Passively Mobile Communicating Machines that Use Restricted Space

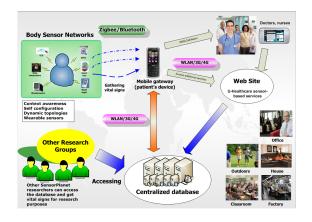
Andreas Pavlogiannis

Joint work with: I. Chatzigiannakis, O. Michail S. Nikolaou, P. G. Spirakis

Research Academic Computer Technology Institute (RACTI) Patras. Greece

> Talk at FOMC 2011 June 2011

The Motivation



• Wireless Sensor Networks have received great attention recently due to their wide range of applications.

The Background Work

- Theoritical models for WSNs have become significantly important in order to understand their capabilities and limitations.
- Population Protocols [Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC '04] is a model for WSNs where:
 - Each node: limited computational device \longrightarrow a finite-state machine + sensing + communicating device: agent.
 - Passively mobile agents: incapable to control or predict.
 - How: unstable environment, like water flow or wind, or the natural mobility of their carriers.
 - Significant properties:
 - Uniformity: Protocol descriptions are independent of the population size.
 - Anonymity: There is no room in the state of an agent to store a unique identifier.
- Why focus on such a minimalistic model?
 - Real case scenarios: severe restrictions on resources (power, etc).
 - Clearer understanding of the inherent properties and foundations.

The Population Protocols Model and Characteristics

- Agents interact in pairs according to a communication graph G = (V, E) where:
 - V: A **population** of |V| = n agents of constant memory (independent of n).
 - E: The permissible interactions between the agents.
- Interaction pattern: adversary
- Adversarial choices: fairness condition
- fairness condition: population partition (the adversary cannot avoid a possible step forever)

Computation

In every execution of a PP:

- Initially: Each agent senses its environment → an input symbol from a finite input alphabet X.
 - input assignment: tuple specifying an input for each agent.
- the input symbol is mapped by the input function $I:X\to Q$ to a state from a finite set of agent states Q
 - population configuration(C): tuple specifying the state of each agent.
- each state is mapped by the output function O: Q → Y to an output symbol from a finite output alphabet Y (agent's output).
- Interaction: transition function $\delta: Q \times Q \to Q \times Q \Longrightarrow$ agents update their states according to δ .
 - population configuration(C) changes(C'): goes from C to C' in one step ($C \rightarrow C'$).

Stable Computation

- **Computation**: Infinite fair sequence $C_0, C_1, C_2, ..., s.t.$ $C_i \rightarrow C_{i+1}$ for all i.
- Population protocols do not halt. They stabilize.
- stability: there is a point/configuration in the computation after which no agent can change its output.
- stable computation: regular computation + stabilization

Computational Power

- Due to the minimalistic nature of the model the class of computable predicates is fairly small.
- In [Angluin et al. 2004, 2006] it was proven that it is exactly the class of semilinear predicates.
- Formulas such as $N_a \ge 10$ or $N_a < N_b$ capturing scenarios such as the infection of a percentage of a fish population or fire detection by a majority of sensors scattered in a forest.
- This class does not include multiplication, exponentiation and other important operations on input variables.

Relaxing the PP constraints

- Tiny (constant) space → Restricted space
 - Allowing for logarithmic memory is reasonable.
 - 10^9 agents only need $\propto 30$ bits!
- Preserve passive mobility no control over the interactions.
 - But still, fair.
- Passively Mobile Communicating Machines
- Study space complexity of various problems.
 - Interest remains on problems that use restricted space.

- **Sensor**: Receive the input $x \in X$.
- Working Tape: Internal computation.
- Output Tape: Agent's output.
- Outgoing Message Tape: Send messages to other agents
- Incoming Message Tape: Receive messages from other agents
- Working Flag: When set, the agent is busy doing interna computation and cannot interact.

