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Abstract

We explore the capability of a network of extremely limited computational entities to decide properties about
itself or any of its subnetworks. We consider that the underlying network of the interacting entities (devices,
agents, processes etc.) is modeled by an interaction graph that reflects the network’s connectivity. We
examine the following two cases: First, we consider the case where the input graph is the whole interaction
graph and second where it is some subgraph of the interaction graph given by some preprocessing on the
network. In each case, we devise simple graph protocols that can decide properties of the input graph. The
computational entities, that are called agents, are modeled as finite-state automata and run the same global
graph protocol. Each protocol is a fixed size grammar, that is, its description is independent of the size
(number of agents) of the network. This size is not known by the agents. We present two simple models
(one for each case), the Graph Decision Mediated Population Protocol (GDMPP) and the Mediated Graph
Protocol (MGP) models, similar to the Population Protocol model of Angluin et al., where each network
link (edge of the interaction graph) is characterized by a state taken from a finite set. This state can be used
and updated during each interaction between the corresponding agents. We provide some example protocols
and some interesting properties for the two models concerning the computability of graph languages in
various settings (disconnected input graphs, stabilizing input graphs). We show that the computational
power within the family of all (at least) weakly-connected input graphs is fairly restricted. Finally, we give
an exact characterization of the class of graph languages decidable by the MGP model in the case of complete
interaction graphs: it is equal to the class of graph languages decidable by a nondeterministic Turing Machine
of linear space that receives its input graph by its adjacency matrix representation.
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1. Introduction

Consider an application that allows users to make voice calls over the Internet by executing a software
agent. The software agents are organized in a peer-to-peer overlay network. Suppose that in order to
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achieve certain quality of service levels, statistical data have shown that each agent must have at most k
concurrent incoming voice-traffic flows. We assume that the software agents are quite limited: each agent
has a constant number of bits of memory and two agents can communicate only when they are required
to forward voice traffic. We also assume that agents have access to a global storage in which very limited
information can be stored. In this setting, software agents have no control over their interactions: users
come and go, and requests for voice calls are made by the users. We assume that the underlying pattern
of interactions guarantees a fairness condition on the interactions: every pair of agents in the network is
repeatedly allowed to exchange control information for their users to have voice calls.

Under these assumptions, there is a simple protocol ensuring that every agent eventually learns the
answer to whether the number of active incoming traffic flows surpasses k for any agent. Each agent stores
a counter (0, 1, . . . , k + 1, where k is a constant) signifying its knowledge about the previous number. The
global storage service stores 1 bit for each possible pair of interacting agents. Initially, all agents have their
counter set to 0 and each bit of the global storage is set to 1. When two agents interact, e.g., to forward
voice traffic, if the bit corresponding to this interaction is 1, then the receiving agent increases its counter
by one and the corresponding bit is set to 0. If the bit is 0, then nothing happens (the incoming flow has
been already counted). If the counter of any of the interacting agents reaches the value k + 1, then an alert
state is propagated to the population and eventually (after a finite number of interactions), all agents are
informed of the existence of a potential bottleneck in the network and can take appropriate actions.

Now consider the question of whether the overlay network is fully connected or whether it is partitioned.
Is there a protocol to answer these questions, without any assumptions about the size of the network? In this
work, we focus on the following question: what properties of the underlying network can be computed by
systems consisting of a population of computationally restricted, interacting entities? We are interested in the
levels of knowledge that such systems can achieve regarding their own properties and characteristics, in other
words, to what extent they can become self-aware. Such knowledge can be used to optimize the system’s
overall behavior w.r.t. resource usage, performance, etc., and to adapt to changing conditions concerning
internal changes (e.g., a topology change) and context changes (e.g., a modification of user behavior).

2. Previous Work

As Angluin et al. observed in [AAD+04], “Most work in distributed algorithms assumes that agents in a
system are computationally powerful, capable of storing nontrivial amounts of data and carrying out complex
calculations. But in systems consisting of massive amounts of cheap, bulk-produced hardware, or of small
agents that are tightly constrained by the systems they run on, the resources available at each agent may be
severely limited.” In the same work, they introduced the Population Protocol (PP) model, which captures
the notion of computation by a population of extremely limited communicating agents. In this model,
the system consists of a collection of agents, represented as finite-state machines. The agents exchange
information via pairwise interactions, which they are unable to predict or control. Via these interactions,
the system organizes its computation and provides complex behavior as a whole. In [AAD+06, AAER07],
the computational power of the model was studied and has been proved to be exactly the class of semilinear
predicates, consisting of all predicates definable by first-order logical formulas of Presburger arithmetic (see,
e.g., [GS66]). The capability of the model to decide graph properties of restricted interaction graphs was
explored in [AAC+05]. For introductory texts to the area of population protocols the interested reader is
referred to [AR07, Spi10, ÀCD+11, MCS11b].

In an attempt to enhance the basic model, a variation was proposed in [CMS09a], called the Mediated
Population Protocol (MPP) model, in which the population is also capable of storing constant size infor-
mation for each pairwise interaction. This extension is fitting for modeling more complex systems where
relations are formed between the interacting entities and the information generated concerning these rela-
tions is required in each interaction of the respective entities. A modern popular example are the various
social networks where the interacting entities are the users (e.g., friends on Facebook) and their interactions
generate information that characterize their relationship. The information concerning these relationships is
stored in the system and can be used in each interaction. Biological and artificial neural networks also con-
cern networks of interconnected simple processing elements that exhibit complex global behavior determined
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by the connections between them. These connections (synapses) can store parameters called “weights” that
influence the outcome of the computations. In [CMN+10], it was proven that, in complete graphs, the MPP
model is computationally equivalent to a NTM 1 of O(n2) space that computes symmetric predicates.

Several other extensions of the basic model have been proposed in the relevant literature to more accu-
rately reflect the requirements of practical systems. In the Community Protocol model of Guerraoui and
Ruppert [GR09] each agent has its own unique id and can store up to a constant number of other agents
ids. Agents are only allowed to compare ids, that is, no other operation on ids is permitted. The community
protocol model was proven to be extremely strong: the corresponding class consists of all symmetric pred-
icates in NSPACE(n log n), where n is the community size. The Passively mobile Machines (PM ) model
[CMN+11a, CMN+11b] made the assumption that each agent instead of being an automaton is a Turing
Machine with unbounded memory. Then the authors studied computations upper-bounded by plausible
space limitations. They focused on complete interaction graphs and established log logn and logn as two
important computability thresholds: at the former semilinearity ends and at the latter begins the possibility
to arrange the whole population into a distributed TM.

In a slightly different direction, the Probabilistic Population Protocol model was proposed [AAD+06],
in which the scheduler selects randomly and uniformly the next pair to interact. This random scheduling
assumption allowed the study of performance (see e.g. [AAE08]). A generic definition of probabilistic
schedulers along with a collection of new fair schedulers were provided in [CDF+09]. There the authors
showed the need for the protocols to adapt when natural modifications of the mobility pattern occur was
emphasized. [BCC+09, CS08] considered a huge population hypothesis (population going to infinity), and
studied the dynamics, stability and computational power of probabilistic population protocols by exploiting
the tools of continuous nonlinear dynamics.

A lot of similarities can be observed between this work and the one in [GMM04] in which the recogni-
tion problem is studied. The problem regards the computation of topological information on a network of
processes. The authors explore the characterization of graph classes using the notion of local computation
which resembles the notion of interactions in PPs and assuming implicit termination (not all nodes may
be aware that a termination state has been reached) which also resembles of the PPs’ output stabilization
behavior. One of the differences of this work with ours (and PPs in general) is that each process in [GMM04]
can be much stronger computationally (w.r.t. memory) than a finite-state automaton which is the case for
our models’ agents.

The notion of self-awareness in distributed systems has been studied in the context of self-organization
and autonomic systems. Self-stabilization was one of the first self-∗ properties discussed in the context
of distributed systems and was introduced by Dijkstra [Dij74]. Since then, significant progress has been
made in self-stabilization [Dol00] and in self-∗ properties in general. In [GMK02], the authors examine the
feasibility of using architectural constraints as the basis for the specification, design and implementation of
self-organizing architectures for distributed systems. In an attempt to provide a roadmap for further research,
in [HKLPR03], the authors try to identify the new challenges of Context-Aware-Services (CAS) management
in ubiquitous environments, where the necessity of self-management is urgent. In [VvS03], following a more
experimental approach, the authors proposed an epidemic protocol based on the simple Newscast protocol
for managing routing tables of DHT-based peer-to-peer networks in a completely distributed and scalable
way, with no need for external administration and with very high fault-tolerance.

3. Our Results - Roadmap

In Section 4, we give a formal definition of the GDMPP model in which we consider that the interaction
graph itself is the input graph of the protocol. In Section 5, we focus on weakly connected interaction
graphs. We prove that the class of computable graph properties is closed under complement, union, and
intersection operations. Node and edge parity, bounded out-degree by a constant, existence of a node with

1As usual in CS literature, we abbreviate a “Turing Machine” by “TM” and by “NTM” when we want to emphasize that
the TM is Nondeterministic.
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more incoming than outgoing neighbors, and existence of some directed path of length k = O(1) are some
examples of properties whose computability is proven. We also provide a protocol computing the graph
language 2CYCLE, consisting of all weakly connected interaction graphs that contain some 2-cycle. Then,
in Section 5.4 the existence of symmetry in two specific interaction graphs is revealed and is exploited to
prove that if we restrict our protocols to stabilize their states, then 2CYCLE is not computable. In Section
10, we focus on the universe of all possible interaction graphs, containing also the disconnected ones. In this
case (see Theorem 13), we prove that any nontrivial graph language (we exclude both the empty language
and its complement) is not computable by the GDMPP model. As a corollary we get that GDMPPs cannot
compute connectivity (Corollary 2). In Section 6, we try to approach the exact computational power of the
GDMPP model by focusing on the computational capabilities of MPPs (which are practically a more general
version of GDMPPs since they also accept input) on connected graphs. There we allow labels on the vertices
of the input graph taken from a finite set and assigned by the network initialization function and we show
that in terms of predicates on the multisets of labels only semilinear predicates can be computed. In Section
7, we additionally allow disconnected interaction graphs and arrive at a general impossibility result.

In Section 8, we formalize the case where protocols perform computations in subgraphs of their inter-
action graph denoted by some network initialization function and provide an example protocol illustrating
the computation of the extended model which we name MGP model. We then (Section 9) present some
fundamental properties of the new model. In particular, we extend (Sec. 9.1) the MGP model to allow the
input graph to oscillate for a finite number of steps. This extension then allows us (Sec. 9.2) to compose
protocols. In Sec. 10, we present a protocol (Sec. 10.1) that decides whether the input graph is connected
and we then extend this idea (Sec. 10.2) and show that the new model is able to compute properties of
disconnected input graphs, something that neither the PP nor the GDMPP model are capable of. In Sec. 11,
we give an exact characterization of the computational power of the MGP model, which is the class of all
graph properties decidable by a NTM of linear space that takes as input the adjacency matrix of the input
graph. Finally, in Sec. 12, we conclude and discuss some future research directions.

4. The Graph Decision Mediated Population Protocol model

A Graph Decision Mediated Population Protocol (GDMPP) A consists of a binary output alphabet Y =
{0, 1}, a finite set of agent states Q, an output function O : Q → Y mapping agent states to outputs, a finite
set of edge states S, and a transition function δ : Q×Q× S → Q×Q× S. If δ(a, b, s) = (a′, b′, s′) we call
(a, b, s) → (a′, b′, s′) a transition, and we define δ1(a, b, s) = a′, δ2(a, b, s) = b′ and δ3(a, b, s) = s′.

