
Algorithmic Verification of Population
Protocols?

Ioannis Chatzigiannakis1,2, Othon Michail1,2, and Paul G. Spirakis1,2

1 Research Academic Computer Technology Institute (RACTI), Patras, Greece
2 Computer Engineering and Informatics Department (CEID), University of Patras

Email: {ichatz, michailo, spirakis}@cti.gr

Abstract. In this work, we study the Population Protocol model of An-
gluin et al. from the perspective of protocol verification. In particular,
we are interested in algorithmically solving the problem of determining
whether a given population protocol conforms to its specifications. Since
this is the first work on verification of population protocols, we redefine
most notions of population protocols in order to make them suitable for
algorithmic verification. Moreover, we formally define the general veri-
fication problem and some interesting special cases. All these problems
are shown to be NP-hard. We next propose some first algorithmic so-
lutions for a natural special case. Finally, we conduct experiments and
algorithmic engineering in order to improve our verifiers’ running times.

1 Introduction

Pervasive environments of tomorrow will consist of populations of tiny possibly
mobile artifacts that will interact with each other. Such systems will play an
important role in our everyday life and should be correct, reliable and robust.
To achieve these goals, it is necessary to verify the correctness of future systems.
Formal specification helps to obtain not only a better (more modular) descrip-
tion, but also a clear understanding and an abstract view of the system [4].
Given the increasing sophistication of algorithms for pervasive systems and the
difficulty of modifying an algorithm once the network is deployed, there is a clear
need to use formal methods to validate system performance and functionality
prior to implementing such algorithms [20]. Formal analysis requires the use of
models, trusted to behave like a real system. It is therefore critical to find the
correct abstraction layer for the models and to verify the models.

Model checking is an exhaustive state space exploration technique that is
used to validate formally specified system requirements with respect to a for-
mal system description [14]. Such a system is verified for a fixed configuration;
so, in most cases, no general system correctness can be obtained. Using some
high-level formal modelling language, automatically an underlying state space
can be derived, be it implicitly or symbolically. The system requirements are
? This work has been partially supported by the ICT Programme of the European

Union under contract number ICT-2008-215270 (FRONTS).

specified using some logical language, like LTL, CTL or extensions thereof [19].
Well-known and widely applied model checking tools are SPIN [18], Uppaal [6]
(for timed systems), and PRISM [17] (for probabilistic systems). The system
specification language can, e.g., be based on process algebra, automata or Petri
nets. However, model checking suffers from the so-called state explosion prob-
lem, meaning that the state space of a specified system grows exponentially with
respect to its number of components. The main challenge for model checking lies
in modelling large-scale dynamic systems.

Towards providing a concrete and realistic model for future sensor networks,
Angluin et al. [1] introduced the notion of a computation by a population pro-
tocol. In their model, individual agents are extremely limited and can be repre-
sented as finite-state machines. The computation is carried out by a collection
of agents, each of which receives a piece of the input. Information can be ex-
changed between two agents whenever they come sufficiently close to each other.
The goal is to ensure that every agent can eventually output the value that is
to be computed. The critical assumption that diversifies the population protocol
model from traditional distributed systems is that the protocol descriptions are
independent of the population size, which is known as the uniformity property
of population protocols. Moreover, population protocols are anonymous since
there is no room in the state of an agent to store a unique identifier. See also
[11, 10, 16, 5, 13, 7] for population protocol relevant literature. For the interested
reader, [3, 12] constitute introductions to the area.

In this work, we provide a tool for computer-aided verification of population
protocols. Our tool can detect errors in the design that are not so easily found
using emulation or testing, and they can be used to establish the correctness
of the design. A very interesting property of population protocols is protocol
composition; one may reduce a protocol into two (or more) protocols of reduced
state space that maintain the same correctness and efficiency properties.

Section 2 provides all necessary definitions. In particular, several population
protocols’ definitions are modified in order to become suitable for algorithmic
verification. Then the verification problems that we study throughout this work
are formally defined. In Section 3, we prove that all verification problems under
consideration are NP-hard. In Section 4, we focus on a particular special case of
the general population protocol verification problem, called BPV ER, in which
the population size on which the protocol runs is provided as part of the ver-
ifier’s input. In particular, we devise three verifiers, two non-complete and one
complete. The complete one is slower but provably guarantees to always provide
the correct answer. We have implemented our verifiers in C++ by building a new
tool named bp-ver. As far as we are concerned, this is the first verification tool
for population protocols. In Section 5, we conduct experiments concerning our
verifiers’ running times. It turns out that constructing the transition graph is a
dominating factor. We then improve our verifiers by building all the reachable
subgraphs of the transition graph one after the other and not all at once. In
this manner, the running time is greatly improved most of the time and the new
construction is easily parallelizable.