- **Sensor**: Receive the input $x \in X$.
- Working Tape: Internal computation.
- Output Tape: Agent's output.
- Outgoing Message Tape: Send messages to other agents
- Incoming Message Tape: Receive messages from other agents
- Working Flag: When set, the agent is busy doing internated computation and cannot interact.

- **Sensor**: Receive the input $x \in X$.
- Working Tape: Internal computation.
- Output Tape: Agent's output.
- Outgoing Message Tape: Send messages to other agents
- Incoming Message Tape: Receive messages from other agents.
- Working Flag: When set, the agent is busy doing interna computation and cannot interact.

- **Sensor**: Receive the input $x \in X$.
- Working Tape: Internal computation.
- Output Tape: Agent's output.
- Outgoing Message Tape: Send messages to other agents
- Incoming Message Tape: Receive messages from other agents
- Working Flag: When set, the agent is busy doing internated computation and cannot interact.

- **Sensor**: Receive the input $x \in X$.
- Working Tape: Internal computation.
- Output Tape: Agent's output.
- Outgoing Message Tape: Send messages to other agents.
- **Incoming Message Tape**: Receive messages from other agents
- Working Flag: When set, the agent is busy doing internated computation and cannot interact.

- **Sensor**: Receive the input $x \in X$.
- Working Tape: Internal computation.
- Output Tape: Agent's output.
- Outgoing Message Tape: Send messages to other agents.
- **Incoming Message Tape**: Receive messages from other agents.
- Working Flag: When set, the agent is busy doing internal computation and cannot interact.

- **Sensor**: Receive the input $x \in X$.
- Working Tape: Internal computation.
- Output Tape: Agent's output.
- Outgoing Message Tape: Send messages to other agents.
- **Incoming Message Tape**: Receive messages from other agents.
- Working Flag: When set, the agent is busy doing internal computation and cannot interact.

The Passively Mobile Machines Model (PM)

Definition

PM protocol: 6-tuple $(X, \Gamma, Q, \delta, \gamma, q_0)$

- **X**: input alphabet, $\sqcup \notin X$,
- Γ : tape alphabet, $\sqcup \in \Gamma$ and $X \subset \Gamma$,
- Q: set of states,
- $\delta: \mathbf{Q} \times \mathbf{\Gamma^4} \to \mathbf{Q} \times \mathbf{\Gamma^4} \times \{\mathbf{L}, \mathbf{R}, \mathbf{S}\}^4 \times \{\mathbf{0}, \mathbf{1}\}$, the internal transition function,
 - Internal computation, Message processing...
- $\gamma: \mathbf{Q} \times \mathbf{Q} \to \mathbf{Q} \times \mathbf{Q}$, the external transition function,
 - Upon interaction, transition to a state that starts reading the incoming message.
- $q_0 \in Q$, the initial state.

10/24

- Agent Configuration $B \in \mathcal{B}$: A tuple specifying the agent "state". Configuration yieldability $C \rightarrow C'$: C' occurs from C in one step.
- Population Configuration $C \in C$: A tuple capturing the population state.
- Initially, every agent is assigned an *input sybmol*.
- An **Input Function** $I: X \to \mathcal{B}$ specifies the initial configuration for each agent.
- The output of the agent is found in the output message tape.
- The adversary chooses:

 - A pair of agents to interact (message exchange and application of γ)
 - initiator responder distinction.
- But fairly.
 - If $C \to C'$ and C appears infinite times, C' also appears infinite

- Agent Configuration $B \in \mathcal{B}$: A tuple specifying the agent "state". Configuration yieldability $C \rightarrow C'$: C' occurs from C in one step.
- Population Configuration $C \in C$: A tuple capturing the population state.
- Initially, every agent is assigned an *input sybmol*.
- An **Input Function** $I: X \to \mathcal{B}$ specifies the initial configuration for each agent.
- The output of the agent is found in the output message tape.
- The adversary chooses:
 - An agent to execute on internal step (application of δ).
 - A pair of agents to interact (message exchange and application of γ)
 - initiator responder distinction.
- But fairly.
 - If $C \to C'$ and C appears infinite times, C' also appears infinite