We assume that all agents are initially in an initial agent state q0 ∈ Q and all edges in an initial edge
state s0 ∈ S. A graph universe (or graph family) is any set of interaction graphs. We denote by H the graph
universe consisting of all possible interaction graphs of any finite number of nodes greater or equal to 2 (we
do not allow the empty graph, the graph with a unique node and infinite graphs) and by G the subset of H
containing the weakly connected ones. All the following definitions hold w.r.t. some fixed graph universe
U . A graph language L is a subset of U containing interaction graphs that possibly share some common
property., e.g. L = {G ∈ U | G contains a directed hamiltonian path}. A graph language L is said to be
nontrivial if L 6= ∅ and L 6= U .

A GDMPP runs on an interaction graph G = (V,E), where V is a population of |V | = n agents and E is
an irreflexive binary relation on V . The graph on which the protocol runs is considered as the input graph
of the protocol. The input graph of a GDMPP may be any G ∈ U .

A network configuration (or simply configuration) is a mapping C : V ∪E → Q ∪ S specifying the agent
state of each agent in the population and the edge state of each edge in the interaction graph. Let C and
C ′ be network configurations, and let u, υ be distinct agents. We say that C goes to C ′ via encounter
e = (u, υ), denoted C

e→ C ′, if C ′(u) = δ1(C(u), C(υ), C(e)), C ′(υ) = δ2(C(u), C(υ), C(e)), C ′(e) =
δ3(C(u), C(υ), C(e)), and C ′(z) = C(z) for all z ∈ (V −{u, υ})∪ (E−{e}). Encounters are ordered, that is,
the participating agents have distinct roles in each interaction. We call u the initiator and υ the responder
of the encounter (interaction). We say that C can go to C ′ in one step, denoted C → C ′, if C

e→ C ′ for some

encounter e ∈ E. We write C
∗→ C ′ if there is a sequence of configurations C = C0, C1, . . . , Ct = C ′, such

that Ci → Ci+1 for all i, 0 ≤ i < t, in which case we say that C ′ is reachable from C.

4



An execution is a finite or infinite sequence of network configurations C0, C1, C2, . . ., where C0 is an
initial configuration and Ci → Ci+1, for all i ≥ 0. The interactions are chosen by an adversary who is not a
part of the protocol and can make any scheduling assumption on the interaction pattern as long as it keeps
the execution fair. Fairness is a restriction imposed on the adversary to prevent it from avoiding a possible
step forever. There are various notions of fairness for the protocols we study. In [FJ06], various fairness
conditions are defined for population protocols, such as strong global and local fairness as well as their weak
variations. In this work, we use the notion of strong global fairness, according to which an infinite execution
is fair if for every pair of configurations C and C ′ such that C → C ′, if C occurs infinitely often in the
execution, then so does C ′. A computation is an infinite fair execution.

At any point during the execution of a GDMPP, each agent’s state determines its output at that time.
The output of any agent u under configuration C is O(C(u)). Note also that the code of any GDMPP is of
constant size (since Q and S are finite) and, thus, can be stored in each agent (device) of the population.
Due to the constant size descriptions of GDMPPs, the protocols we study are uniform (independent of the
population size) and anonymous (agents can’t store unique identifiers).

Definition 1. Let L be a graph language consisting of all G ∈ U for which, in any computation of a GDMPP
A on G, all agents eventually output 1. Then L is the language stably recognized by A. A graph language
is said to be stably recognizable by the GDMPP model (also called GDMPP -recognizable) if some GDMPP
stably recognizes it.

Thus, any protocol stably recognizes the graph language consisting of those graphs on which the protocol
always answers “accept”, i.e. eventually all agents output the value 1 (possibly the empty language).

Definition 2. We say that a GDMPP A stably decides a graph language L ⊆ U (or equivalently a predicate
pL : U → {0, 1} defined as pL(G) = 1 iff G ∈ L) if for any G ∈ U and any computation of A on G, all agents
eventually output 1 if G ∈ L and all agents eventually output 0 if G /∈ L. A graph language is said to be
stably decidable by the GDMPP model (also called GDMPP -decidable) if some GDMPP A stably decides
it.

A GDMPP A has stabilizing states if in any computation of A, after a finite number of interactions, the
states of all agents stop changing. Alternatively, we call A a stabilizing output graph GDMPP.

In some cases, a protocol, instead of stably deciding a language L, may provide a different kind of
guarantee. For example, whenever it runs on some G ∈ L, it may forever remain in configurations where at
least one agent is in state a, and when G′ /∈ L no agent will remain in state a. To formalize this, we say
that a GDMPP A guarantees t : Q∗ → {0, 1} w.r.t. L ⊆ U if, for any G ∈ U , any computation of A on G

eventually reaches a configuration C, s.t. for all C ′, where C
∗→ C ′, it holds that t(C ′) = t(C) = 1 if G ∈ L

and t(C ′) = t(C) = 0, otherwise.2

5. Weakly Connected Graphs

In this section, we study the case in which the universe of input graphs does not contain disconnected
graphs. Thus, here the graph universe is G and, thus, a graph language can only be a subset of G. The main
reason for selecting this specific universe for devising our protocols is that, if we also allow disconnected
graphs, then, as we shall see, it can be proven that no graph language is stably decidable.

5.1. Example Protocol

To illustrate our model we here present an example protocol that stably decides the graph language
Pk = {G ∈ G | G has at least one directed path of at least k edges} for any k > 1.

2We use the standard Q∗ (Kleene star) notation for denoting the set of finite-length strings of elements in Q. By assuming
an ordering on V we can define configurations as strings from Q∗.
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Protocol 1 DirPath

1: Q = {q0, q1, 1, . . . , k}, S = {0, 1},
2: O(k) = 1, O(q) = 0, for all q ∈ Q− {k},
3: δ:

(q0, q0, 0) → (q1, 1, 1)

(q1, x, 1) → (x− 1, q0, 0), if x ≥ 2

→ (q0, q0, 0), if x = 1

(x, q0, 0) → (q1, x+ 1, 1), if x+ 1 < k

→ (k, k, 0), if x+ 1 = k

(k, ·, ·) → (k, k, ·)
(·, k, ·) → (k, k, ·)

Theorem 1. (Directed Path of Constant Length) Protocol 1 stably decides the graph language Pk =
{G ∈ G | G has at least one directed path of at least k edges} for any k > 1.

Proof. Intuitively, the protocol expands noncommunicating active paths (they can interact but the corre-
sponding transitions do nothing, that’s why they are not appearing in δ). The head of each path counts its
length. If the length of an active path ever becomes equal to k, then a state giving 1 as output is propagated.
Note that, to avoid getting stuck, the protocol keeps backtracking and even completely releasing the active
paths. Fairness condition ensures that if a path of length at least k exists, then DirPath will eventually find
it.

5.2. Properties of GDMPPs

We provide some properties of the GDMPP model that will prove useful in showing the stably decidability
of various graph languages.

Theorem 2. The class of stably decidable graph languages is closed under complement, union and intersec-
tion operations.

Proof. First we show that for any stably decidable graph language L its complement L is also stably decidable.
From definition of stable decidability there exists GDMPP AL that decides L. Thus, for any G ∈ G and any
computation of AL on G all agents eventually output 1 if G ∈ L and 0 otherwise. By complementing the
output map OA of A we obtain a new protocol A, with output map defined as OA(q) = 1 iff OA(q) = 0, for
all q ∈ QA = QA, whose agents eventually output 1 if G /∈ L and 0 otherwise, thus stably deciding L.

Now we show that for any stably decidable graph languages L1 and L2, L3 = L1 ∪ L2 is also stably
decidable. Let A1 and A2 be GDMPPs that stably decide L1 and L2, respectively (we know their existence).
We let the two protocols operate in parallel, i.e. we devise a new protocol A3 whose agent and edge states
consist of two components, one for protocol A1 and one for A2. Let O1 and O2 be the output maps of the
two protocols. We define the output map O3 of A3 as O3(q, q

′) = 1 iff at least one of O1(q) and O2(q
′)

equals to 1, for all q ∈ QA1 and q′ ∈ QA2 . If G ∈ L3 then at least one of the two protocols has eventually
all its agent components giving output 1, thus A3 correctly answers “accept”, while if G /∈ L3 then both
protocols have eventually all their agent components giving output 0, thus A3 correctly answers “reject”.
We conclude that A3 stably decides L3 which proves that L3 is stably decidable.

By defining the output map O3 of A3 as O3(q, q
′) = 1 iff O1(q) = O2(q

′) = 1, for all q ∈ QA1 and
q′ ∈ QA2 , and making the same composition as before, it is easy to see that in this case A3 stably decides
the intersection of L1 and L2.

In some cases it is not easy to devise a protocol that respects the predicate output convention (the
predicate output convention was defined in [AAD+04] and simply requires all agents to eventually agree on
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the correct output value). In such cases, we can use the following variation of the Composition Theorem
(Theorem 6) of [CMS09a] that facilitates the proof of existence of GDMPP protocols that stably decide a
language.

Theorem 3. If there exists a GDMPP A with stabilizing states that w.r.t. to a language L guarantees a
semilinear predicate, then L is GDMPP-decidable.

Proof. Immediate from the proof of the Theorem 6 of [CMS09a]. A can be composed with a provably existing
MPP B whose stabilizing inputs are A’s agent states to give a new GDMPP C that stably decides L w.r.t.
the predicate output convention. Note that B is in fact a GDMPP, since its stabilizing inputs are not real
inputs (GDMPPs do not have inputs). It simply updates its state components by taking also into account
the eventually stabilizing state components of A. Thus, their composition, C, is also a GDMPP.

5.3. Decidable Graph Languages

We here show the stable decidability of certain graph languages by providing high-level descriptions of
protocols and proving their correctness.

Theorem 4. (Node Parity) The graph languages Neven = {G ∈ G | |V (G)| is even} and Nodd = Neven

are stably decidable.

Proof. Assume that the initial agent state is 1. Then there is a protocol in [AAD+04] that decides Neven

in the case where G is complete. But, according to Theorem 4 in page 295 of [AAD+04], there must exist
another protocol that decides Neven in the general case, i.e., in any graph G ∈ G. Thus, Neven is decidable by
the population protocol model that does not use inputs and whose output alphabet is {0, 1}, and since this
model is a special case of the GDM model, Neven is decidable. Moreover, since the class of decidable graph
languages is closed under complement (see Theorem 2), it follows that Nodd = Neven is also decidable.

Theorem 5. (Edge Parity) The graph languages Eeven = {G ∈ G | |E(G)| is even} and Eodd = Eeven are
stably decidable.

Proof. By exploiting the closure under complement, it suffices to prove that Eeven is decidable by presenting
a GDMPP that decides it. The initial agent state is (0, 0) consisting of two components, where the first one
is the data bit and the second the live bit following the idea of the parity protocol of [AAD+06]. An agent
with live bit 0 is said to be sleeping and an agent with live bit equal to 1 is said to be awake. The initial
edge state is 1, which similarly means that all edges are initially awake. We divide the possible interactions
in the following four groups (we also present their effect):

1. Both agents are sleeping and the edge is awake:

• The initiator wakes up, both agents update their data bit to 1, and the edge becomes sleeping.