2 Necessary Definitions

2.1 Population Protocols

A Population Protocol (PP) A is a 6-tuple (X, Y, Q, I, O, δ), where X, Y , and Q
are all finite sets and X is the input alphabet, Y is the output alphabet, Q is the
set of states, I : X → Q is the input function, O : Q → Y is the output function,
and δ : Q×Q → Q×Q is the transition function. If δ(qi, qj) = (ql, qt), then when
an agent in state qi interacts as the initiator with an agent in state qj (which is
the responder in this interaction) they update their states deterministically to
δ1(qi, qj) = ql and δ2(qi, qj) = qt, respectively. δ can also be treated as a relation
∆ ⊆ Q4, defined as (qi, qj , ql, qt) ∈ ∆ iff δ(qi, qj) = (ql, qt).

A population protocol runs on the nodes-agents of a communication graph
G = (V,E). In this work, we always assume that the communication graph
is a complete digraph, without self-loops and multiple edges (this corresponds
to the basic population protocol model [1]). We denote by Gk the complete
communication graph of k nodes.

Let k ≡ |V | denote the population size. An input assignment x is a mapping
from V = [k] to X (where [l], for l ∈ ZZ≥1, denotes the set {1, . . . , l}), assigning
an input symbol to each agent of the population. Since the communication graph
is complete, due to symmetry, we can, equivalently, think of an input assignment
as a |X|-vector of integers x = (xi)i∈[|X|], where xi is nonnegative and equal to
the number of agents that receive the symbol σi ∈ X, assuming an ordering on
the input symbols. We denote by X the set of all possible input assignments.
Note that for all x ∈ X it holds that

∑|X|
i=1 xi = k.

A state q ∈ Q is called initial if I(σ) = q for some σ ∈ X. A configuration c
is a mapping from [k] to Q, so, again, it is a |Q|-vector of nonnegative integers
c = (ci)i∈[|Q|] such that

∑|Q|
i=1 ci = k holds. Each input assignment corresponds to

an initial configuration which is indicated by the input function I. In particular,
input assignment x corresponds to the initial configuration c(x) = (ci(x))i∈[|Q|],
where ci(x) is equal to the number of agents that get some input symbols σj for
which I(σj) = qi (qi is the ith state in Q if we assume the existence of an ordering
on the set of states Q). More formally, ci(x) =

∑
j:I(σj)=qi

xj for all i ∈ [|Q|].
By extending I to a mapping from input assignments to configurations we can
write I(x) = c to denote that c is the initial configuration corresponding to input
assignment x. Let C = {(ci)i∈[|Q|] | ci ∈ ZZ≥0 and

∑|Q|
i=1 ci = k} denote the set

of all possible configurations given the population protocol A and Gk. Moreover,
let CI = {c ∈ C | I(x) = c for some x ∈ X} denote the set of all possible initial
configurations. Any r ∈ ∆ has four components which are elements from Q and
we denote by ri, where i ∈ [4], the i-th component (i.e. state) of r. r ∈ Q4

belongs to ∆ iff δ(r1, r2) = (r3, r4). We say that a configuration c can go in one
step to a configuration c′ via transition r ∈ ∆, and write c

r→ c′, if

– ci ≥ r1,2(i), for all i ∈ [|Q|] for which qi ∈ {r1, r2},
– c′i = ci − r1,2(i) + r3,4(i), for all i ∈ [|Q|] for which qi ∈ {r1, r2, r3, r4}, and
– c′j = cj , for all j ∈ [|Q|] for which qj ∈ Q − {r1, r2, r3, r4},

where rl,t(i) denotes the number of times state qi appears in (rl, rt). Moreover,
we say that a configuration c can go in one step to a configuration c′, and write
c → c′ if c

r→ c′ for some r ∈ ∆. We say that a configuration c′ is reachable
from a configuration c, denoted c

∗→ c′ if there is a sequence of configurations
c = c0, c1, . . . , ct = c′, such that ci → ci+1 for all i, 0 ≤ i < t, where ci

denotes the (i+1)th configuration of an execution (and not the ith component of
configuration c which is denoted ci). An execution is a finite or infinite sequence
of configurations c0, c1, . . ., so that ci → ci+1. An execution is fair if for all
configurations c, c′ such that c → c′, if c appears infinitely often then so does c′.
A computation is an infinite fair execution. A predicate p : X → {0, 1} is said to
be stably computable by a PP A if, for any input assignment x, any computation
of A contains an output stable configuration in which all agents output p(x). A
configuration c is called output stable if O(c) = O(c′), for all c′ reachable from c
(where O, here, is an extended version of the output function from configurations
to output assignments in Y k). We denote by CF = {c ∈ C | c → c′ ⇒ c′ = c} the
set of all final configurations. We can further extend the output function O to
a mapping from configurations to {−1, 0, 1}, defined as O(c) = 0 if O(c(u)) = 0
for all u ∈ V , O(c) = 1 if O(c(u)) = 1 for all u ∈ V , and O(c) = −1 if ∃u, υ ∈ V
s.t. O(c(u)) 6= O(c(υ)).