- Agent Configuration $B \in \mathcal{B}$: A tuple specifying the agent "state". Configuration yieldability $C \to C'$: C' occurs from C in one step.
- Population Configuration $C \in C$: A tuple capturing the population state.
- Initially, every agent is assigned an input sybmol.
- An Input Function I: X → B specifies the initial configuration for each agent.
- The output of the agent is found in the output message tape.
- The adversary chooses:
 - An agent to execute on internal step (application of δ).
 - \bullet A pair of agents to interact (message exchange and application of $\gamma)$
 - initiator responder distinction.
- But fairly.
 - If $C \to C'$ and C appears infinite times, C' also appears infinite times.

- Agent Configuration $B \in \mathcal{B}$: A tuple specifying the agent "state". Configuration yieldability $C \to C'$: C' occurs from C in one step.
- Population Configuration $C \in C$: A tuple capturing the population state.
- Initially, every agent is assigned an input sybmol.
- An Input Function I: X → B specifies the initial configuration for each agent.
- The output of the agent is found in the output message tape.
- The adversary chooses:
 - An agent to execute on internal step (application of δ).
 - \bullet A pair of agents to interact (message exchange and application of $\gamma)$
 - initiator responder distinction.
- But fairly.
 - If $C \to C'$ and C appears infinite times, C' also appears infinite times.

- **Execution**: a sequence of population configurations (C_1, C_2, \dots) such that $C_i \rightarrow C_{i+1}$.
- Computation: an infinite fair execution.
- PM protocols stabilize: $\exists i : \forall v \in V, \ \forall j \geq i$, agent v does not change his output tape in C_i .
- Stable computation of predicates $p: X^{|V|} \to \{0, 1\}$.
 - Symmetric predicates: $p(a) = 1 \iff p(\tilde{a}) = 1$, \tilde{a} : permutation of a.
- Space Complexity Classes:
 - PMSPACE(f(n)): Predicates computable by a PM protocol using
 - SSPACE(f(n)), SNSPACE(f(n)): Symmetric subsets of predicates

- **Execution**: a sequence of population configurations (C_1, C_2, \dots) such that $C_i \rightarrow C_{i+1}$.
- Computation: an infinite fair execution.
- PM protocols stabilize: $\exists i : \forall v \in V, \ \forall j \geq i$, agent v does not change his output tape in C_i .
- Stable computation of predicates $p: X^{|V|} \to \{0, 1\}$.
 - Symmetric predicates: $p(a) = 1 \iff p(\tilde{a}) = 1$, \tilde{a} : permutation of a.
- Space Complexity Classes:
 - PMSPACE(f(n)): Predicates computable by a PM protocol using O(f(n)) space.
 - SSPACE(f(n)), SNSPACE(f(n)): Symmetric subsets of predicates

- **Execution**: a sequence of population configurations (C_1, C_2, \dots) such that $C_i \rightarrow C_{i+1}$.
- Computation: an infinite fair execution.
- PM protocols stabilize: $\exists i : \forall v \in V, \ \forall i > i$, agent v does not change his output tape in C_i .
- Stable computation of predicates $p: X^{|V|} \to \{0,1\}.$
 - Symmetric predicates: $p(a) = 1 \iff p(\tilde{a}) = 1$, \tilde{a} : permutation of a.
- Space Complexity Classes:
 - PMSPACE(f(n)): Predicates computable by a PM protocol using O(f(n)) space.
 - SSPACE(f(n)), SNSPACE(f(n)): Symmetric subsets of predicates in SPACE(f(n)), NSPACE(f(n)).

