Mediated Population Protocols

Othon Michail Paul Spirakis Ioannis Chatzigiannakis

Research Academic Computer Technology Institute (RACTI)

July 2009

< ∃⇒

AP ► < 3

Outline I

Population Protocols

- Definition
- Stability
- Computational Power

2 Mediated Population Protocols

- Definition
- The Role of Edges
- Stability
- Computational Power

The Systems

- A communication graph G = (V, E).
- V: A population of |V| = n agents (sensor nodes).
- E: The permissible pairwise interactions between the agents.
- Each agent is a self-contained package consisting of
 - control unit, constant memory, low-power wireless communication mechanism, limited power supply.
 - Agents are passively mobile.
 - Communicate when they come sufficiently close to each other.
- Agents are represented as communicating finite-state machines.

Definition Stability Computational Power

Formal Definition of Population Protocols [Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC '04]

- A PP ${\mathcal A}$ consists of
 - finite input and output alphabets X and Y,
 - finite set of states Q,
 - input function $I: X \to Q$,
 - output function $O: Q \rightarrow Y$,
 - transition function $\delta : Q \times Q \rightarrow Q \times Q$.

 $\delta(p,q) = (p',q')$ or simply $(p,q) \rightarrow (p',q')$ is called a transition.

< ロ > < 同 > < 三 > < 三 >

Definition Stability Computational Power

Significant Properties

- **Uniformity:** Protocol descriptions are independent of the population size *n*.
- Anonymity: There is no room in the state of an agent to store a unique identifier.

Computation

- Model passive movement by an **adversary scheduler** that picks members of *E*.
- $C: V \rightarrow Q$, population configuration specifying the state of each agent.

Execution: Finite or infinite sequence C_0, C_1, C_2, \ldots , s.t. $C_i \rightarrow C_{i+1}$ for all *i*.

Fairness Formally: For all C, C' s.t. $C \rightarrow C'$, if C occurs infinitely often in the execution the same holds for C'. **Computation**: Infinite fair execution.

< ロ > < 同 > < 三 > < 三 >

Definition Stability Computational Power

Stable Computation

- C is output-stable if O(C') = O(C) for all C' reachable from C (no agent changes its output).
- A PP A stably computes a predicate p : X → {0,1} iff for every x ∈ X and every computation that starts from I(x) (initial configuration) the computation reaches an output-stable configuration C, under which all agents output the value p(x).

Semilinear Predicates - Presburger Arithmetic

Semilinear Predicates

• A predicate on input assignments is **semilinear** if its support (input assignments mapped to 1) is a semilinear set.

Presburger Arithmetic [Presburger 1929]

- Arithmetic on natural numbers with addition **but not multiplication**.
- Formulas involving addition, <, mod-k congruence relation ≡_k for each constant k and usual logical connectives ∨, ∧ and ¬.

Semilinear sets are those that can be defined in Presburger arithmetic [Ginsburg and Spanier, 1966].

< 3 > < 3 >

Definition Stability Computational Power

Exact Characterization

Theorem

A predicate is computable in the basic population protocol model if and only if it is semilinear [Angluin et al. 2004, 2006].

Stably Computable (semilinear)

- "The number of *a*'s is greater than 5" (i.e. $N_a > 5$).
- $(N_a = N_b) \lor (\neg (N_b > N_c)).$

Non-stably computable (non-semilinear)

 "The number of c's is the product of the number of a's and the number of b's" (i.e. N_c = N_a ⋅ N_b).

伺 と く ヨ と く ヨ と

Definition The Role of Edges Stability Computational Power

Formal Definition of Mediated Population Protocols [I. Chatzigiannakis, O. Michail, and P. G. Spirakis, ICALP '09]

Population V of |V| = n agents forming a communication graph G = (V, E). A MPP A consists of

- finite input and output alphabets X and Y,
- finite set of agent states Q, agent input function I : X → Q, agent output function O : Q → Y,
- finite set of edge states S, edge input function ι : X → S, edge output function ω : S → Y,
- output instruction r,
- (totally ordered cost set K, cost function $c : E \to K$) optional, and
- transition function $\delta : Q \times Q \times K \times S \rightarrow Q \times Q \times K \times S$.

(日) (同) (日) (日)

Definition The Role of Edges Stability Computational Power

Mediated Population Protocols

Transition function $\delta : Q \times Q \times S \rightarrow Q \times Q \times S$

- Assume that costs are not defined.
- When agents u_1, u_2 in states a, b, respectively, interact through (u_1, u_2) in state s then $(a, b, s) \rightarrow (a', b', s')$ is applied and
 - a goes to a',
 - b goes to b', and
 - s goes to s'.

Definition The Role of Edges Stability Computational Power

New Assumptions about Edges...

- We assume that each edge is equipped with a buffer of $\mathcal{O}(1)$ storage capacity (independent of the population).
 - Each pair of communicating agents shares a memory of constant size.
- During interaction (u, v) the corresponding agents read the memory contents and update it according to δ .