It is known [1, 2] that a predicate is stably computable by the PP model
iff it can be defined as a first-order logical formula in Presburger arithmetic.
Let φ be such a formula. There exists some PP that stably computes φ, thus
φ constitutes, in fact, the specifications of that protocol. For example, consider
the formula φ = (Na ≥ 2Nb). φ partitions the set of all input assignments, X ,
to those input assignments that satisfy the predicate (that is, the number of as
assigned is at least two times the number of bs assigned) and to those that do
not. Moreover, φ can be further extended to a mapping from CI to {−1, 0, 1}.
In this case, φ is defined as φ(c) = 0 if φ(x) = 0 for all x ∈ I−1(c), φ(c) = 1 if
φ(x) = 1 for all x ∈ I−1(c), and φ(c) = −1 if ∃x, x′ ∈ I−1(c) s.t. φ(x) 6= φ(x′),
where I−1(c) denotes the set of all x ∈ X for which I(x) = c holds (the preimage
of c).

We now define the transition graph, which is similar to that defined in [1],
except for the fact that it contains only those configurations that are reachable
from some initial configuration in CI . Specifically, given a population protocol
A and an integer k ≥ 2 we can define the transition graph of the pair (A, k) as
GA,k = (Cr, Er), where the node set Cr = CI ∪{c ∈ C | c′

∗→ c for some c′ ∈ CI}
of Gr (we use Gr as a shorthand of GA,k) is the subset of C containing all initial
configurations and all configurations that are reachable from some initial one,
and the edge (or arc) set Er = {(c, c′) | c, c′ ∈ Cr and c → c′} of Gr contains a
directed edge (c, c′) for any two (not necessarily distinct) configurations c and
c′ of Cr for which it holds that c can go in one step to c′. Note that Gr is a
directed (weakly) connected graph with possible self-loops. It was shown in [1]
that, given a computation Ξ, the configurations that appear infinitely often in Ξ
form a final strongly connected component of Gr. We denote by S the collection
of all strongly connected components of Gr. Note that each B ∈ S is simply

a set of configurations. Moreover, given B,B′ ∈ S we say the B can go in one
step to B′, and write B → B′, if c → c′ for c ∈ B and c′ ∈ B′. B

∗→ B′ is
defined as in the case of configurations. We denote by IS = {B ∈ S | such that
B ∩ CI 6= ∅} those components that contain at least one initial configuration,
and by FS = {B ∈ S | such that B → B′ ⇒ B′ = B} the final ones. We can now
extend φ to a mapping from IS to {−1, 0, 1} defined as φ(B) = 0 if φ(c) = 0
for all c ∈ B ∩ CI , φ(B) = 1 if φ(c) = 1 for all c ∈ B ∩ CI , and φ(B) = −1
if ∃c, c′ ∈ B ∩ CI s.t. φ(c) 6= φ(c′), and O to a mapping from FS to {−1, 0, 1}
defined as O(B) = 0 if O(c) = 0 for all c ∈ B, O(B) = 1 if O(c) = 1 for all
c ∈ B, and O(B) = −1 otherwise.

2.2 Problems’ Definitions

We begin by defining the most interesting and natural version of the problem
of algorithmically verifying basic population protocols. We call it GBPV ER
(‘G’ standing for “General’, ‘B’ for “Basic”, and ‘P’ for “Predicate”) and its
complement GBPV ER is defined as follows:

Problem 1 (GBPV ER). Given a population protocol A for the basic model
whose output alphabet YA is binary (i.e. YA = {0, 1}) and a first-order logical
formula φ in Presburger arithmetic representing the specifications of A, deter-
mine whether there exists some integer k ≥ 2 and some legal input assignment
x for the complete communication graph of k nodes, Gk, for which not all com-
putations of A on Gk beginning from the initial configuration corresponding to
x stabilize to the correct output w.r.t. φ.

A special case of GBPV ER is BPV ER (its non-general version as revealed
by the missing ‘G’), and is defined as follows.

Problem 2 (BPV ER). Given a population protocol A for the basic model whose
output alphabet YA is binary (i.e. YA = {0, 1}), a first-order logical formula φ in
Presburger arithmetic representing the specifications of A, and an integer k ≥ 2
(in binary) determine whether A conforms to its specifications on Gk.

“Conforms to φ” here means that for any legal input assignment x, which is a
|XA|-vector with nonnegative integer entries that sum up to k, and any com-
putation beginning from the initial configuration corresponding to x on Gk, the
population stabilizes to a configuration in which all agents output the value
φ(x) ∈ {0, 1}.

Problem 3 (BBPV ER). BBPV ER (the additional ‘B’ is from “Binary input
alphabet”) is BPV ER with A’s input alphabet restricted to {0, 1}.