- **Execution**: a sequence of population configurations (C_1, C_2, \dots) such that $C_i \rightarrow C_{i+1}$.
- Computation: an infinite fair execution.
- PM protocols stabilize: $\exists i : \forall v \in V, \ \forall i > i$, agent v does not change his output tape in C_i .
- Stable computation of predicates $p: X^{|V|} \to \{0,1\}.$
 - Symmetric predicates: $p(a) = 1 \iff p(\tilde{a}) = 1$, \tilde{a} : permutation of a.
- Space Complexity Classes:
 - PMSPACE(f(n)): Predicates computable by a PM protocol using O(f(n)) space.
 - SSPACE(f(n)), SNSPACE(f(n)): Symmetric subsets of predicates in SPACE(f(n)), NSPACE(f(n)).
 - SEM: Class of Semilinear predicates.

Dividing the predicate space

 Study of the impact of passive mobility in computational capabilities of distributed systems.

Symmetric Predicate Space

Goal: Divide predicate space according to predicate space complexity.

Assigning Unique Ids

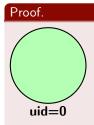
Theorem

Any PM protocol A can assume the existence of unique ids and knowledge of the population size, at the cost of $O(\log n)$ space.

Proof. A protocol \mathcal{I} for UID assignment.

- All agents start with uid = 0.
- **Effective** interactions only between agents with the same *uid*.
 - Initiator increments uid.
- \mathcal{I} does not terminate. Every time a *uid* is incremented, the agent broadcasts a message for \mathcal{A} to reinitiate computation.
- Agents ignore such messages with uid smaller than the last one (ignore late messages).
 - After uid = n 1, reinitiations stop, and $\mathcal A$ finally is executed correctly.

Theorem

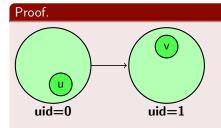


Theorem

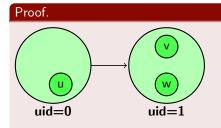
Any PM protocol A can assume the existence of unique ids and knowledge of the population size, at the cost of $O(\log n)$ space.

Proof.

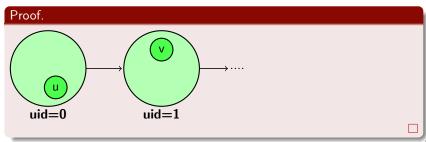
Theorem



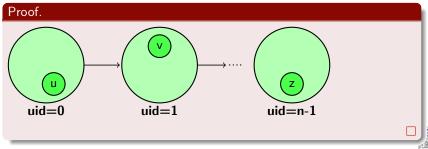
Theorem



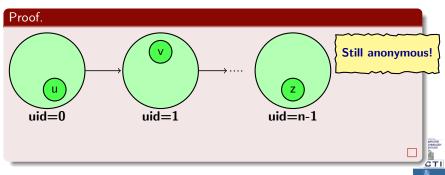
Theorem



Theorem



Theorem



Simulating a Deterministic Turing Machine

Theorem

 $\mathsf{SSPACE}(\Omega(\mathsf{n}\log\mathsf{n})) \subset \mathsf{PMSPACE}(\Omega(\log\mathsf{n}))$

Proof.

Input string $w \in SSPACE(\Omega(\log n))$ decided by a TM D, |w| = n.

- Each agent receives a symbol of w.
- Use I to align all agents.
- Use this alignment as a tape in a **modular** fashion.
 - The **local tape** of each agent provides $O(\log n)$ cells.
- Each time, one **active** agent carries the simulation.
- State transition rules of D embedded in the PM protocol.
- Head move → pass control + current state to neighbor.

Simulating a Deterministic Turing Machine

Theorem

 $\mathsf{SSPACE}(\Omega(n\log n))\subseteq \mathsf{PMSPACE}(\Omega(\log n))$

Proof.

Input string $w \in SSPACE(\Omega(\log n))$ decided by a TM D, |w| = n.

- Each agent receives a symbol of w.
- Use \mathcal{I} to align all agents.
- Use this alignment as a tape in a **modular** fashion.
 - The **local tape** of each agent provides $O(\log n)$ cells.
- Each time, one **active** agent carries the simulation.
- State transition rules of D embedded in the PM protocol.
- Head move → pass control + current state to neighbor.
- Simulation accepts a permutation of w.

