
Terminating Distributed Construction of Shapes and
Patterns in a Fair Solution of Automata∗

Othon Michail
Computer Technology Institute & Press “Diophantus” (CTI)

Patras, Greece
michailo@cti.gr

ABSTRACT
In this work, we consider a solution of automata similar to
Population Protocols and Network Constructors. The au-
tomata, also called nodes, move passively in a well-mixed
solution and can cooperate by interacting in pairs. Dur-
ing every such interaction, the nodes, apart from updating
their states, may also choose to connect to each other in
order to start forming some required structure. The model
introduced here is a more applied version of Network Con-
structors, imposing geometrical constraints on the permissi-
ble connections. Each node can connect to other nodes only
via a very limited number of local ports, which implies that
at any given time it has only a bounded number of neigh-
bors. Connections are always made at unit distance and are
perpendicular to connections of neighboring ports. Though
this variation can no longer form abstract networks, it is
still capable of forming very practical 2D or 3D shapes. We
develop new techniques for determining the computational
and constructive capabilities of our model. One of the main
novelties, concerns our attempt to overcome the inherent in-
ability of such systems to terminate. In particular, exploit-
ing the assumptions that the system is well-mixed and has
a unique leader, we give terminating protocols that are cor-
rect with high probability (w.h.p.). This allows us to develop
terminating subroutines that can be sequentially composed
to form larger modular protocols. One of our main results
is a terminating protocol counting the size n of the system
w.h.p.. We then use this protocol as a subroutine in order
to develop our universal constructors, establishing that it is
possible for the nodes to self-organize w.h.p. into arbitrarily
complex shapes and additionally always terminate.

Categories and Subject Descriptors:
C.2.4 [Computer-communication Networks]: Distributed Sys-
tems; C.2.1 [Computer-communication Networks]: Network

∗Supported in part by the project FOCUS, implemented un-
der the “ARISTEIA” Action of the OP EdLL co-funded by
the EU (ESF) and Greek National Resources.
Full version: http://arxiv.org/abs/1503.01913

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3617-8/15/07 ...$15.00.
http://dx.doi.org/10.1145/2767386.2767402.

Architecture and Design—distributed networks, network com-
munications, network topology ; F.1.1 [Computation By Ab-
stract Devices]: Models of Computation—automata, com-
putability theory, unbounded-action devices; F.1.2 [Compu-
tation By Abstract Devices]: Modes of Computation—paral-
lelism and concurrency, probabilistic computation; J.2 [Com-
puter Applications]: Physical Sciences and Engineering—
Chemistry, Physics

Keywords: network construction; programmable matter;
shape formation; population; distributed protocol; interact-
ing automata; fairness; random schedule; self-organization

1. INTRODUCTION
Recent research in distributed computing theory and prac-

tice is taking its first timid steps on the pioneering endeavor
of investigating the possible relationships of distributed com-
puting systems to physical and biological systems. The first
main motivation for this is the fact that a wide range of
physical and biological systems are governed by underlying
laws that are essentially algorithmic. The second is that the
higher-level physical or behavioral properties of such sys-
tems are usually the outcome of the coexistence and con-
stant interaction, which may include both cooperation and
competition, of very large numbers of relatively simple dis-
tributed entities respecting such laws. This effort, to the
extent that its perspective allows, is expected to promote
our understanding of the algorithmic aspects of our (dis-
tributed) natural world and to develop innovative artificial
systems inspired by these aspects.

Ulam’s and von Neuman’s Cellular Automata (cf. e.g.
[16]), essentially a distributed grid network of automata,
have been used as models for self-replication, for model-
ing several physical systems (e.g. neural activity, bacte-
rial growth, pattern formation in nature), and for under-
standing emergence, complexity, and self-organization is-
sues. Population Protocols of Angluin et al. [1] were origi-
nally motivated by highly dynamic networks of simple sen-
sor nodes that cannot control their mobility. Recently, Doty
[4] demonstrated their formal equivalence to chemical re-
action networks (CRNs), which model chemistry in a well-
mixed solution. Moreover, the Network Constructors ex-
tension of population protocols [12], showed that a popula-
tion of finite-automata that interact randomly like molecules
in a well-mixed solution and that can establish bonds with
each other according to the rules of a common small proto-
col, can construct arbitrarily complex stable networks. In
the young area of DNA self-assembly it has been already
demonstrated that it is possible to fold long, single-stranded

http://arxiv.org/abs/1503.01913

DNA molecules into arbitrary nanoscale two-dimensional
shapes and patterns [14]. Recently, an interesting theo-
retical model was proposed, the Nubot model, for study-
ing the complexity of self-assembled structures with active
molecular components [17]. Finally a system, called the
Kilobot, was reported recently [15], that demonstrates pro-
grammable self-assembly of complex two-dimensional shapes
by a swarm consisting of a thousand small, cheap, and sim-
ple autonomous robots designed to operate in large groups
and to cooperate through local interactions.