3 Hardness Results

Theorem 1. BPV ER is coNP-hard.

Proof. We shall present a polynomial-time reduction from HAMPATH = {〈D, s, t〉 | D
is a directed graph with a Hamiltonian path from s to t } to BPV ER. In
other words, we will present a procedure that given an instance 〈D, s, t〉 of
HAMPATH returns in polynomial time an instance 〈A, φ, k〉 of BPV ER, such
that 〈D, s, t〉 ∈ HAMPATH iff 〈A, φ, k〉 ∈ BPV ER. If there is a hamiltonian
path from s to t in D we will return a population protocol A that for some com-
putation on the complete graph of k nodes fails to conform to its specification
φ, and if there is no such path all computations will conform to φ.

We assume that all nodes in V (D) − {s, t} are named q1, . . . , qn−2, where n
denotes the number of nodes of D (be careful: n does not denote the size of the
population, but the number of nodes of the graph D in HAMPATH’s instance).
We now construct the protocol A = (X, Y, Q, I, O, δ). The output alphabet Y is
{0, 1} by definition. The input alphabet X is E(D) − ({(·, s)} ∪ {t, ·}), that is,
consists of all edges of D except for those leading into s and those going out of t.
The set of states Q is equal to X∪T∪{r}, where T = {(s, qi, qj , l) | 1 ≤ i, j ≤ n−2
and 1 ≤ l ≤ n − 1} and its usefulness will be explained later. r can be thought
of as being the “reject” state, since we will define it to be the only state giving
the output value 0. Notice that |Q| = O(n3). The input function I : X → Q is
defined as I(x) = x, for all x ∈ X, and for the output function O : Q → {0, 1}
we have O(r) = 0 and O(q) = 1 for all q ∈ Q − {r}. That is, all input symbols
are mapped to themselves, while all states are mapped to the output value 1,
except for r which is the only state giving 0 as output. Thinking of the transition
function δ as a transition matrix ∆ it is easy to see that ∆ is a |Q| × |Q| matrix
whose entries are elements from Q×Q. Each entry ∆q,q′ corresponds to the rhs
of a rule (q, q′) → (z, z′) in δ. Clearly, ∆ consists of O(n6) entries, which is again
polynomial in n.

We shall postpone for a while the definition of ∆ to first define the remain-
ing parameters φ and k of BPV ER’s instance. We define formula φ to be a
trivial first-order Presburger arithmetic logical formula that is always false. For
example, in the natural nontrivial case where X 6= ∅ (that is, D has at least one
edge that is not leading into s and not going out of t) we can pick any x ∈ X
and set φ = (Nx < 0) which, for Nx denoting the number of xs appearing in
the input assignment, is obviously always false. It is useful to notice that the
only configuration that gives the correct output w.r.t. φ is the one in which all
agents are in state r. φ being always false means that in a correct protocol all
computations must stabilize to the all-zero output, and r is the only state giving
output 0. On the other hand for A not to be correct w.r.t. φ it suffices to show
that there exists some computation in which r cannot appear. Moreover, we set
k equal to n − 1, that is, the communication graph on which A’s correctness
has to be checked by the verifier is the complete digraph of n − 1 nodes (or,
equivalently, agents).

To complete the reduction, it remains to construct the transition function δ:

– (r, ·) → (r, r) and (·, r) → (r, r) (so r is a propagating state, meaning that
once it appears it eventually becomes the state of every agent in the popu-
lation)

– ((qi, qj), (qi, qj)) → (r, r) (if two agents get the same edge of D then the
protocol rejects)

– ((qi, qj), (qi, ql)) → (r, r) (if two agents get edges of D with adjacent tails
then the protocol rejects)

– ((qj , qi), (ql, qi)) → (r, r) (if two agents get edges of D with adjacent heads
then the protocol rejects - it also holds if one of qj and ql is s)

– ((qi, t), (qj , t) → (r, r) (the latter also holds for the sink t)
– ((s, · · ·), (s, · · ·)) → (r, r) (if two agents have both s as the first component

of their states then the protocol rejects)
– ((s, qi), (qi, qj)) → ((s, qi, qj , 2), (qi, qj)) (when s meets an agent υ that con-

tains a successor edge it keeps qj to remember the head of υ’s successor edge
and releases a counter set to 2 - it counts the number of edges encountered
so far on the path trying to reach t from s)

– ((s, qi, qj , i), (qj , ql)) → ((s, qi, ql, i + 1), (qj , ql)), for i < n − 2
– ((s, qi, qj , i), (qj , t)) → (r, r), for i < n − 2 (the protocol rejects if s is con-

nected to t through a directed path with less than n − 1 edges)
– All the transitions not appearing above are identity rules (i.e. they do noth-

ing)