Simulating a Deterministic Turing Machine

Theorem

 $\mathsf{SSPACE}(\Omega(\mathsf{n}\log\mathsf{n})) \subset \mathsf{PMSPACE}(\Omega(\log\mathsf{n}))$

Proof.

Input string $w \in SSPACE(\Omega(\log n))$ decided by a TM D, |w| = n.

- Each agent receives a symbol of w.
- Use I to align all agents.
- Use this alignment as a tape in a **modular** fashion.
 - The **local tape** of each agent provides $O(\log n)$ cells.
- Each time, one **active** agent carries the simulation.
- State transition rules of D embedded in the PM protocol.
- Head move → pass control + current state to neighbor.
- Simulation accepts a permutation of w.

Theorem

 $\mathsf{SNSPACE}(\Omega(\mathsf{n}\log\mathsf{n})) \subseteq \mathsf{PMSPACE}(\Omega(\log\mathsf{n}))$

Proof.

- Initial configuration C: all agents set output to reject.
- Use simulation of D.
- Non deterministic choice out of k possible.
- Exploit faireness of the adversary!
- Simulating branch N rejects: Reset population to C.
- N accepts: A good simulating branch starting from C exists.

Theorem

 $\mathsf{SNSPACE}(\Omega(\mathsf{n}\log\mathsf{n})) \subseteq \mathsf{PMSPACE}(\Omega(\log\mathsf{n}))$

Proof.

- Initial configuration C: all agents set output to reject.
- Use simulation of D.
- Non deterministic choice out of k possible.
- Exploit faireness of the adversary!
 - Pause simulation and wait for interaction.
 - Pick choice based on uid of the other participant.
- Simulating branch N rejects: Reset population to C.
- N accepts: A good simulating branch starting from C exists.

Theorem

 $\mathsf{SNSPACE}(\Omega(\mathsf{n}\log\mathsf{n})) \subseteq \mathsf{PMSPACE}(\Omega(\log\mathsf{n}))$

Proof.

- Initial configuration C: all agents set output to reject.
- Use simulation of D.
- Non deterministic choice out of k possible.
- Exploit faireness of the adversary!
 - Pause simulation and wait for interaction.
 - Pick choice based on uid of the other participant.
- Simulating branch N rejects: Reset population to C.
- N accepts: A good simulating branch starting from C exists.

Theorem

 $\mathsf{SNSPACE}(\Omega(\mathsf{n}\log\mathsf{n})) \subseteq \mathsf{PMSPACE}(\Omega(\log\mathsf{n}))$

Proof.

- Initial configuration C: all agents set output to reject.
- Use simulation of D.
- Non deterministic choice out of k possible.
- Exploit faireness of the adversary!
 - Pause simulation and wait for interaction.
 - Pick choice based on uid of the other participant.
- Simulating branch N rejects: Reset population to C.
- N accepts: A good simulating branch starting from C exists.
 - Simulation keeps reinitiating to C, until that branch is followed.

A Space Hierarchy

Theorem

For $h(n) \in \Omega(\log n)$ and recursive I(n), separated by a nondeterministically fully space constructible function g(n), with $h(n) \in \Omega(g(n))$ but $I(n) \notin \Omega(g(n))$, \exists language in PMSPACE(h(n)) - PMSPACE(l(n)).

- A unary seperation language has been shown to exist for NSPACE.
 - V. Geffert. Space hierarchy theorem revised.
- Unary languages are symmetric: NSPACE = SNSPACE.
- But when $h(n) \in \Omega(\log n) \to SNSPACE(h(n)) = PMSPACE(h(n))$.

A Computational Threshold

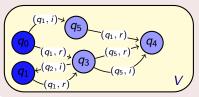
Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

Agent Configuration Graph: Describes the effects of interactions of protocol *A*, but ignores the *deterministic* internal computation.

Fixed for specific A, V.