2. Both agents are sleeping and the edge is sleeping:

• Nothing happens.

3. One agent is awake and the other is sleeping:

• The sleeping agent becomes awake and the awake sleeping. Both set their data bits to the modulo
2 sum of the data bit of the agent that was awake before the interaction and the edges state, and
if the edge was awake becomes sleeping.

4. Both agents are awake:

• The responder becomes sleeping, they both set their data bits to the modulo 2 sum of their data
bits and the edges state, and if the edge was awake becomes sleeping.
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It is easy to see that the initial modulo 2 sum of the edge bits (initially, they are all equal to 1) is
preserved and is always equal to the modulo 2 sum of the bits of the awake agents and the awake edges. The
first interaction creates the first awake agent and from that time there is always at least one awake agent
and eventually remains only one. Moreover, all edges eventually become sleeping which simply means that
eventually the one remaining awake agent contains the modulo 2 sum of the initial edge bits which is 0 iff the
number of edges is even. All the other agents are sleeping, which means that they copy the data bit of the
awake agent, thus eventually they all contain the correct data bit. The output map is defined as O(0, ·) = 1
(meaning even edge parity) and O(1, ·) = 0 (meaning odd edge parity).

Theorem 6. (Constant Neighbors - Some Node) The graph language Nout
k = {G ∈ G | G has some

node with at least k outgoing neighbors} is stably decidable for any k = O(1) (the same holds for N
out

k ).

Proof. Initially all agents are in q0 and all edges in 0. The set of agent states is Q = {q0, . . . , qk} the set of
edge states is binary and the output function is defined as O(qk) = 1 and O(qi) = 0 for all i ∈ {0, . . . , k−1}.
We now describe the transition function. In any interaction through an edge in state 0, the initiator visits an
unvisited outgoing edge, so it marks it by updating the edge’s state to 1 and increases its own state index by
one, e.g. initially (q0, q0, 0) yields (q1, q0, 1), and, generally, (qi, qj , 0) → (qi+1, qj , 1), if i+ 1 < k and j < k,
and (qi, qj , 0) → (qk, qk, 1), otherwise. Whenever two agents meet through a marked edge they do nothing,
except for the case where only one of them is in the special alert state qk. If the latter holds, then both go
to the alert state, since in this case the protocol has located an agent with at least k outgoing neighbors.
To conclude, all agents count their outgoing edges and initially output 0. Iff one of them marks its k-th
outgoing edge, both end points of that edge go to an alert state qk that propagates to the whole population
and whose output is 1, indicating that G belongs to Nout

k .

Note that N
out

k contains all graphs that have no node with at least k = O(1) outgoing neighbors, in other
words, all nodes have fewer than k outgoing edges, which is simply the well-known bounded by k out-degree
predicate. The same statement for population protocols appears as Lemma 3 in [AAC+05].

Theorem 7. (Constant Neighbors - All Nodes) The graph language Kout
k = {G ∈ G | Any node in G

has at least k outgoing neighbors} is stably decidable for any k = O(1) (the same holds for K
out

k ).

Proof. Note, first of all, that another way to think of Kout
k is Kout

k = {G ∈ G | No node in G has less than
k outgoing neighbors}, for some k = O(1). The protocol we describe is similar to the one described in the
proof of Theorem 6. The only difference is that when an agent counts its k-th outgoing neighbor as the
initiator of an interaction, it goes to the special alert state qk, but the alert state is not propagated (e.g. the
responder of this interaction keeps its state). It follows that eventually any node that has marked at least k
outgoing edges will be in the alert state, while any other node that has less than k outgoing edges will be in
some state qi, where i < k. Clearly the protocol has stabilizing states and provides the following semilinear
guarantee:

• If G /∈ Kout
k then at least one agent remains in some state qi, where i < k.

• If G ∈ Kout
k no such state remains.

Thus, Theorem 3 applies, implying that there exists some GDMPP stably deciding Kout
k w.r.t. the

predicate output convention. Thus, both Kout
k and K

out

k are stably decidable and the proof is complete.

Theorem 8. (Compare Incoming and Outgoing Neighbors) The graph language Mout = {G ∈ G | G
has some node with more outgoing than incoming neighbors} is stably decidable (the same holds for Mout).

Proof. Consider the following protocol: Initially all agents are in state 0 which is the equality state. An
agent can also be in state 1 which is the more-outgoing state. Note that the latter state essentially reflects
the agent’s knowledge about the number of outgoing edges being larger than the number of incoming edges
by a constant (here 1). That is because agents cannot keep track of arbitrarily large differences. Initially all
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edges are in state s0 and S contains also o, i and b, where state o means that the edge has been used by the
protocol only as outgoing so far, i means only as incoming and b is for “both”. Any agent always remembers
if it has seen so far more outgoing edges or the same number of incoming and outgoing edges. So, if it is in
equality state and is the initiator in an interaction where the edge has not been used at all (state s0) or has
been used only as an incoming edge (state i), which simply means that only the responder has counted it,
then the agent goes to the more-outgoing state and updates the edge accordingly to remember that it has
counted it. Similarly, if an agent in the more-outgoing state is the responder of an interaction and the edge
is in one of the states s0 or o, then it goes to the equality state and updates the edge accordingly. If we view
the interaction from the edge’s perspective, then we distinguish the following cases:

1. The edge is in state s0. Both the initiator and the responder can use it. If only the initiator uses it
(both initiator and responder in equality state), then the edge goes to state o. If only the responder
uses it (both in more-outgoing state) then the edge goes to state i. If both use it (initiator in equality
and responder in more-outgoing) then it goes to state b. If no one uses it it remains in s0.

2. The edge is in state o. The initiator cannot use it, since it has already counted it. If the responder is
in more-outgoing state, then it counts it and goes to equality state, thus the edge goes to state b. If,
instead, it is in the equality state, the edge remains in state o.

3. The edge is in state i. The responder cannot use it. If the initiator is in equality state, then it counts
it, thus the edge goes to state b. If, instead, it is in the more-outgoing state, the edge remains in state
i.

4. The edge is in state b. Both the initiator and the responder have used it, thus nothing happens.

The equality state outputs 0 and the more-outgoing state outputs 1. If there exists a node with more outgoing
edges, then it will eventually remain in the more-outgoing state giving 1 as output, otherwise all nodes will
eventually remain in equality state, thus giving 0 as output. Computing that at least one more-outgoing
state eventually remains is semilinear and the protocol, obviously, has stabilizing states, thus Theorem 3
applies and we conclude that Mout is stably decidable. Closure under complement implies that Mout is also
stably decidable.

Remark 1. By symmetry, the corresponding languages N in
k , N

in

k , Kin
k and K

in

k concerning incoming neigh-
bors, Min = {G ∈ G | G has some node with more incoming than outgoing neighbors} and M in are also
stably decidable.

We now present a GDMPP that stably decides the graph language 2CYCLE = {G ∈ G | G has at least
two nodes u, υ s.t. both (u, υ), (υ, u) ∈ E(G) (in other words, G has at least one 2-cycle)} for any at least
weakly connected G that has at least two nodes.

The state of an agent consists of two components, a live bit and a counter. The live bit is either l or t
meaning leader (awake) and nonleader (asleep), respectively. The counter takes integer values from 0 to 2
inclusive. The state of an edge is 0 or 1 which are interpreted as inactive and active, respectively. Intuitively,
the counter of an agent counts the number of active edges incident to it. Initially, all agents are leaders and
their counters are set to 0 and all edges are inactive. The output of an agent is the output of its counter,
where O(0) = O(1) = 0 and O(2) = 1.

We describe now the transition function of the protocol. When a leader with zero counter interacts as
the initiator with an agent with zero counter via an inactive edge, the initiator becomes a nonleader, the
responder becomes a leader, both set their counters to 1, and the edge becomes active. When a nonleader
with zero counter initiates an interaction with a leader with zero counter via an inactive edge, the agents
swap their live bits. When a leader with counter 1 initiates an interaction with a nonleader with counter 1
via an inactive edge, the agents increase their counters by one and swap their live bits and the edge becomes
active. When a leader and a nonleader with counters 2 interact via an active edge, they swap their live bits.
All other interactions via active edges decrease the counters of both agents by one and deactivate the edge
and if both agents were leaders, the initiator becomes a nonleader.

An active subgraph is a weakly connected subgraph of the interaction graph induced by active edges.

Lemma 1. The counter component of an agent is always equal to the number of active edges incident to it.
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Proof. Initially all counters are zero. Whenever an inactive edge is activated, both endpoints increase their
counters by one and whenever an active edge is deactivated, both endpoints decrease their counters by
one.

Lemma 2. Counters do not overflow.

Proof. If the counter of an agent is zero, there is no interaction that decreases it (the only transition that
decreases it applies if the edge is active, which is never the case with 0 counter) and if it is equal to 2, there
is no interaction that increases it (simply inspect the transition function).

Lemma 3. By ignoring the directions of the edges, active subgraphs are either lines or cycles.

Proof. By Lemma 1 the counter of an agent is equal to the number of active edges incident to it and by
Lemma 2 its value is at most 2. Consequently, any agent of an active subgraph has at most two neighbors
and also it must have at least one for the subgraph to be connected.

Lemma 4. If (l, 2) and (t, 2) appear at the endpoints of an active (subgraph which is a) 2-cycle, the config-
uration of the 2-cycle remains forever the same up to swaps of the live bits.

Proof. Immediate from the transition function.

Lemma 4 establishes that active 2-cycles are stable. Moreover, it is clear that the endpoints of such a
2-cycle forever output 1. Note, however, that (l, 2) and (t, 2) may also appear in active subgraphs that are
not 2-cycles. The next lemma proves that active subgraphs that are not 2-cycles are unstable in the sense
that they will eventually be eliminated.

Lemma 5. In every active subgraph that is not a 2-cycle it is always possible that an active edge is eventually
deactivated.

Proof. By Lemma 3, any active subgraph is either a line or a cycle. If the active subgraph is a line, then its
endpoints have counters 1 and all other nodes have counters 2. So there is always a transition between an
endpoint and its neighbor that deactivates the corresponding edge. If the active subgraph is a cycle, then all
nodes have counters equal to 2 and the only case that this might be stable would be to have a cycle of even
length with alternating (l, 2)s and (t, 2)s. However, even in this case, an interaction between them swaps the
live bits and eventually two (l, 2)s or two (t, 2)s interact and an edge is deactivated.

Lemma 6. If (the interaction graph) G /∈ 2CYCLE, then eventually a unique leader remains.

Proof. No active 2-cycle is ever formed (which, by Lemmas 4 and 5 is the only possible stable active sub-
graph), the leaders keep wondering around (even by forming unstable active graphs that will eventually be
eliminated) and whenever two of them meet (and only then) one of them becomes a nonleader.

Lemma 7. If G ∈ 2CYCLE, eventually the output stabilizes with at least two agents giving 1 as output and
if G /∈ 2CYCLE, all agents eventually output 0.

Proof. If there is a 2-cycle, then at least one leader will remain wondering around since only one leader is
eliminated after each interaction between (wondering) leaders. Given such a leader an active 2-cycle will
eventually be formed and, by Lemma 4, both its endpoints will forever output 1. Eventually any leader,
in general, either remains the unique leader with counter less than 2 or forms an active 2-cycle, which
implies that eventually all nonleaders that are not part of an active 2-cycle will have maximum counter value
1 (consequently their output will stabilize to 0 and the same will hold for the unique wondering leader).
Finally, if there is no 2-cycle, then by Lemma 6 a unique leader eventually remains, all 2 counters are
eventually eliminated (see Lemma 5), and, from that point on, no counter can become 2 again.