Now we prove that the above, obviously polynomial-time, construction is in
fact the desired reduction. If D contains some hamiltonian path from s to t,
then the n − 1 edges of that path form a possible input assignment to protocol
A (since its input symbols are the edges and the population consists of n − 1
agents). When A gets that input it cannot reject (r cannot appear) for the
following reasons:

– no two agents get the same edge of D
– no two agents get edges of D with adjacent tails
– no two agents get edges of D with adjacent heads
– only one (s, · · ·) exists
– s cannot count less than n − 1 edges from itself to t

So, when A gets the input alluded to above, it cannot reach state r, thus, it
cannot reject, which implies that A for that input always stabilizes to the wrong
output w.r.t. φ (which always requires the “reject” output) when runs on the
Gn−1. So, in this case 〈A, φ, k〉 consists of a protocol A that, when runs on Gk,
where k = n − 1, for a specific input it does not conform to its specifications as
described by φ, so clearly it belongs to BPV ER.

For the other direction, if 〈A, φ, k〉 ∈ BPV ER then obviously there exists
some computation of A on the complete graph of k = n − 1 nodes in which r
does not appear at all (if it had appeared once then, due to fairness, the popula-
tion would have stabilized to the all-r configuration, resulting to a computation
conforming to φ). It is helpful to keep in mind that most arguments here hold
because of the fairness condition. Since r cannot appear, every agent (of the
n− 1 in total) must have been assigned a different edge of D. Moreover, no two
of them contain edges with common tails or common heads in D. Note that there
is only one agent with state (s, · · ·) because if there were two of them they would

have rejected when interacted with each other, and if no (s, · · ·) appeared then
two agents would have edges with common tails because there are n − 1 edges
for n − 2 candidate initiating points (we have not allowed t to be an initiating
point) and the pigeonhole principle applies (and by symmetric arguments only
one with state (· · · , t)). So, in the induced graph formed by the edges that have
been assigned to the agents, s has outdegree 1 and indegree 0, t has indegree 1
and outdegree 0 and all remaining nodes have indegree at most 1 and outdegree
at most 1. This implies that all nodes except for s and t must have indegree
equal to 1 and outdegree equal to 1. If, for example, some node had indegree 0,
then the total indegree could not have been n−1 because n−3 other nodes have
indegree at most 1, t has indegree 1, and s has 0 (the same holds for outdegrees).
Additionally, there is some path initiating from s and ending to t. This holds
because the path initiating from s (s has outdegree 1) cannot fold upon itself
(this would result in a node with indegree greater than 1) and cannot end to any
other node different from t because this would result to some node other than t
with outdegree equal to 0. Finally, that path has at least n − 1 edges (in fact,
precisely n−1 edges), since if it had less the protocol would have rejected. Thus,
it must be clear after the above discussion that in this case there must have been
a hamiltonian path from s to t in D, implying that 〈D, s, t〉 ∈ HAMPATH. ut

The following theorem captures the hardness of the other two problems.

Theorem 2. BBPV ER and GBPV ER are coNP-hard.

Proof. Due to spave restrictions we prove only the second statement. We will
prove the statement by presenting a polynomial-time reduction from BPV ER′ to
GBPV ER. Keep in mind that the input to the machine computing the reduction
is 〈A, φ, k〉. Let XA be the input alphabet of A. Clearly, φ′′ = ¬(

∑
x∈XA

Nx = k)
is a semilinear predicate if k is treated as a constant (Nx denotes the number of
agents with input x). Thus, there exists a population protocol A′′ for the basic
model that stably computes φ′′. The population protocol A′′ can be constructed
efficiently. Its input alphabet XA′′ is equal to XA. The construction of the pro-
tocol can be found in [1] (in fact they present there a more general protocol
for any linear combination of variables corresponding to a semilinear predicate).
When the number of nodes of the communication graph is equal to k, A′′ always
stabilizes to the all-zero output (all agents output the value 0) and when it is
not equal to k, then A′′ always stabilizes to the all-one output.

We want to construct an instance 〈A′, φ′〉 of GBPV ER. We set φ′ = φ∨φ′′.
Moreover, A′ is constructed to be the composition of A and A′′. Obviously,
QA′ = QA × QA′′ . We define its output to be the union of its components’
outputs, that is, O(qA, qA′′) = 1 iff at least one of O(qA) and O(qA′′) is equal
to 1. It is easy to see that the above reduction can be computed in polynomial
time.

We first prove that if 〈A, φ, k〉 ∈ BPV ER′ then 〈A′, φ′〉 ∈ GBPV ER. When
A′ runs on the complete graph of k nodes, the components of its states corre-
sponding to A′′ stabilize to the all-zero output, independently of the initial con-
figuration. Clearly, A′ in this case outputs whatever A outputs. Moreover, for this

communication graph, φ′ is true iff φ is true (because φ′′ = ¬(
∑

x∈XA
Nx = k)

is false, and φ′ = φ ∨ φ′′). But there exists some input for which A does not
give the correct output with respect to φ (e.g. φ is true for some input but A
for some computation does not stabilize to the all-one output). Since φ′ expects
the same output as φ and A′ gives the same output as A we conclude that there
exists some erroneous computation of A′ w.r.t. φ′, and the first direction has
been proven.