A Computational Threshold

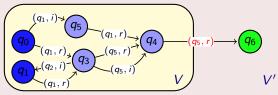
Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

Agent Configuration Graph: Describes the effects of interactions of protocol A, but ignores the deterministic internal computation.

- Fixed for specific A, V.
- Moving to V', |V'| > |V| adds new configurations k.
 - Accessible through interacting configurations (a, b) existing in V.
 - Since k does not exist in V, a and b cannot exist concurrently in V.



Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

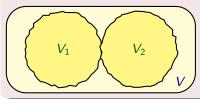
• Important Lemma: When $f(n) = o(\log \log n)$, $\exists V$ such that any configuration can occur in a subpopulation of size $\frac{|V|}{2}$.

Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

- Important Lemma: When $f(n) = o(\log \log n)$, $\exists V$ such that any configuration can occur in a subpopulation of size $\frac{|V|}{2}$.
- Partition V in V_1 , V_2 .

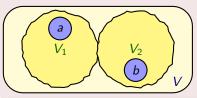


Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

- **Important Lemma:** When $f(n) = o(\log \log n)$, $\exists V$ such that any configuration can occur in a subpopulation of size $\frac{|V|}{2}$.
- Partition V in V_1 , V_2 .
- V_1 creates a, V_2 creates b.

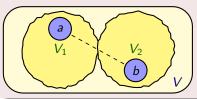


Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

- **Important Lemma:** When $f(n) = o(\log \log n)$, $\exists V$ such that any configuration can occur in a subpopulation of size $\frac{|V|}{2}$.
- Partition V in V_1 , V_2 .
- V_1 creates a, V_2 creates b.
- Interaction creates $k \to k$ not new in V'!

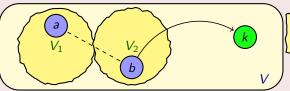


Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

- **Important Lemma:** When $f(n) = o(\log \log n)$, $\exists V$ such that any configuration can occur in a subpopulation of size $\frac{|V|}{2}$.
- Partition V in V_1 , V_2 .
- V_1 creates a, V_2 creates b.
- Interaction creates $k \to k$ not new in V'!



No new states in V'!.

Theorem

Predicate p: $\log N_a = t$, for some t is in PMSPACE($\log \log n$).

Proof.

- Agent v that received an a sets $x_v = 1$, otherwise $x_v = 0$.
- Agents u and v interact only if $x_u = x_v \neq 0$.
 - $x_u = x_u + 1$, $x_v = 0$.
- In parallel, a PP B checks whether $\exists u, v : x_u, x_v \ge 1$.
 - If so, set output to 0, otherwise 1
- *B* runs on **stabilizing inputs**.
 - D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semilinear.

Theorem

Predicate $p : \log N_a = t$, for some t is in PMSPACE($\log \log n$).

Proof.

- Agent v that received an a sets $x_v = 1$, otherwise $x_v = 0$.
- Agents u and v interact only if $x_{ii} = x_{ij} \neq 0$.
 - $x_{ij} = x_{ij} + 1$. $x_{ij} = 0$.
- In parallel, a PP B checks whether $\exists u, v : x_u, x_v \geq 1$.
 - If so, set output to 0, otherwise 1.
- B runs on stabilizing inputs.

Theorem

Predicate $p : \log N_a = t$, for some t is in PMSPACE($\log \log n$).

Proof.

- Agent v that received an a sets $x_v = 1$, otherwise $x_v = 0$.
- Agents u and v interact only if $x_{ii} = x_{ij} \neq 0$.
 - $x_{ij} = x_{ij} + 1$. $x_{ij} = 0$.
- In parallel, a PP B checks whether $\exists u, v : x_u, x_v \geq 1$.
 - If so, set output to 0, otherwise 1.
- B runs on stabilizing inputs.

Theorem

Predicate $p : \log N_a = t$, for some t is in PMSPACE($\log \log n$).

Proof.