Theorem 9. The above GDMPP stably decides 2CYCLE.

Proof. Lemma 7 and the fact that the predicate (N1 ≥ 1) is semilinear, where N1 denotes the number of 1s
in the GDMPP’s output assignment, satisfy the preconditions of Theorem 3 thus implying that 2CYCLE is
GDMPP-decidable.
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5.4. An Impossibility Result

Now we are about to prove that a specific graph language cannot be stably decided by GDMPPs with
stabilizing states. First we state and prove a useful lemma.

(a) Graph G (b) Graph G′

Figure 1: G ∈ 2CYCLE and G′ /∈ 2CYCLE.

Lemma 8. For any GDMPP A and any computation (infinite fair execution) C0, C1, C2, . . . of A on G
(Figure 1(a)) there exists a computation C ′

0, C
′
1, C

′
2, . . . , C

′
i, . . . of A on G′ (Figure 1(b)) s.t.

Ci(υ1) = C ′
2i(u1) = C ′

2i(u3)

Ci(υ2) = C ′
2i(u2) = C ′

2i(u4)

Ci(e1) = C ′
2i(t1) = C ′

2i(t3)

Ci(e2) = C ′
2i(t2) = C ′

2i(t4)

for any finite i ≥ 0.

Proof. The proof is by induction on i. We assume that initially all nodes are in q0 and all edges in s0 (initial
states). So the base case (for i = 0) holds trivially. Now we make the following assumption: Whenever the
scheduler of A on G (call it S1) selects the edge e1 we assume that the scheduler, S2, of A on G′ takes two
steps; it first selects t1 and then selects t3. Whenever S1 selects the edge e2, S2 first selects t2 and then t4.

Formally, if Ci−1
e1→ Ci then C ′

2(i−1)

t1→ C ′
2i−1

t3→ C ′
2i and if Ci−1

e2→ Ci then C ′
2(i−1)

t2→ C ′
2i−1

t4→ C ′
2i for every

finite i ≥ 1. Obviously, S2 is not a fair scheduler so to be able to talk about computation we only require
this predetermined behavior to be followed by S2 for a finite number of steps. After this finite number of
steps, S2 goes on arbitrarily but in a fair manner.

Now assume that all conditions are satisfied for some finite step i (inductive hypothesis). We will prove
that the same holds for step i+ 1 to complete the proof (inductive step). There are two cases:

1. Ci
e1→ Ci+1 (i.e. in step i + 1 S1 selects the edge e1): Then we know that S2 first selects t1 and

then t3 (in its corresponding steps 2i + 1 and 2i + 2). That is, its first transition is C ′
2i

t1→ C ′
2i+1

and its second is C ′
2i+1

t3→ C ′
2(i+1). But from the inductive hypothesis we know that C ′

2i(u1) = Ci(υ1),

C ′
2i(u2) = Ci(υ2) and C ′

2i(t1) = Ci(e1) which simply means that interaction e1 on G has the same effect
as interaction t1 on G′ (u1 has the same state as υ1, u2 as υ2 and t1 as e1). Thus, C

′
2i+1(u1) = Ci+1(υ1),

C ′
2i+1(u2) = Ci+1(υ2) and C ′

2i+1(t1) = Ci+1(e1). Moreover, in this step t3 and both its endpoints do not
change state (since the interaction concerned t1), thus C

′
2i+1(u3) = C ′

2i(u3) = Ci(υ1) (the last equation
comes from the inductive hypothesis), C ′

2i+1(u4) = C ′
2i(u4) = Ci(υ2) and C ′

2i+1(t3) = C ′
2i(t3) = Ci(e1).

When in the next step S2 selects t3, t1 and both its endpoints do not change state, thus C ′
2(i+1)(u1) =

C ′
2i+1(u1) = Ci+1(υ1), C

′
2(i+1)(u2) = C ′

2i+1(u2) = Ci+1(υ2) and C ′
2(i+1)(t1) = C ′

2i+1(t1) = Ci+1(e1).

Now let’s see what happens to t3 and its endpoints. Before the interaction the state of u3 is Ci(υ1), the
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state of u4 is Ci(υ2) and the state of t3 is Ci(e1), which means that, in C ′
2(i+1), u3 has gone to Ci+1(υ1),

u4 to Ci+1(υ2) and t3 to Ci+1(e1). Finally, t2 and t4 have not participated in any of the two interactions
of S2 and thus they have maintained their states, that is C ′

2(i+1)(t2) = C ′
2i(t2) = Ci(e2) = Ci+1(e2)

(the last two equations follow from the inductive hypothesis and the fact that, in step i+1, S1 selects
e1 which means that e2 maintains its state, respectively), and similarly C ′

2(i+1)(t4) = Ci+1(e2).

2. Ci
e2→ Ci+1 (i.e. in step i+ 1 S1 selects the edge e2): This case is symmetric to the previous one.

Let now A be a GDMPP that stably decides the graph language 2CYCLE. So for any computation of A
on G, after finitely many steps, both υ1 and υ2 go to some state that outputs 1, since G ∈ 2CYCLE, and do
not change their output value in any subsequent step (call the corresponding output stable configuration Ci,
where i is finite). But according to Lemma 8 there exists a computation of A on G′ that under configuration
C ′

2i has u1, u2, u3 and u4 giving output 1. We use this fact to prove the following impossibility result.

Theorem 10. There exists no GDMPP with stabilizing states to stably decide the graph language 2CYCLE=
{G ∈ G | G has at least two nodes u, υ s.t. both (u, υ), (υ, u) ∈ E(G)}.

Proof. Let A be a GDMPP with stabilizing states that stably decides 2CYCLE. It follows that when A runs
on G (Figure 1(a)) after a finite number of steps υ1 and υ2 obtain two states w.l.o.g. q1 and q2, respectively,
that output 1 (since A stably decides 2CYCLE) and do not change in any subsequent step (since A has
stabilizing states). Assume that at that point e1 is in state s1 and e2 in state s′1. Assume also that there
exists a subset S1 = {s1, s2, . . . , sk} of S, of edge states that can be reached by subsequent interactions of
the pair (υ1, υ2) and a subset S2 = {s′1, s′2, . . . , s′l} of S, of edge states that can be reached by subsequent
interactions of the pair (υ2, υ1), where k and l are both constants independent of n (note that S1 and S2

are not necessarily disjoint). It follows that for all si ∈ S1, (q1, q2, si) → (q1, q2, sj), where sj ∈ S1, and for
all s′i ∈ S2, (q2, q1, s

′
i) → (q2, q1, s

′
j), where s′j ∈ S2. In words, none of these reachable edge states can be

responsible for a change in some agent’s state. According to Lemma 8 there exists a computation of A on
G′ (Figure 1(b)) such that after a finite number of steps u1, u3 are in q1, u2, u4 are in q2, t1, t3 are in s1 and
t2, t4 are in s′1. Since A stably decides 2CYCLE, at some subsequent finite step (after we let the protocol
run in a fair manner in G′), some agent obtains a new state q3, since if it didn’t then all agents would always
remain in states q1 and q2 that output 1 (but in G′ there is no 2-cycle and such a decision is wrong). This
must happen through some interaction of the following two forms: (i) (q1, q2, si), where si ∈ S1 and (ii)
(q2, q1, s

′
i), where s′i ∈ S2. But this is a contradiction, since we showed earlier that no such interaction can

modify the state of any of its end points. Intuitively, if there exists some way for A to modify one of q1 and
q2 in G′ then there would also exist some way for A to modify one of q1 and q2 in G, after the system has
obtained stabilizing states there, which is an obvious contradiction.

6. The computational power of GDMPPs in G

In this section, we discuss the exact computational power of the GDMPP model. Here we will approach
this problem by extending the notion of input graphs to vertex-labeled graphs 3 whose labels are assigned
by the network initialization function. We consider that these labels are chosen from a finite set X. Such
input graphs are in fact more general since they bear additional information that allows more complex
computations taking place on the multiset of labels (since multiple agents may have identical labels and
neighborhoods with identical labels sets). Now instead of just deciding whether e.g. an agent has k incoming
neighbors we can decide whether there is an ‘a’-labeled agent that has k ‘b’-labeled incoming neighbors.
Protocols running on such input graphs have been studied in the MPP model [CMS09a, MCS11a] which
assumes that the previously defined input graph is the interaction graph, and the labels are the input of the
protocol. Note that GDMPPs are practically MPPs whose labels are the nodes’ states and where the initial

3Graphs whose vertexes are assigned labels by some function f : V → S where S is a set of labels.
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labels are the same for all nodes/edges. Thus for any GDMPP A running on an interaction graph G ∈ G
there is an identical MPP which is similarly initialized and that provides the same output when running on
G. Therefore, in order to understand the capabilities of GDMPP model we can study the computational
capabilities of MPPs on G. We will conclude that MPPs on unrestricted graphs are equivalent to PPs, and
since GDMPPs must also operate on any possible input graph, they are strongly expected to be weak, like
PPs. The proof idea is as follows. Let p be computable by an MPP A. A still computes p if we restrict our
attention on star graphs, which consist of 1 internal node of degree n and n external nodes of degree 1. The
latter situation can be simulated by a PP, running on complete graphs, with a unique leader in its initial
configuration since the leader can play the role of the internal node and also can safely store the states of the
edges on the external nodes (since external nodes have no effective interactions with each other). The latter,
in turn, can be simulated by a PP which is the composition of a leader election protocol, that elects a leader
while leaving the inputs unaffected, and the stabilizing inputs implementation of a PP, whose transition
function is the same as the simulated protocol, extended appropriately by ineffective transitions. A more
detailed proof is described below.

We first provide some preliminaries: For any finite alphabet X, we call predicate any function p : X∗ →
{0, 1}. A predicate p on X∗ is called symmetric if for every x ∈ X∗ and any x′ which is a permutation of
x’s symbols it holds that p(x) = p(x′). In other words, permuting the input symbols does not affect the
symmetric predicate’s outcome. We say that a predicate over X∗ is stably computable by an MPP A on a
graph family F , if for each G = (V,E) ∈ F and x : V → X and for any computation of A on G beginning
from the initial configuration where each agent is in a state denoted by its label, all agents output p(x).
Note that p depends only on the labeling x and not G.

An out-star is a digraph where one node has out-degree n − 1 (internal node) and in-degree zero and
n − 1 nodes have in-degree one and out-degree zero (leaves). Denote by Gstar the graph family of all out-
stars, by Gcom that of all complete digraphs, and by G that of all weakly-connected digraphs (as before).
Denote by LPP the PP model that additionally has a unique leader in any initial configuration and by LPC
(“LPP stably computable predicates in the family of Complete graphs”) the class of all predicates that
are stably computable by the LPP model in Gcom. We assume that the initial leader of any LPP in any
initial configuration is provided by a leader initialization function Ile which is not a part of the protocol
(can be e.g. a preprocessing on the network). We also consider that the state of any LPP consists of two
state components, one assigned by Ile as a preprocessing of the network and the other initialized according
to the agent’s input symbol and updated during the execution of the protocol. Finally, denote by MPU
(“Mediated stably computable Predicates in the Unrestricted family of graphs”) the class of all predicates
that are stably computable by the MPP model in G.

Lemma 9. Any predicate that is stably computable by the MPP model in Gstar is also stably computable by
the LPP model in Gcom.