Now, for the other direction, assume that 〈A′, φ′〉 ∈ GBPV ER. For any
communication graph having a number of nodes not equal to k, φ′ is true and
A′ always stabilizes to the all-one output because of the A′′ component. This
means that the erroneous computation of A′ happens on the Gk. But for that
graph, φ′′ is always false and A′′ always stabilizes its corresponding component
to the all-zero output. Now φ′ is true iff φ is true and A′ outputs whatever A
outputs. But there exists some input and a computation for which A′ does not
stabilize to a configuration in which all agents give the output value that φ′

requires which implies that A does not stabilize to a configuration in which all
agents give the output value required by φ. Since the latter holds for Gk, the
theorem follows. ut

4 Algorithmic Solutions for BPV ER

Our algorithms are search algorithms on the transition graph Gr. The general
idea is that a protocol A does not conform to its specifications φ on k agents, if
one of the following criteria is satisfied:

1. φ(c) = −1 for some c ∈ CI .
2. ∃c, c′ ∈ CI such that c

∗→ c′ and φ(c) 6= φ(c′).
3. ∃c ∈ CI and c′ ∈ CF such that c

∗→ c′ and O(c′) = −1.
4. ∃c ∈ CI and c′ ∈ CF such that c

∗→ c′ and φ(c) 6= O(c′).
5. ∃B′ ∈ FS such that O(B′) = −1.
6. ∃B ∈ IS and B′ ∈ FS such that B

∗→ B′ and φ(B) 6= O(B′) (possibly
B = B′).

Note that any algorithm that correctly checks some of the above criteria is
a possibly non-complete verifier. Such a verifier guarantees that it can discover
an error of a specific kind, thus, we can always trust its “reject” answer. On
the other hand, an “accept” answer is a weaker guarantee, in the sense that it
only informs that the protocol does not have some error of this specific kind.
Of course, it is possible that the protocol has other errors, violating criteria
that are indetectable by this verifier. However, this is a first sign of BPV ER’s
parallelizability.

Theorem 3. Any algorithm checking criteria 1, 5, and 6 decides BPV ER.

Algorithm 1 SinkVER
Input: A PP A, a Presburger arithmetic formula φ, and an integer k ≥ 2.
Output: ACCEPT if A is correct w.r.t. its specifications and the criteria 1, 2, 3, and

4 on Gk and REJECT otherwise.

1: CI ←FindCI(A, k)
2: if there exists c ∈ CI such that φ(c) = −1 then
3: return REJECT // Criterion 1 satisfied
4: end if
5: Gr ← ConGr(A, k)
6: for all c ∈ CI do
7: Collect all c′ reachable from c in Gr by BFS or DFS.
8: while searching do
9: if one c′ is found such that c′ ∈ CF and (O(c′) = −1 or φ(c) 6= O(c′))

then
10: return REJECT // Criterion 3 or 4 satisfied
11: end if
12: if one c′ is found such that c′ ∈ CI and φ(c) 6= φ(c′) then
13: return REJECT // Criterion 2 satisfied
14: end if
15: end while
16: end for
17: return ACCEPT // Tests for criteria 1,2,3, and 4 passed

4.1 Constructing the Transition Graph

Let FindCI(A, k) be a function that given a PP A and an integer k ≥ 2 returns
the set CI of all initial configurations. This is not so hard to be implemented.
FindCI simply iterates over the set of all input assignments X and for each x ∈ X
computes I(x) and puts it in CI . Alternatively, computing CI is equivalent to
finding all distributions of indistinguishable objects (agents) into distinguishable
slots (initial states), and , thus, can be done by Fenichel’s algorithm [15].

The transition graph Gr can be constructed by some procedure, call it
ConGr, which is a simple application of searching and, thus, we skip it. It takes
as input a population protocol A and the population size k, and returns the
transition graph Gr.

4.2 Non-complete Verifiers

We now present two non-complete verifiers, namely SinkBFS and SinkDFS, that
check all criteria but the last two. Both are presented via procedure SinkVER
(Algorithm 1) and the order in which configurations of Gr are visited determines
whether BFS or DFS is used.

Algorithm 2 SolveBPVER
Input: A PP A, a Presburger arithmetic formula φ, and an integer k ≥ 2.
Output: ACCEPT if the protocol is correct w.r.t. its specifications on Gk and RE-

JECT otherwise.

