 1 available labels ⇒ needs a kth label
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Applying the Edge-kernel Lower Bound

Lemma

If G is a complete digraph of order n then it has an edge-kernel of size
bn/2c.

Lemma

There exist planar graphs having edge-kernels of size Ω(n
1
3 ).

e1 e2 e3 e4 e5 e6
p2 q2p1 q1 p3 q3 p4 q4 p5 q5 p6 q6

a5 b5

c5 d5
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Hardness of Approximating the Cost

Max-XOR: given a 2-CNF formula φ, max number of clauses of φ
simultaneously XOR-satisfied in a truth assignment

Max-XOR(k): every literal appears in at most k clauses of φ

Lemma

The Max-XOR(3) problem is APX-hard.

Theorem

There exists a truth assignment of φ XOR-satisfying at least k clauses iff
κ(Gφ, reach, d(Gφ)) ≤ 39n − 4m − 2k.

Theorem (Hardness of Approximating the Temporal Cost)

Computing κ(G , reach, d(G )) is APX-hard, even when the maximum
length of a directed cycle in G is 2 (i.e. very close to a DAG).
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Approximating the Cost

r(u) = |{v ∈ V : v is reachable from u}|

r(G ) =
∑

u∈V r(u): total number of reachabilities in G

Theorem

We provide an r(G)
n−1 -factor approximation algorithm for computing

κ(G , reach, d(G )) on any weakly connected digraph G .

Proof.

OPT ≥ n − 1

Consider the following algorithm producing a labeling λ:

For all u ∈ V , compute a BFS out-tree Tu rooted at u

For all Tu, give to each edge at distance i from the root label i

Maximum label used by λ is d(G ) and

ALG = |λ| = r(G ): for each u, we label precisely r(u) edges in Tu
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Research Directions: To name a few...

Still many interesting graph families to be investigated like regular or
bounded-degree graphs

Are there are other structural properties of G that cause a growth of
temporality? (apart from edge-kernels)

Other natural connectivity properties subject to which optimization is
to be performed

e.g. preserve a shortest path between every reachable pair

depart from paths and require the preservation of more complex
subgraphs

Set the optimization criterion to be the age of λ

α(G , all paths) is NP-hard (reduction from HAMPATH)

2-factor approximation algorithm for α(G , reach, 2)

26 / 28



Research Directions: To name a few...

Great room for approximation and randomized algorithms for all
combinations of optimization parameters and connectivity constraints

Polynomial-time algorithms for specific “easy to handle” graph
families

Consider periodic or probabilistic models of temporal graphs

Our results are a first step towards answering the following
fundamental question:

To what extent can algorithmic and structural results of
graph theory be carried over to temporal graphs?

27 / 28



Thank You!
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