Proof. Take any such predicate p. Let A be the MPP that stably computes it. We present a LPP B that
stably computes p in Gcom by simulating A.

• XB = {l, n} ×XA,

• YB = YA = {0, 1},

• QB = ({l} ×QA) ∪ ({n} ×QA × SA),

• IB(n, σ) = (n, IA(σ), s0), where s0 is the initial edge state of A, and IB(l, σ) = (l, IA(σ)),

• OB((·, q)) = OB((·, q, s)) = OA(q), for all, q ∈ QA and s ∈ SA, and

• δB : (l, q1), (n, q2, s) → (l, δA1(t)), (n, δA2(t), δA3(t)), where t denotes (q1, q2, s) for all q1, q2 ∈ QA and
s ∈ SA.

It is not hard to see that the LPP B also forms an out-star by using the leader agent as the internal node
and the nonleaders as the leaves and by allowing interactions only via the edges leaving the leader. The
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information that A stores on the edges is stored by B on the nonleaders. Note that we provide the leader
assignment, given by some function Ile that is not part of the protocol, in the input of B, and define IB
appropriately. In the previously given LPP model’s definition, we state that the leader component of an
LPP’s state is set directly from Ile. To simplify the description of B, we extend the input alphabet to include
the leader assignment of Ile and avoid complex notations in the input function’s definition. Note that IB
remains constant in size, since |{l, n} ×XA| = O(1) and thus this modification is w.l.o.g.

Lemma 10. MPU ⊆ LPC.

Proof. Take any p ∈ MPU and let A be the MPP that stably computes it in U . Obviously, A also stably
computes p in any U ⊆ G. Thus, p is also stably computable by the MPP model in Gstar and, by applying
Lemma 9, p is also stably computable by the LPP model in Gcom.

Note that since A stably computes p in G it also stably computes it in Gcom and thus p must be symmetric
due to the completeness of the interaction graph. Consequently, MPU is, in fact, a subset of the symmetric
subclass of LPC. We denote this subclass as SLPC (Symmetric LPC ). It therefore follows that:

Corollary 1. MPU ⊆ SLPC.

In the sequel, we denote by SEM the class of semilinear predicates.

Theorem 11. SLPC = SEM.

Proof. SEM ⊆ SLPC is trivial, since LPPs are essentially PPs with the additional knowledge of a leader
and thus can compute any predicate in Gcom that PPs can in the same class. For the other direction, we
show that any LPP running in Gcom can be simulated by the PP model in the same family of graphs; the
latter can only compute semilinear predicates. Take any predicate p : NX → {0, 1} that is stably computable
by an LPP S = (XS , YS , QS , IS , OS , δS). Note that the state set of S, QS is of the form {l, n} × Q where
|Q| = O(1).

Consider a PP B = (XB, YB, QB, IB, OB, δB) defined as XB = {0, 1} ×XS , YB = {0, 1} = YS , QB = QS ,
IB : XB → QB so that IB(0, σ) = (n, IS(σ)), IB(1, σ) = (l, IS(σ)) and σ ∈ XS , OB = OS and δB is the
same as δS extended with all transitions of the form: ((l, q1), (l, q2)) → ((l, q1), (l, q2)) where q1, q2 ∈ Q. The
extended δS practically states that any interaction between two leaders is ineffective. Observe that B given
input assignment xB ∈ X∗

B where there is exactly one symbol of the form 1 × σ and the rest are of the
form 0× σ, σ ∈ XS , has exactly the same output as S starting from the initial configuration IB(xB) (since
QS = QB all initial configurations defined by such xBs will also be possible initial configurations of S). This
is because the previously defined PP works in the same way S does, given a single leader (symbol of the
form 1× σ) in its input.

Now take a population protocol PPA = (XA, YA, QA, IA, OA, δA) defined asXA = XS , YA = {0, 1}×XS ,
QA = {0, 1} ×XS , IA(σ) = (1, σ), OA(y, σ) = (y, σ) where y ∈ {0, 1} and σ ∈ XS and δA includes only the
following rule: ((1, σ1), (1, σ2)) → ((1, σ1), (0, σ2)) where σ1, σ2 ∈ XS . A stabilizes to a configuration where
a single agent is in 1×XS and all others in 0×XS (which practically means that eventually there is a single
leader) and leaves the input unchanged in each agent.

From [AAC+05] and [AAER07], we have that for any PP B there is a stabilizing inputs PP B′ that
stably computes the same predicate in the same family of graphs, which is in fact a semilinear predicate.
The composition of A and B′, let us call it D, is also a population protocol that runs on the complete graph,
takes the same input as A and has the output of B′ given as input the stabilizing output of A. A guarantees
that a unique leader remains in its stable output containing all the initial input values, and B′ runs on this
output performing as B given a single leader on the input. But B given a single leader on its input does
what S does starting from the corresponding initial configuration.

Given Corollary 1 and Theorem 11, we can prove the following:

Theorem 12. MPU = SEM.
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Proof. It follows from Theorem 16 of [AAD+06] that any semilinear predicate can be computed by the PP
model in the unrestricted family of graphs. Since the MPP model is a generalization of the PP model
SEM ⊆ MPU follows. The other direction follows from the inclusions MPU ⊆ SLPC = SEM of Lemma
10 and Theorem 11.

The consequences of the above theorem are twofold. First of all, the GDMPP model on the family of
weakly-connected graphs seems to be computationally weak; this is a first step towards providing an exact
characterization of GDMPPs computational power. Secondly, as a side effect, we conclude that the existence
of a leader does not help population protocols running on complete graphs.

7. Graphs not even weakly connected

So far we have only studied the case of at least weakly-connected graphs. A reasonable question is
what happens when the connectivity of the input graph is broken. In this section, we show that nontrivial
graph languages are not stably computable in this case. We consider that the universe is H and, thus, a
graph language can only be a subset of H. Any disconnected graph G in H consists of (weakly or strongly
connected) components G1, G2, . . . , Gt, where t ≥ 2 (note also that any component must have at least two
nodes, to allow computation).

Lemma 11. For any nontrivial graph language L, there exists some disconnected graph G in L where at
least one component of G does not belong to L or there exists some disconnected graph G′ in L where at least
one component of G′ does not belong to L, or both.

Proof. Let L be such a nontrivial graph language and assume that the statement does not hold. Then for
any disconnected graph in L, all of its components also belong to L and for any disconnected graph in L, all
of its components also belong to L. There are two main cases:

1. L contains all connected graphs. But L is nontrivial which means that it must contain at least one
disconnected graph. We know that for any disconnected graph in L all of its connected components
belong to L, but this is a contradiction, since all connected graphs belong to L.

2. L does not contain all connected graphs. There are now two possible subcases:

(a) L contains at least one connected graph (but not all). This means that L contains also at least
one connected graph. Let G′ = (V ′, E′) be a connected graph from L and G′′ = (V ′′, E′′) be a
connected graph from L. The disjoint union of G′ and G′′, U = (V ′∪V ′′

, E′∪E′′
) is a disconnected

graph consisting of two connected components, one belonging to L and one to L. U itself must
belong in one of L and L implying that all of its components must belong to L or all to L, which
is a contradiction.

(b) L contains no connected graph. Thus, since L is nontrivial, it contains at least one disconnected
graph whose connected components belong to L. But all connected graphs belong to L which is
a contradiction.

Theorem 13. Any nontrivial graph language L ⊂ H is not stably decidable by the GDMPP model.

Proof. Let L be such a language and assume that there exists a GDMPP AL that stably decides it. Thus, AL

has eventually all the agents of G giving output 1 if G ∈ L and all giving output 0 if G /∈ L. Moreover, the
protocolAL that has the output map ofAL complemented stably decides L. Those GDMPPs (and in fact any
GDMPP) have no way to transmit data between agents of different components when run on disconnected
graphs. In fact it is trivial to see that, when run on disconnected graphs, those protocols essentially run
individually on the different components of those graphs. This means that when, for example, AL runs on
a disconnected graph G, where G has at least two components G1, G2, . . . , Gt, then AL runs in t different
copies, one for each component, and each such copy stably decides the membership of the corresponding
component (on which it runs on) in L. The same holds for AL. By Lemma 11 there exists at least one
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disconnected graph in L with at least one component in L or at least one disconnected graph in L with
at least one component in L. If L contains such a disconnected graph then, obviously, AL when run on
this graph, call it G, has eventually all the nodes of the component(s) in L giving 0 as output. This is a
contradiction, because G ∈ L and AL stably decides L, which means that all agents should eventually output
1. If L contains such a disconnected graph then the contradiction is symmetric.

As an immediate consequence we get the following corollary:

Corollary 2. The graph language C = {G ∈ H | G is (weakly) connected} is not GDMPP-decidable.

Proof. C is a nontrivial graph language and Theorem 13 applies.

8. An alternative notion of input

We now make a different assumption about the input graph. We consider the case where the input graph
is any subgraph of the interaction graph on which the corresponding protocol runs. This input subgraph is
denoted by some special agents’ and edges’ initial states which are a result of some preprocessing on the
network. We call the resulting protocols Mediated Graph Protocols (MGPs). From this point on, we only
consider MGPs and we explore how the previous assumption affects the computability of graph languages.
In the following subsection, we provide a brief definition and notations of this new extension.

8.1. Mediated Graph Protocols

A Mediated Graph Protocol (MGP) is defined as a GDMPP where the finite sets of agent and edge states
Q, S are augmented by the initial states q0, q1 ∈ Q and s0, s1 ∈ S respectively.

As in the case of GDMPPs, an MGP runs on an interaction graph G = (V,E), which we assume to
be complete for the rest of this work, so that an MGP may run on any Kn = (V,E), where |V | = n and
E = V 2 − {(u, u) | u ∈ V }.

We assume that the initial states of the agents and the edges of the network are specified by some function
ι : V ∪ E → {q0, q1, s0, s1}, which, similarly to the GDMPP model, is not part of the protocol but models
some preprocessing on the network. ι is called a network initialization function if ι(e) ∈ {s0, s1} for all e ∈ E,
ι(u) = q1 if u is incident to at least one edge in s1 according to E and ι(u) = q0 otherwise, for all u ∈ V .
Given an interaction graph Kn = (V,E) and a network initialization function ι, we may define the subgraph
of Kn specified by ι as Gι[Kn] = (V ′, E′), where V ′ = {u ∈ V | ι(u) = q1} and E′ = {e ∈ E | ι(e) = s1}.
Gι[Kn] is considered as the input graph to the protocol.

The notions of configuration, reachability, execution and fairness are the same as in GDMPPs. Moreover,
MGPs are uniform and anonymous. For the rest of this work, our focus is to determine properties of the
subgraph that is specified by the network initialization function.

Definition 3. We say that an MGP A stably decides a graph language L if, for any complete interaction
graph Kn = (V,E), any network initialization function ι, and any computation of A on Kn beginning from
the initial configuration specified by ι, all agents eventually output 1 (accept) if Gι[Kn] ∈ L and 0 (reject)
otherwise. A graph language is said to be stably decidable by the MGP model (or MGP -decidable) if there
is an MGP A that stably decides it.

We call a protocol A a stabilizing output graph MGP if, in any computation of A, all agents’ outputs and
edges’ states eventually stop changing. Note that this stabilization assumption is weaker than the stabilizing
states assumption made for GDMPPs where both edges’ and agents’ states are required to stabilize. We
define GMGP to be the class of all stably decidable graph languages by the MGP model. We denote by
LGNSPACE the class of all decidable graph languages by a NTM of linear space which receives the input
graph by its adjacency matrix representation.