1: CI ←FindCI(A, k)
2: if there exists c ∈ CI such that φ(c) = −1 then
3: return REJECT
4: end if
5: Gr ← ConGr(A, k)
6: Run one of Tarjan’s or Gabow’s algorithms to compute the collection S of all

strongly connected components of the transition graph Gr.
7: Compute the dag D = (S, A), where (B, B′) ∈ A (where B 6= B′) if and only if

B → B′.
8: Compute the collection IS ⊆ S of all connected components B ∈ S that contain

some initial configuration c ∈ CI and the collection FS ⊆ S of all connected
components B ∈ S that have no outgoing edges in A, that is, all final strongly
connected components of Gr.

9: for all B ∈ FS do
10: if O(B) = −1 then
11: return REJECT
12: end if
13: // Otherwise, all configurations c ∈ B output the same value O(B) ∈ {0, 1}.
14: end for
15: for all B ∈ IS do
16: if there exist initial configurations c, c′ ∈ B such that φ(c) 6= φ(c′) then
17: return REJECT
18: else
19: // all initial configurations c ∈ B expect the same output φ(B) ∈ {0, 1}.
20: Run BFS or DFS from B in D and collect all B′ ∈ FS s.t. B

∗→ B′

(possibly including B itself).
21: if there exists some reachable B′ ∈ FS for which O(B′) 6= φ(B) then
22: return REJECT
23: end if
24: end if
25: end for
26: return ACCEPT

4.3 SolveBPVER: A Complete Verifier

We now construct the procedure SolveBPVER (Algorithm 2) that checks criteria
1, 5, and 6 (and also 2 for some speedup) of Section 4, and, thus, according
to Theorem 3, it correctly solves BPV ER (i.e. it is a complete verifier). In
particular, SolveBPVER takes as input a PP A, its specifications φ and an
integer k ≥ 2, as outlined in the BPV ER problem description, and returns
“accept” if the protocol is correct w.r.t. its specifications on Gk and “reject”
otherwise.

The idea is to use Tarjan’s [21] or Gabow’s (or any other) algorithm for
finding the strongly connected components of Gr. In this manner, we obtain a
collection S, where each B ∈ S is a strongly connected component of Gr, that
is, B ⊆ Cr. Given S we can easily compress Gr w.r.t. its strongly connected
components as follows. The compression of Gr is a dag D = (S,A), where
(B,B′) ∈ A if and only if there exist c ∈ B and c′ ∈ B′ such that c → c′ (that
is, iff B → B′). In words, the node set of D consists of the strongly connected
components of Gr and there is a directed edge between two components of
D if a configuration of the second component is reachable in one step from a
configuration in the first one.

We have implemented our verifiers in C++. We have named our tool bp-ver
and it can be downloaded from http://ru1.cti.gr/projects/BP-VER. Our imple-
mentation makes use of the boost graph library. In particular, we exploit boost
to store and handle the transition graph and to find its strongly connected com-
ponents. Boost uses Tarjan’s algorithm [21] for the latter. We use Fenichel’s
algorithm [15] in order to find all possible initial configurations, and our imple-
mentation is based on Burkardt’s FORTRAN code [8]. Protocols and formulas
are stored in separate files and simple, natural syntax is used. Formulas are
evaluated with Dijkstra’s Shunting-yard algorithm for evaluating expressions.

5 Experiments & Algorithmic Engineering

As presented so far, all verifiers first construct the transition graph and then
start searching on it, each with its own method, in order to detect some error.
Note also that all algorithms halt when the first error is found, otherwise they
halt when there is nothing left to search.

Our first suspicion was that the time to construct the transition graph must
be a dominating factor in the “reject” case but not in the “accept” case. To see
this for the “reject” case imagine that all verifiers find some error near the first
initial configuration that they examine. For example, they may reach in a few
steps another initial configuration that expects different output. But, even if all
of them reject in a few steps, they still will have paid the construction of the
whole transition graph first, which is usually huge. On the other hand, this must
not be a problem in the “accept” case, because all verifiers have, more or less,
to search the whole transition graph before accepting.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600

T
im

e(
s)

Population Size

TgExT(s)
SVerBfsExT(s)
SVerDfsExT(s)

BPVerExT(s)

(a) “reject” case.

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600

T
im

e(
s)

Population Size

TgExT(s)
SVerBfsExT(s)
SVerDfsExT(s)

BPVerExT(s)

(b) “accept” case.

Fig. 1. (a): Verifiers executed on erroneous version of flock2 (see Protocol 3, where the
corresponding stably computable predicate is (N1 ≥ i)) w.r.t. formula (N1 ≥ 2). The
dominating factor is the time needed to construct the transition graph. For all n ≥ 4 all
verifiers found some error. (b): Verifiers executed on the correct flock2t w.r.t. formula
(N1 ≥ 2). SinkDFS and SinkBFS verifiers are clearly faster than SolveBPVER in this
case. For all n ≥ 4 all verifiers decided that the protocol is correct.