- Agent v that received an a sets $x_v = 1$, otherwise $x_v = 0$.
- Agents u and v interact only if $x_u = x_v \neq 0$.
 - $x_u = x_u + 1$, $x_v = 0$.
- In parallel, a PP B checks whether $\exists u, v : x_u, x_v \ge 1$.
 - If so, set output to 0, otherwise 1.
- *B* runs on **stabilizing inputs**.
 - D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semilinear.

Theorem

Predicate $p : \log N_a = t$, for some t is in PMSPACE(log log n).

Proof.

- Agent v that received an a sets $x_v = 1$, otherwise $x_v = 0$.
- Agents u and v interact only if $x_{\mu} = x_{\nu} \neq 0$.
 - $x_{ij} = x_{ij} + 1$. $x_{ij} = 0$.
- In parallel, a PP B checks whether $\exists u, v : x_u, x_v > 1$.
 - If so, set output to 0, otherwise 1.
- B runs on stabilizing inputs.
 - D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semilinear.

- Whenever $x_v = x_v + 1$ for some v, there are at least 2^{x_v+1} a's in the population.
- $x_v \neq 0$ for only one $v \iff 2^{x_v+1}$.
- $Max(x_v) = \log N_a \le \log n \implies O(\log \log n)$ space.

$$x = \lfloor \log N_a \rfloor$$

$$x = 2$$

$$x = 1$$

$$x = 0$$

- Whenever $x_v = x_v + 1$ for some v, there are at least 2^{x_v+1} a's in the population.
- $x_v \neq 0$ for only one $v \iff 2^{x_v+1}$.
- $Max(x_v) = \log N_a \le \log n \implies O(\log \log n)$ space.

$$x = \lfloor \log N_a \rfloor$$

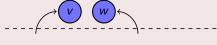
$$x = 2$$

$$x = 1$$

$$x = 0$$

- Whenever $x_v = x_v + 1$ for some v, there are at least 2^{x_v+1} a's in the population.
- $x_v \neq 0$ for only one $v \iff 2^{x_v+1}$.
- $Max(x_v) = \log N_a \le \log n \implies O(\log \log n)$ space.

$$x = \lfloor \log N_a \rfloor$$



$$x = 2$$

$$x = 0$$

- Whenever $x_v = x_v + 1$ for some v, there are at least 2^{x_v+1} a's in the population.
- $x_v \neq 0$ for only one $v \iff 2^{x_v+1}$.
- $Max(x_v) = \log N_a \le \log n \implies O(\log \log n)$ space.

$$x = \lfloor \log N_a \rfloor$$

$$x = 2$$

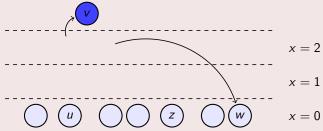
$$x = 1$$

- Whenever $x_v = x_v + 1$ for some v, there are at least 2^{x_v+1} a's in the population.
- $x_v \neq 0$ for only one $v \iff 2^{x_v+1}$.

I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. Spirakis

• $Max(x_v) = \log N_a \le \log n \implies O(\log \log n)$ space.

$$x = \lfloor \log N_a \rfloor$$



- Whenever $x_v = x_v + 1$ for some v, there are at least 2^{x_v+1} a's in the population.
- $x_v \neq 0$ for only one $v \iff 2^{x_v+1}$.
- $Max(x_v) = \log N_a \le \log n \implies O(\log \log n)$ space.

$$x = \lfloor \log N_a \rfloor$$

$$x = 2$$

$$x = 1$$

$$x = 0$$

Conclusions

Conclusions - Further Research

Our contribution:

- We have presented a new model to study passive mobility in interaction-based, distributed, anonymous systems.
- We have given a space hierarchy for functions $\Omega(\log n)$.
- We have proved an interesting threshold in $o(\log \log n)$.
 - Tight.

• Further research:

- Computational characterization between log log n and log n.
- Fault tolerance.
- Probabilistic assumptions & time complexity.
- Adversarial perspective.

Thank You!