As a simple illustration, we formalize a version of the count-(k+1)-in-neighbors protocol that was outlined
in the introduction (for k = 2). The set of agent states is Q = {q0, q1, q2, q3, q4} and the set of edge states
is S = {s0, s1}. Note that agent states, q0, q1, denote the inclusion of the agents in the input subgraph
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while the rest of the agent states denote, as we will see next, the numbers counted by the agents of that
subgraph. The output function O maps all states except q4 to 0 and the state q4 to 1. The transition
function δ is defined as follows: if i < 4 and j < 3 then δ(qi, qj , s1) = (qi, qj+1, s0);

4 if i = 4 or j ≥ 3 then
δ(qi, qj , s1) = (q4, q4, s0); if i = 4 or j = 4 then δ(qi, qj , s0) = (q4, q4, s0). All remaining transitions leave all
three components unaffected.

Figure 2: An example. The input graph is identified by the bold nodes and edges.

Assume now that the agents are u1, u2, u3, u4. Since the interaction graph is complete, the edges are
(1, 2), (1, 3), (1, 4), (2, 1), (2, 2), . . . , (4, 3). Let the initial configuration, as described by some network initial-
ization function, be ((q1, q1, q1, q0), {(1, 2), (1, 3), (2, 3)}), where the tuple describes the state of each agent
and the set contains the s1 edges and is used for simplicity. These are also illustrated in Fig. 2. Note that
the tuples of the form (i, j) correspond to the edges (ui, uj) in the graph.

Consider now the following possible computation: ((q1, q1, q1, q0), {(1, 2), (1, 3), (2, 3)})
(2,3)−→ ((q1, q1, q2, q0),

{(1, 2), (1, 3)}) (4,3)−→ ((q1, q1, q2, q0), {(1, 2), (1, 3)})
(1,2)−→ ((q1, q2, q2, q0), {(1, 3)})

(2,3)−→ ((q1, q2, q2, q0), {(1, 3)})
(4,1)−→ ((q1, q2, q2, q0), {(1, 3)})

(1,3)−→ ((q1, q2, q3, q0), {}). In the last configuration, all agents output 0, and this
configuration is output stable in the sense that, from that point on, no agent can change its output. Note
that here, it also happens that the states will not be modified again in the future, but generally this is a
stronger requirement. In our model, we only require for the outputs to stop changing (the former implies the
latter but the opposite is not true). So, in this case, the protocol rejects the input graph that was specified
by the network initialization function and this is a correct decision because none of its nodes has more than
2 in-neighbors.

9. Properties of MGPs

The properties discussed in Theorems 2 and 3 for GDMPPs extend trivially to MGPs. We here present
some useful unique properties of the MGP model that will help us unfold its computational potential. Let
G = (V,E) be a simple digraph and K the maximal irreflexive subset of V 2. Then the inverse or complement
of G is defined as H = (V,K\E). Let L−1 = {H | ∃G ∈ L such that H is the inverse of G} be the inverse
of a language L.

Theorem 14 (Closure under Inversion). GMGP is closed under inversion.

Proof. Let A be the protocol that stably decides L. Interchange in A, the roles of the initial edges states s1
and those s0 that are incident only to q1 nodes. If Gι[Kn] ∈ L−1 then its inverse is in L and is the graph
consisting of all q1 nodes and all s0 edges incident to them. Clearly, the described protocol accepts. The
“reject” case is symmetric.

4The careful reader will already have noticed that both i and j are not required to be greater than 0 because no legal network
initialization function allows a q0 agent to have an s1 incident edge.
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Consider now the (stably decidable) language consisting of all graphs that have at least one edge. Its
inverse consists of all graphs that are missing at least one edge, or, in other words, all graphs that are not
complete. Closure under inversion makes it possible to decide whether a graph is not a clique and then closure
under complement enables us to determine whether a graph is a clique. Such a decision seems impossible
to be achieved by PPs and GDMPPs. The reason is that, in those models, a missing edge is not directly
detectable and the only way for an agent to detect its absence is by observing and possibly counting the
existing edges. As an agent cannot distinguish n−2 from n−1 incident edges (due to limited local storage),
it seems that it cannot distinguish a clique from a non-clique in which every agent has n− 2 incoming and
n− 2 outgoing incident edges (proving this is an interesting open problem). This indicates that extra power
can possibly be obtained by the ability of the MGP model to read/write edges “missing” from the input
graph. In the sequel, we shall see that indeed there is plenty of extra power obtained (Theorem 19).

9.1. MGPs with Stabilizing Input Graphs

In this section, we define the stabilizing input graphs MGP (SIMGP) model (similar to the PP model with
stabilizing inputs [AAC+05]), in which the initial state of each agent and edge of the interaction graph (and
thus the input graph) may change finitely many times before it stabilizes to a final value. Here, we consider
the computational capabilities of the MGP model when the network initialization function is working in
parallel (and not as a preprocessing on the network) with the execution of an MGP, as if another protocol
eventually designates the input graph for an MGP. We are interested in stably deciding membership of the
stabilized input graph in a graph language. Intuitively, one can think of the case where we are concerned
about properties of a dynamic overlay network (which could be a result of a protocol running on a complete
network infrastructure, e.g., a peer-to-peer network over the Internet) where the overlay can initially change
but eventually stabilizes.

In a similar way to that of [AAC+05], let each agent/edge store its current initial state (which corresponds
to the initial value given by ι) to a special component of its state. This state is available to the agent/edge
at every computation step and may change arbitrarily between any two subsequent steps. All the possible
values, however, belong constantly to {s0, s1} for the edges and to {q0, q1} for the agents. The transition
function is now of the form δ : ((Q × {q0, q1}) × (Q × {q0, q1}) × (S × {s0, s1})) → (Q × Q × S) and a
configuration is a mapping C : V ∪E → (Q×{q0, q1})∪ (S×{s0, s1}) specifying the state and current initial
state of each agent and edge in the interaction graph. If δ(a, b, s) = (a′, b′, s′), where a, b ∈ (Q × {q0, q1}),
a′, b′ ∈ Q, s ∈ (S×{s0, s1}) and s′ ∈ S, we call (a, b, s) → (a′, b′, s′) a transition and we define δ1(a, b, s) = a′,
δ2(a, b, s) = b′, δ3(a, b, s) = s′. We denote by Cq(t) and Cι(t) the state and initial state respectively of any
t ∈ V ∪E in C. The initial configuration has any agent u and edge s in a (state, initial state) tuple, (qi, qi)
and (si, si) respectively where qi ∈ {q0, q1} and si ∈ {s0, s1} are the initial agent and edge states given by
the network initialization function. The output of a configuration C is obtained by applying the output
function O to the agent state components Cq of C.

The definition of one-step transition via a certain encounter is the same as in the GDMPP model but
instead we use the δ1, δ2, δ3 definitions as described above. That is, if C and C ′ are configurations, and
u, υ be distinct agents we say that C goes to C ′ via encounter e = (u, υ), denoted C

e→ C ′, if C ′q(u) =
δ1(C(u), C(υ), C(e)), C ′q(υ) = δ2(C(u), C(υ), C(e)), C ′q(e) = δ3(C(u), C(υ), C(e)), C ′q(w) = Cq(w),∀w ∈
(V − {u, υ}), and C ′q(z) = Cq(z),∀z ∈ (E − {e}). Note that there is no restriction on the initial states Cι

of C.
Executions, fairness and computations are defined as in the GDMPP model. We distinguish the compu-

tations in which the input graph stabilize as in [AAC+05]. We say a computation C0, C1, . . . is a stabilizing
input graph computation if there is some finite step m after which no initial state is modified on any agent
or edge. More formally, there is a final assignment of agents’ and edges’ states given by the network initial-
ization function ι, ιf : V ∪E → {q0, q1, s0, s1} such that Cι

n(t) = ιf (t) for every t ∈ V ∪E and every n ≥ m.
A stabilizing input graph computation C0, C1, . . . is fair if for every configuration C that occurs infinitely
often in the computation, and every configuration C ′ such that the assignment of ι in C ′ is equal to the
assignment of ι in C and C → C ′ , C ′ also occurs infinitely often in the computation.

In the next theorem, we show that every MGP-decidable language is stably decidable even if the input
graph is initially changing for a finite number of steps. To do so, we construct a protocol similar to the
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one presented in [CMN+10, MCS11a]. That protocol is also executed on complete interaction graphs. It
constructs a correctly labeled spanning pseudo-subpath 5 of the interaction graph and then exploits this
construction to simulate a NTM on its input assignment. Informally, a pseudo-path is a straight line with
arbitrary link directions (see Figure 3 for some examples of correctly labeled pseudo-subpaths of a complete
interaction graph). The agents become ordered according to this line and all the remaining edges of the
complete interaction graph (those that are not part of the line) form the tape cells of the TM. These can be
visited in an ordered fashion due to the ordering of the agents. Let L be any graph language:

Figure 3: We assume that the above depicted graph, call it Kn, is complete. We have chosen not to draw the inactive edges for
the sake of visibility. Therefore, all edges not appearing have label 0, that is, they are inactive. The top and middle six-node and
four-node graphs respectively form two correctly labeled pseudo-paths. Each such graph features a leader endpoint (denoted
by either lh or lt labels), a non-leader endpoint, (denoted by label kt), non-leader intermediate nodes (with label k) and a set
of edges with labels p or i according to their orientation w.r.t. the two endpoints. All other edges (which do not appear in the
figure) incident to the previous nodes are inactive (labeled by 0).Similarly, all other graphs that appear are pseudo-subpaths of
the complete graph Kn. Note that the left node at the bottom that seems to be isolated, is in fact a node of Kn whose incident
edges are all inactive. Moreover, it has label l, so it constitutes a trivial pseudo-subpath of Kn.

Theorem 15. L is stably decidable by the SIMGP model iff it is MGP-decidable.

Proof. The “if” direction is trivial since we focus on languages of stabilized input graphs (thus once the input
graph has stabilized there is an MPG that works as the corresponding SIMGP). For the “only if” direction,
let A(QA, SA, OA, δA) be an MGP that stably decides L. To prove the above statement we are going to
use the reinitialization technique used in [CMN+10]. We will construct a stabilizing input graphs protocol
B that runs in parallel A and a protocol I (similar to that of [CMN+10]) which organizes the population
into a correctly labeled, spanning pseudo-path and reinitializes A’s execution every time the input graph
changes. The state of each agent of protocol B has 3 components. The first stores a state in {q0, q1} which is
the current initial state according to the network initialization function ι, the second stores a state q ∈ QA
and is used for the execution of B (this is practically the component where A’s execution takes place) and
the third is used for the construction of the spanning pseudo-path and the application of reinitialization
process. The case of the edges’ states is similar. Note that both the construction of the pseudo-path and the
reinitialization process require a complete interaction graph which we have in the case of the MGP model.
The output alphabet of B is the same as A’s. B’s output is the output taken by applying A’s output function
to the second state component of the agents. We give a high level description of B’s transition function.