Protocol 3 flocki

1: // i must be at least 1
2: X = Y = {0, 1}, Q = {q0, q1, . . . , qi},
3: I(0) = q0 and I(1) = q1,
4: O(ql) = 0, for 0 ≤ l ≤ i− 1, and O(qi) = 1,
5: δ:

(qk, qj)→ (qk+j , q0), if k + j < i

→ (qi, qi), otherwise.

These speculations are confirmed by our first experiments whose findings are
presented in Figure 1. In particular, we consider the “flock of birds” protocol
that counts whether at least 2 birds in the flock were found infected. The corre-
sponding Presburger formula is (N1 ≥ 2). In Figure 1(a) we introduced a single
error to the protocol’s code that all verifiers would detect. Then we counted
and plotted the time to construct the transition graph and the execution (CPU)
time of all verifiers (until they answer “reject”) for different population sizes. In
Figure 1(b) we did the same for the correct version of the protocol. See Protocol
3 for the code of protocol flocki.

The good news is that our verifiers’ running times can easily be improved.
The idea is to take the initial configurations one after the other and search only
in the subgraph of the transition graph that is reachable from the current initial
configuration. In this manner, we usually avoid in the “reject” case to construct
the whole transition graph. Especially in cases that we are lucky to detect an

error in the first subgraph that we ever visit, and if this subgraph happens to be
small, the running time is greatly improved.

References

1. D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):
235-253, 2006. Also in 23rd Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 290-299, 2004.

2. D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power
of population protocols. Distributed Computing, 20(4): 279-304, November 2007.

3. J. Aspnes and E. Ruppert. An introduction to population protocols. Bulletin of
the European Association for Theoretical Computer Science, 93:98-117, Oct. 2007.

4. R. Bakhshi, F. Bonnet, W. Fokkink, B. Haverkort. Formal analysis techniques
for gossiping protocols. In ACM SIGOPS Operating Systems Review, 41(5):28-36,
Special Issue on Gossip-Based Networking, October, 2007.

5. J. Beauquier, J. Clement, S. Messika, L. Rosaz, and B. Rozoy. Self-stabilizing
counting in mobile sensor networks. Technical Report 1470, LRI, Université Paris-
Sud 11, 2007.

6. G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In Formal Meth-
ods for the Design of Real-Time Systems: Proc. 4th Int. School on Formal Methods
for the Design of Comput., Commun. and Software Syst. (SFM-RT 2004), number
3185 in LNCS, pages 200236. Springer, 2004.

7. O. Bournez, P. Chassaing, J. Cohen, L. Gerin, and X. Koegler. On the convergence
of population protocols when population goes to infinity. In Applied Mathematics
and Computation, 215(4):1340-1350, 2009.

8. http://people.sc.fsu.edu/∼burkardt/f src/combo/combo.f90.

9. I. Chatzigiannakis, S. Dolev, S. P. Fekete, O. Michail, and P. G. Spirakis. Not all
fair probabilistic schedulers are equivalent. In 13th International Conference On
Principles Of DIstributed Systems (OPODIS), pages 33-47, 2009.

10. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Brief Announcement: Decidable
graph languages by mediated population protocols. In 23rd International Sympo-
sium on Distributed Computing (DISC), Elche, Spain, Sept. 2009.

11. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Mediated population proto-
cols. In 36th International Colloquium on Automata, Languages and Programming
(ICALP), pages 363-374, Rhodes, Greece, 2009.

12. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Recent advances in popula-
tion protocols. In 34th International Symposium on Mathematical Foundations of
Computer Science (MFCS), Aug. 2009.

13. I. Chatzigiannakis and P. G. Spirakis. The dynamics of probabilistic population
protocols. In Distributed Computing, 22nd International Symposium, DISC, volume
5218 of LNCS, pages 498-499, 2008.

14. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2000.

15. R. Fenichel. Distribution of indistinguishable objects into distinguishable slots.
Communications of the ACM, 11(6), page 430, June 1968.

16. R. Guerraoui and E. Ruppert. Names trump malice: Tiny mobile agents can toler-
ate byzantine failures. In 36th International Colloquium on Automata, Languages
and Programming (ICALP), pages 484-495, Greece, 2009.

17. A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for
automatic verification of probabilistic systems. In Proc. 2nd Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS06), volume
3920 of LNCS, pages 441-444. Springer, 2006.

18. G. Holzmann. The Spin model checker, primer and reference manual. Addison-
Wesley, 2003.

19. M. Huth and M. Ryan. Logic in Computer Science: Modelling and reasoning about
systems. Cambridge University Press, Cambridge, UK, 2004.

20. P.C. Olveczky and S. Thorvaldsen. Formal modeling and analysis of wireless sensor
network algorithms in Real-Time Maude. Proceedings 20th IEEE International
Parallel & Distributed Processing Symposium International, pp. 157, 2006.

21. R. Tarjan. Depth-first search and linear graph algorithms. In SIAM Journal on
Computing, Vol. 1, No. 2, p. 146-160, 1972.