Definition The Role of Edges Stability Computational Power

Network Configurations

 A network configuration is a mapping C : V ∪ E → Q ∪ S specifying the agent state of each agent in the population and the edge state of each edge in the communication graph.

r-stability

- **Problem**: "Given an undirected communication graph G = (V, E)and a useful cost function $c : E \to K$ on the set of edges, design a protocol that will find the minimum cost edges of E".
- Example of instruction r: "Get each e ∈ E for which ω(s_e) = 1 (where s_e is the state of e)".

r-stable network configuration C: for every C', (i) If a subgraph needs to be found, C fixes a subgraph that doesn't change in any C' reachable from C (ii) If a function has to be computed by the agents, then an r-stable configuration drops down to an agent output-stable configuration.

• Permits protocols that search for and, eventually, find certain subgraphs of *G*.

< ロ > < 同 > < 三 > < 三 >

Definition The Role of Edges Stability Computational Power

Stable Computation

Definition

A protocol \mathcal{A} stably solves a problem Π , if for every instance I of Π and every computation of \mathcal{A} on I, the network reaches an r-stable configuration C that gives the correct solution for I if interpreted according to the output instruction r. If Π is a function f to be computed we say instead that \mathcal{A} stably computes f.

Definition The Role of Edges Stability Computational Power

Some (Stably) Solvable Problems

- Find the edges of minimum cost.
- Find a maximal matching.
- Find a vertex cover which is at most 2 · OPT.
- By assuming a unique leader in the initial configuration construct the **transitive closure** of *G*.

- **1 →**

Definition The Role of Edges Stability Computational Power

MPP is stronger than PP

- Obviously, PP model is a special case of MPP model.
 - Ignore edge functions, states, costs, and instruction r to get PP.
- The edge buffers enable each pair of agents to remember a pairwise history of up to O(1) interactions.

Definition The Role of Edges Stability Computational Power

For Example...

Assume a complete directed graph G = (V, E).

- $N_c = N_a \cdot N_b$.
- Rephrase it: "Is N_c equal to the number of links leading from agents with input *a* to agents with input *b*?"
- This predicate is **not semilinear**, since Presburger arithmetic does not allow multiplication of variables.

・何・ ・ヨ・ ・ヨ・

Definition The Role of Edges Stability Computational Power

$N_c = N_a \cdot N_b$ protocol

VarProduct

- *X* = {*a*, *b*, *c*, 0},
- $Y = \{0, 1\},\$
- $Q = \{a, \dot{a}, b, c, \bar{c}, 0\},\$
- I(x) = x, for all $x \in X$,
- $O(a) = O(b) = O(\bar{c}) = O(0) = 1$, and $O(c) = O(\dot{a}) = 0$,
- $S = \{0, 1\},$
- $\iota(x) = 0$, for all $x \in X$,
- r: "If there is at least one agent with output 0, reject, else accept.",
 δ:

$$egin{aligned} (a,b,0) &
ightarrow (\dot{a},b,1) \ (c,\dot{a},0) &
ightarrow (ar{c},a,0) \ (\dot{a},c,0) &
ightarrow (a,ar{c},0) \end{aligned}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof Sketch

- For each *a* the protocol tries to erase *b c*'s.
- Each *a* is able to remember the *b*'s that has already counted by marking the corresponding links.
- If the c's are less than the product then at least one à remains and if the c's are more at least one c remains. In both cases at least one agent that outputs 0 remains.
- If $N_c = N_a \cdot N_b$ then every agent eventually outputs 1.

Definition The Role of Edges Stability Computational Power

Discussion

- A MPP strongly stably computes a predicate if in every computation all agents eventually agree on the correct output value.
- This is not the case for *VarProduct* (sometimes only one agent eventually gives output 0 and the answer is "reject").
- But it is easy to see that that VarProduct has stabilizing states:
 - In every computation all agents eventually stop changing their state (stronger than stabilizing outputs).
- Moreover, instruction r defines a semilinear predicate on multisets of VarProduct's states (we can write it formally as (N_c > 0) ∨ (N_a > 0)).
- We exploit these properties to prove that with a slight modification *VarProduct* strongly stably computes $N_c = N_a \cdot N_b$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Definition The Role of Edges Stability Computational Power

Composition Theorem

Theorem

Any MPP A, that stably computes a predicate p with stabilizing states in some family of directed and connected communication graphs G, containing an instruction r that defines a semilinear predicate t on multisets of A's agent states, can be composed with a provably existing MPP B, that strongly stably computes t with stabilizing inputs in G, to give a new MPP C satisfying the following properties:

- C is formed by the composition of A and B,
- its input is A's input,
- its output is B's output, and
- C strongly stably computes p in G.

< 3 > < 3 >

Definition The Role of Edges Stability Computational Power

Non-uniform Upper Bounds

Let DMP be the class of predicates stably computable by the MPP model in any family of directed communication graphs.

Theorem

All predicates in DMP are also in NSPACE(m).

∢ ≣ ►

Summary

• **Population Protocol model** was the **first step** in this widely unexplored field of societies of tiny networked artefacts.

Our research:

- Mediated Population Protocol model: A natural extension of the PP model gives birth to a promising new area of research.
- Many new directions: finding subgraphs, deciding graph properties, optimization...
- Moreover the MPP model is computationally stronger than the Population Protocol model.
- Verification is the key for applying such protocols in real, critical systems.

Thank You!

<ロ> (四) (四) (三) (三)

Michail, Spirakis, Chatzigiannakis Mediated Population Protocols

5 / 25