The main idea is the following: B starts with constructing a spanning pseudo-path of its agents using the
third state-component. This takes place by labeling the edges of the interaction graph as active or inactive
according to whether they belong to the pseudo-path or not, and by marking (setting in special states)
the two endpoints of the pseudo-path as well as the intermediate agents. All intermediate agents are set
in the same special state (simple nonleader) whereas each endpoint has its own special state, leader and
nonleader. The process of organizing all agents of the population into a pseudo-path with distinct endpoints

5It was called a line graph in [CMN+10], but since this has another standard meaning in graph theory, that named changed
to pseudo-path in [MCS11a].
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is called spanning process. During this process, multiple pseudo-subpaths can co-exist before all agents of
the population are part of a single pseudo-path. Such subgraphs are merged through the interaction of
their leader endpoints (only); this way, cycles formed when a head interacts with its own tail are avoided.
Once the leaders of two subgraphs are engaged in the merge of their respective pseudo-paths they go to a
special blocking state to prevent any further merge interactions and thus the process avoids the formation of
cycles. In addition, one of the two subgraphs gradually reverses its orientation in order to form and extended
pseudo-path consisting of the agents and edges of both previous graphs plus an additional edge via which
the leaders interaction took place. This process is described in great detail in [CMN+10].

As in [CMN+10] whenever the construction is updated (by merging pseudo-subpaths of the interaction
graph) a reinitialization takes place on the population restoring the initial states of B. We say that B’s
initial states are restored by copying in each agent and edge the contents of the first state-component to
the second. The reinitialization process is performed by having two other special states traversing (via the
active edges) the pseudo-path in an orderly fashion from one endpoint to the other, marking in this way the
ends of the next edge to be reinitialized (the agents get reinitialized just by getting to these special states
and the corresponding edge on their next interaction). The ordering of the reinitialization process encodes
a form of timestamp for its state (w.r.t. to which agents have been reinitialized so far). When previously
mentioned states traverse the complete pseudo-path (for more details on the exact execution see [CMN+10])
then all agents and edges have been reinitialized. The order prevents reinitialized nodes to interact effectively
(i.e. resulting in modification of an agent’s state) with non-reinitialized nodes as such interactions would
result in wrong executions (outdated info interacting with up to date info). According to process described
in [CMN+10] the contents of the 3rd component will eventually stabilize (when the spanning process is
complete).

In addition, whenever an agent’s or edge’s first-component is modified, that is the input graph provided
by ι changes, a new reinitialization mark (a special state as it is called in [CMN+10]) is generated and travels
towards the leader endpoint (via the active edges). This mark generation happens in the next interaction
in which the corresponding agent/edge participates.6 Once the mark reaches the endpoint it initiates a
reinitialization process (as the one described above). Note that many reinitialization marks may travel
towards the leader endpoint. The general rule is that priority is given to the one that is directed towards
the leader endpoint last (or equivalently the one closest to the nonleader endpoint). If a mark meets another
one during its motion towards the leader endpoint it erases it. Moreover, if the mark moving towards the
leader meets the marks (special states) used for the reinitialization process it erases them.

After all initial states are stabilized, no more reinitialization marks will be generated. Once the initial
states stabilize and the spanning process is complete, B’s execution will not get reinitialized again and A
will be executed undisturbed (in the second state component of B) on the stabilized (final) input graph. The
resulting execution will provide the output of A as if it was (separately) running on the same stable input
graph.

9.2. Composition of MGPs

We will now present another property of MGPs. According to this property, which we call MGP-
composition, given two MGPs A and B, where A is a stabilizing output graph MGP, we can compose the
two protocols to a new protocol D. D will have the same output as B as if the latter was running on the
stabilizing input graph defined by A’s execution. B’s input graph, provided by A’s execution, is stabilizing
since the edges’ states eventually stabilize (by A’s definition) and A’s outputs 0 and 1 can be trivially mapped
to initial agent states q0 and q1 respectively. The property is formalized below:

Theorem 16. For any two MGPs A,B where A is a stabilizing output graph MGP, there is an MGP D
which is a composition of A and B, has as input the input graph of A and as output the output of B running
on the stabilized input graph provided by A.

6If an agent’s first state component is modified, the mark is generated at that agent. If an edge’s first state component is
modified, then the mark is generated on the initiator of the interaction.
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Proof. From Theorem 15, we have that B can be replaced by a stabilizing input graphs protocol B′ that
runs on the stabilizing graph defined by A and works exactly like B running on the same graph.

10. MGPs on Disconnected Input Graphs

We now discuss the capability of the MGP model to decide languages on disconnected graphs. Neither
the PP model [AAC+05] nor the GDMPP model are capable of supporting this feature. We here exploit the
complete infrastructure to communicate information between the connected components of the disconnected
input graph and make a decision according to the exchanged information. In Sec. 10.1, we present a simple
protocol that can decide whether the input graph is a connected graph and, in Sec. 10.2, we generalize
the idea to prove that any semilinear predicate on the multiset of decisions of any GDMPP running on the
connected components (where the decision of each component is counted only once) that constitute the input
graph is stably decidable.

10.1. Deciding Connectivity

In this section, we present an MGP CP that decides the language LC = {G | G is a connected graph}.

Protocol 2 Connectivity Protocol (CP)

1: Q = {q0, q1, f, f ′, l, l′}, S = {s0, s1},
2: O(q0) = 0, O(q1) = 0, O(f) = 1, O(f ′) = 0, O(l) = 1, O(l′) = 0,
3: δ:

a single leader is generated
(q1, q1, s1) → (l, f, s1)

the single leader turns all nodes of the input graph it can reach to followers
(l, f, s1) → (f, l, s1), (f, l, s1) → (l, f, s1), (l, q1, s1) → (f, l, s1), (q1, l, s1) → (l, f, s1)

the single leader turns all nodes that do not belong to the input graph to followers of a single
leader
(l, q0, s0) → (l, f, s0)

two single leaders meet in the same connected component of the input graph; one is turned
to follower
(l, l, s1) → (l, f, s1)

two nonadjacent single leaders meet (via an edge that is not in the input graph) in the same
connected component of the input graph or in different connected components (in the case
of disconnected input graph); they become nonunique leaders
(l, l, s0) → (l′, l′, s0)

the nonunique leaders turn all the nonleaders they meet into their followers
(l′, f, s1) → (f ′, l′, s1), (f, l

′, s1) → (l′, f ′, s1), (l
′, q1, s1) → (f ′, l′, s1), (q1, l

′, s1) →
(l′, f ′, s1), (l

′, q0, s0) → (l′, f ′, s0), (l
′, f, s0) → (l′, f ′, s0)

two leaders of any type meet in the same component; only one single leader remains
(l′, l, s1) → (l, f, s1), (l, l

′, s1) → (l, f, s1), (l
′, l′, s1) → (l, f, s1)

two leaders of any type meet in different components; they both become nonunique leaders
(l′, l, s0) → (l′, l′, s0), (l, l

′, s0) → (l′, l′, s0)

a single leader restores all followers of multiple leaders to followers of single leaders
(l, f ′, s0) → (l, f, s0), (l, f

′, s1) → (f, l, s1), (f
′, l, s1) → (l, f, s1)

Theorem 17. Protocol CP stably computes LC for any input graph Gι[Kn] on the complete interaction
graph Kn.
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Proof. Note that CP has eventually one leader in each connected component. If the input graph is connected
there is a single connected component and therefore only a single leader remains. This leader turns all other
agents of Kn to followers of the single leader and the protocol stabilizes to 1. If the input graph is not
connected it consists of multiple connected components and therefore multiple leaders will exist in Kn.
These leaders will eventually interact with each other via an edge that does not belong in the input graph
(since the graph that CP runs on is complete) and they will eventually become nonunique leaders. Since,
however, they belong in different connected components they cannot interact via an edge of the input graph
(in state s1) and thus they will remain nonunique forever. The nonunique leaders will eventually turn the
rest of the population to followers of multiple leaders (states t′) and all agents will stabilize to 0.

10.2. Computing Graph Languages on Disconnected Graphs

In this section, we are interested in languages that describe properties of disconnected input graphs,
that is, graphs with > 1 connected components. We use the term “connected components” for weakly-
connected components as well. To achieve this, we propose a construction which combines the functionality
of four MGPs that allow information exchange between the connected components by exploiting the complete
underlying infrastructure. In what follows, we give a description of these protocols.

First, we have the spanning pseudo-path protocol described in Section 9.1 that is required for the com-
position of protocols. We will call it RP (Reinitialization Protocol since it is mainly used to reinitialize the
execution of the composed protocols).

Then, there is a Leader Election MGP (LE) that practically runs on the connected components of
the input graph (leaving all q0 agents of the population intact). LE = {QLE , SLE , δ}, where QLE =
{q0, q1, l, f}, SLE = {s1} and δ has the following transitions: (q1, q1, s1) → (l, f, s1) in which a leader is
generated; (l, q1, s1) → (f, l, s1) and (q1, l, s1) → (l, f, s1) via which the leader turns nonleaders to followers;
(l, f, s1) → (f, l, s1) and (f, l, s1) → (l, f, s1) which allow the leader state to move among the agents of
a connected component; (l, l, s1) → (l, f, s1) which removes multiple leaders; (q1, q1, s0) → (l, l, s0) and
(l, q1, s0) → (l, l, s0) in which leaders are generated from initial states through interaction of agents of
different components (these interactions are useful for generating leaders in components consisting of a
single isolated node). Interactions between agents not defined by the previous transitions are ineffective
(leave the states of both agents unchanged).

Lemma 12. LE eventually elects a unique, constantly moving leader in each connected component of the
input graph.

Proof. The functionality is similar to the one of Protocol 2 of Sec. 10.1 without the interactions between
leaders of different connected components and with the additional interactions between agents in different
connected components in which at least one of the agents is in the initial state. These additional interactions
enable the eventual creation of a leader in components consisting of a single agent. The remaining non-
isolated leader moves constantly due to the transitions (l, f, s1) → (f, l, s1) and (f, l, s1) → (l, f, s1).

The third protocol is a parameter to the composition. It can be any MGP that works only within the
connected components (effective interactions take place only between agents linked with s1 edges). This
protocol, that we call BGP (Basic Graph Protocol) hereafter, is practically a GDMPP extended to also run
on graphs with isolated nodes (remember that in section 4, GDMPPs were defined for the graph universe H
which only includes graphs with node set size greater than 2). Such an extension can be trivially performed
since any protocol running on an isolated node can only decide the trivial language of graphs consisting
of a single isolated node. Such a case can be trivially detected by a simple population protocol (where
every agent initially outputs 1 and changes its state and output to 0 once an interaction takes place). BGP
runs in parallel with LE within the connected components of the input graph and decides the same graph
property within each component. This means that, once all components of the input graph stabilize w.r.t.
BGP ’s execution, all agents within each component will output 1 if the component satisfies the property and
0 otherwise. Obviously, agents of different components may have different outputs.

The parallel execution of LE and BGP ends up with a unique moving or static leader in each connected
component, all other agents are followers and every agent knows the decision of BGP for the component it
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belongs to. An agent that is not part of the input graph (q0) is not affected and outputs by default 0. For
each connected component of the input graph:

Definition 4. We call an agent representative of the component if it is the unique leader and its output
w.r.t. BGP has stabilized.

In other words, once the number of leaders stops changing and BGP stabilizes, the unique leader of each
connected component becomes a representative (the elected agent that bears the decision of the component
w.r.t. the graph property that BGP decides). Note that regardless of the movement of the leader state
within each component, once BGP stabilizes, the leader’s output w.r.t. BGP remains the same no matter
which agent is the leader.

The final protocol is also a parameter to the composition and is practically a population protocol (see
[AAC+05]) running on the population of representatives. We call this protocol REP (REpresentative Pro-
tocol) and it runs in parallel with RP , LE and BGP . Since the interaction graph of MGPs is complete
the representatives’ population will be fully connected via the s0 edges. The inputs of REP will be the
outputs (decisions on the satisfiability of the graph property) of the agents w.r.t. BGP . We consider that
effective interactions w.r.t. to REP can take place only between the representatives (via s0 edges) of the
population. In addition, we demand that whenever a representative moves to a neighboring agent within its
component (since the leaders constantly move), it also copies its REP -state component to that agent. We
consider that the output of REP is the output of the whole composition and we extend REP so that the
representatives propagate their state when interacting with q0 agents. In this way, all agents (the followers
in each component due to representatives’ movement and the q0 agents due to the previous extension) will
eventually have in their REP -state components the contents of the representatives’ REP -state components.

The composition of the 4 protocols: In order for REP to be executed correctly the population
of representatives must have been formed. Thus, LE must generate unique moving (or static) leaders and
BGP must stabilize before REP can start its execution. To achieve this we do the following: RP , LE,
BGP and REP run in parallel as stated above. RP constructs in a finite number of steps the spanning
pseudo-path that allows the reinitialization of components. Any reinitialization taking place during RP ’s
execution restore all LE, BGP and REP state components to their initial values. Once RP stabilizes, LE
and BGP are executed in parallel without being reinitialized. Every time the output of an agent w.r.t.
BGP changes or a leader is turned to a follower by the transition (l, l, s1) → (l, f, s1) of LE a new special
reinitialization takes place that only restores the REP state components of the agents. Once the number of
leaders stops changing and BGP stabilizes the population of representatives has been formed and no more
reinitialization can take place. Then REP is executed on the correctly reinitialized representatives.

For all G, denote by NG,L the number of components of G that belong to a language L and by NG,L the
number of components of G that do not.

Theorem 18. Let L be a GDMPP-decidable language. Let p be a semilinear predicate on N2. Then L′ =
{G | p(NG,L, NG,L) = 1} is MGP-decidable.

Proof. The previously described composition of LE,RP,BGP,REP takes an input graph given by some
network initialization function and computes any semilinear predicate (due toREP ) on the decisions (outputs
of BGP ) of the connected components (each component’s decision is counted only once) of this input graph
concerning any GDMPP-decidable graph property (since BGP is a essentially a GDMPP).

The applications of Theorem 18 are various, depending on the BGP and REP we use. Given a GDMPP-
decidable graph language, e.g., L = {G | G contains at least one 2-cycle}, we can now answer questions
about predicates on the number of components that satisfy L; questions like whether at least 25% of the
components contain at least one 2-cycle. Whether the whole graph contains at least one 2-cycle can be
simply decided by an OR population protocol 7 on the representatives’ population. Moreover, the previous
discussion shows that the MGP model is computationally stronger than the GDMPP and thus PP models

7A population protocol implementing the logical OR function on its inputs.
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for graph language decidability since it allows decidability of nontrivial graph languages on disconnected
input graphs. This may seem somewhat expected given the completely connected infrastructure available in
MGPs but the previous construction/composition shows how we can systematically organize our protocols
for the case of disconnected graphs and how we can study their computability in this case.

11. An Exact Characterization of MGPs: GMGP = LGNSPACE

In this section, we will develop an MGP that is capable of simulating a linear-space NTM on input
Gι[Kn] = (V ′, E′). In this manner, we establish that any graph language L ∈ LGNSPACE is stably
decidable by the MGP model, or equivalently that LGNSPACE ⊆ GMGP. By showing that the converse
is also true, we conclude that the inclusion holds with equality. The main idea for establishing the lower
bound is the following. The protocol is similar to the one presented in Sec. 9.1 (which is similar to the
one described in [CMN+10, MCS11a]). Here, we preserve the process that constructs the correctly labeled
spanning pseudo-subpath, called the spanning process, we also preserve the reinitialization process, and we
slightly modify the simulation process. The reinitialization process was responsible for reinitializing the
simulation process whenever the spanning process takes some step; it restores the tape cells and the state of
the TM. The simulation process is the actual simulation of the TM. In [CMN+10, MCS11a], the simulation
process is responsible of writing the input values of all agents to the leftmost cells of the distributed simulation
tape, just before starting the actual simulation. Here, the main difference is that we do not have some input
assignment to store, rather we will store to the TM’s tape the input graph Gι[Kn] by its adjacency matrix
representation. When this is done, as in [CMN+10, MCS11a], the simulation process starts simulating the
TM that decides the corresponding graph language.

Now, consider the following 3-component initial configuration: According to the first component, called
the label, there is a unique spanning correctly labeled pseudo-subpath L = (V,A) of a complete interaction
graph Kn.

8 The second component stores the values of some network initialization function ι and is called
the membership indicator. The third component is the (simulation) tape and is initially in a blank state.

Lemma 13. There is an MPP that in any computation on Kn, beginning from such a configuration, stores
the input graph Gι[Kn] in the leftmost cells of the tape and halts in a finite number of steps having preserved
the initial states of both the label and the membership indicator components.

Proof. In [CMN+10, MCS11a], it was proved that, given such an initial configuration, there is an MPP
running on the complete graph Kn, capable of visiting one by one all of its edges and nodes. The main idea
is the following. There is always a unique agent with a star mark in each state that orders its incident edges
by the position of their opposite endpoints on the pseudo-path. To visit its outgoing edges one after the
other according to this ordering, the star agent places a dot mark that traverses the pseudo-path from left to
right; it waits to interact with the dot agent and then moves the dot one step to the right. Formally, define
the distance of each node u ∈ V as the length of the unique pseudo-path that begins from the left endpoint
of L (which is the unique node in V with label l) and leads to u and denote it by d(u). Nodes become stars
one after the other until all edges of Kn are visited. It is not hard to extend the above protocol to store the
adjacency matrix of Gι[Kn] in the leftmost cells of the distributed tape. Initially, the protocol creates in
the leftmost cells of its tape a n× n adjacency matrix initialized to 0. To do that, it simply has to count in
its tape the number of nodes in V . Then the protocol creates in its tape two binary counters star and dot
and initializes both to 0. The counters star and dot are responsible for storing the distances of the current
star agent and the current dot agent, respectively. Whenever the star or dot mark is moved one position
to the right the corresponding counter is incremented by one. Whenever an interaction between the star
agent and the dot agent takes place via an edge whose membership indicator is s1, the cell (star, dot) of the
adjacency matrix is set to 1. It is clear that at the end of this process, a cell (i, j) of the adjacency matrix
is 1 iff (i, j) ∈ E′. Moreover, the outlined process never alters the membership indicator components and

8Note that, by definition of a correctly labeled pseudo-subpath, it holds that for all e ∈ E −A, e is inactive.
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any modification of the label components is done via the placement of a star or a dot mark, which can be
thought as occurring in a separate component than never alters the actual labels. Fairness ensures that the
process halts in a finite number of steps. Note that the input graph can be stored in a more succinct manner
by creating a t × t adjacency matrix, where t is the order of Gι[Kn], and by counting in the distance of a
node only the nodes whose membership indicator is q1. However, in the worst case, the two representations
are equivalent.

We are now ready to establish the following exact characterization of GMGP:

Theorem 19. GMGP = LGNSPACE.

Proof. For the LGNSPACE ⊆ GMGP direction, take any graph language L ∈ LGNSPACE, where
the graphs are provided in terms of their adjacency matrix representations, and let M be the NTM that
decides it in O(n) space. We describe an MGP that stably decides L by simulating M. Take any complete
interaction graph Kn and any input graph Gι[Kn] ⊆ G. The MGP consists of the 3 processes previously
described in this Section, and the simulation process begins by executing the graph storage procedure as
described in Lemma 13. It was proved in [CMN+10, MCS11a] that the composition of these processes
correctly constructs a spanning pseudo-subpath of G. Since the simulation is again here executed in its
own separate component that never alters the labels and the membership indicators, the aforementioned
result is carried over to our construction. When this happens, the simulation process stores the adjacency
matrix of Gι[Kn] to the leftmost cells of the distributed tape. In the worst case, Gι[Kn] = G and the
size of the adjacency matrix is O(n2) (one bit for each edge), thus there is always enough distributed
space to store the input graph. Moreover, each of the star and dot counters is upper bounded by n (logn
bits in binary), thus again there is enough room to store them. M runs in linear space, consequently,
capability of storing the graph implies capability of executing the simulation in the available space. Finally,
nondeterminism can be easily drawn from the one inherent in the interaction pattern. However, since only
one nondeterministic path can be followed at a time, whenever a rejecting state is reached the simulation
starts over from the beginning. Fairness ensures that a correct search on the tree of M’s nondeterministic
computation is eventually performed by the protocol.

The inclusionGMGP ⊆ LGNSPACE follows easily. Take any protocolA that stably decides a language
L and any graph G. A stably decides membership of G in L also in the worst case in which the node set of
the interaction graph is the node set of the input graph G (that is, the only possible additional space comes
from the edges missing from G). The NTM N takes G in its input by its adjacency matrix representation
which means that if G has k nodes then N has O(k2) available space which is equal to the space available to
A in its worst case. Then N simply performs a nondeterministic search on the worst-case transition graph
of A by always storing at most one configuration (see, e.g., Theorem 8 in [CMS09a]).

12. Conclusions - Future Research Directions

Many interesting issues arise by the findings of our work. The ability of the MGPmodel to use its complete
network infrastructure enables us to compose protocols and decide graph properties of disconnected graphs.
The additional memory provided by the extra edges of the complete interaction graph gives an important
advantage to MGPs in comparison to GDMPPs. However, extra nodes do not seem to help: after all, in our
model, the worst-case interaction graph of any input graph is itself made complete. Various questions arise
from the above conclusions. How would the computability be affected if we had allowed more memory in each
agent or each edge? Which interaction graph topologies allow the full use of the distributed memory? Do we
truly require a complete interaction graph to decide graph languages in disconnected graphs or a connected
infrastructure would suffice? How can we exploit the presence of extra nodes for increasing the computational
power?In addition, our results use a fairness model that provides no insight to the time-complexity of our
protocols. It would be interesting to assume restricted, probabilistic, or worst-case adversaries so that we
can also analyze our protocols w.r.t. time-performance. Such an approach was followed in [AAD+06], in
which probabilistic schedulers were assumed that enabled a time-complexity study. Worst-case adversaries
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for dynamic networks have recently been considered in [OW05, KLO10, MCS12]. In each of these works,
some temporal restriction on end-to-end communication is imposed on the adversary (essentially an upper
bound on the time needed for information to influence another node) that allows for a worst-case analysis
of time-performance.

It turns out that, in the family of all complete digraphs, the existence of a leader in the population does
not increase the computational power of the PP model. It would be interesting to show that it suffices
for the leader to access every other agent’s memory exactly once. This behavior is similar to that of some
automata known as multiset automata, like, e.g., MFAs [CVMVM01], where the input multiset is consumed
by a coordinator before an acceptance decision is made. In addition, the ability of MPPs to organize the
population into a NTM (as shown in [CMN+10]) shows that a leader does not help MPPs either. Are the
above true also for other families of interaction graphs? Finally, what is the computational power of the
extensions of the above models in which the protocols have access to a mechanism notifying them of the
time needed to causally influence and get influenced by the states of the whole population? It seems that
such protocols can perform iterative computations and possibly halt in some cases.
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