The established and ongoing research seems to have opened
the road towards a vision that will further reshape society to
an unprecedented degree. This vision concerns our ability to
manipulate matter via information-theoretic and computing
mechanisms and principles. It will be the jump from amor-
phous information to the incorporation of information to the
physical world. Information will not only be part of the phys-
ical environment: it will constantly interact with the sur-
rounding environment and will have the ability to reshape
it. Matter will become programmable [7] which is a plau-
sible future outcome of progress in high-volume nanoscale
assembly that makes it feasible to inexpensively produce
millimeter-scale units that integrate computing, sensing, ac-
tuation, and locomotion mechanisms. This will enable the
astonishing possibility of transferring the discrete dynamics
from the computer memory black-box to the real world and
to achieve a physical realization of any computer-generated
object. It will have profound implications for how we think
about chemistry and materials. Materials will become user-
programmed and smart, adapting to changing conditions in
order to maintain, optimize or even create a whole new func-
tionality using means that are intrinsic to the material it-
self. It will even change the way we think about engineering
and manufacturing. We will for the first time be capable of
building smart machines that adapt to their surroundings,
such as an airplane wing that adjusts its surface properties
in reaction to environmental variables [18], or even further
realize machines that can self-built autonomously.

1.1 Our Approach-Contribution
We imagine here a “solution” of automata (also called

nodes or processes throughout the paper), a setting similar
to that of Population Protocols and Network Constructors.
Due to its highly restricted computational nature and its
very local perspective, each individual automaton can prac-
tically achieve nothing on its own. However, when many
of them cooperate, each contributing its meager computa-
tional capabilities, impressive global outcomes become fea-
sible. This is also, for example, the case in the Kilobot
system, where each individual robot is a remarkably sim-
ple artifact that can perform only primitive locomotion via
a simple vibration mechanism. Still, when a thousand of
them work together, their global dynamics and outcome re-
semble the complex functions of living organisms. From our
perspective, cooperation involves the capability of the nodes
to communicate by interacting in pairs and to bind to each
other in an algorithmically controlled way. In particular,
during an interaction, the nodes can update their local states
according to a small common program that is stored in their
memories and may also choose to connect to each other in
order to start forming some required structure. Later on, if
needed, they may choose to drop their connection, e.g. for
rearrangement purposes. We may think of such nodes as

the smallest possible programmable pieces of matter. For
example, they could be tiny nanorobots or programmable
molecules (e.g. DNA strands). Naturally, such elementary
entities are not (yet) expected to be equipped with some in-
ternal mobility mechanism. Still, it is reasonable to expect
that they could be part of some dynamic environment, like
a boiling liquid or the human circulatory system, providing
an external (to the nodes) interaction mechanism. This, to-
gether with the fact that the dynamics of such models have
been recently shown to be equivalent to those of CRNs, mo-
tivate the idea of regarding such systems as a solution of
programmable entities. We model such an environment by
imagining an adversary scheduler operating in discrete steps
and selecting in every step a pair of nodes to interact with
each other.

Our main focus in this work, building upon the findings
of [12], is to further investigate the cooperative structure
formation capabilities of such systems. Our first main goal
is to introduce a more realistic and more applicable version
of network constructors by adjusting some of the abstract
parameters of the model of [12]. In particular, we introduce
some physical (or geometrical) constraints on the connec-
tions that the processes are allowed to form. In the network
constructors model of [12], there were no such imposed re-
strictions, in the sense that, at any given step, any two pro-
cesses were candidates for an interaction, independently of
their relative positioning in the existing structure/network.
This was very convenient for studying the capability of such
systems to self-organize into abstract networks and it helped
show that arbitrarily complex networks are in principle con-
structible. On the other hand, this is not expected to be
the actual mechanism of at least the first potential imple-
mentations. First implementations will most probably be
characterized by physical and geometrical constraints. To
capture this in our model, we assume that each device can
connect to other devices only via a very limited number of
ports, usually four or six, which implies that, at any given
time, a device has only a bounded number of neighbors.
Moreover, we further restrict the connections to be always
made at unit distance and to be perpendicular to connec-
tions of neighboring ports. Though such a model can no
longer form abstract networks, it may still be capable of
forming very practical 2D or 3D shapes. This is also in
agreement with natural systems, where the complexity and
physical properties of a system are rarely the result of an
unrestricted interconnection between entities.

It can be immediately observed that the universal con-
structors of [12] do not apply in this case. In particular,
those constructors cannot be adopted in order to charac-
terize the constructive power of the model considered here.
The reason is that they work by arranging the nodes in a
long line and then exploiting the fact that connections are
“elastic” and allow any pair of nodes of the line to interact
independently of the distance between them. In contrast,
no elasticity is allowed in the more local model considered
here, where a long line can still be formed but only adjacent
nodes of the line are allowed to interact with each other. As
a result, we have to develop new techniques for determin-
ing the computational and constructive capabilities of our
model. The other main novelty of our approach, concerns
our attempt to overcome the inability of such systems to de-
tect termination due to their limited global knowledge and
their limited computational resources. For example, it can

be easily shown that deterministic termination of population
protocols can fail even in determining whether there is a sin-
gle a in an input assignment, mainly because the nodes do
not know and cannot store in their memories neither the size
of the network nor some upper bound on the time it takes
to meet (or to influence or to be influenced by) every other
node. To overcome the storage issue, we exploit the abil-
ity of nodes to self-assemble into larger structures that can
then be used as distributed memories of any desired length.
Moreover, we exploit the common (and natural in several
cases) assumption that the system is well-mixed, meaning
that, at any given time, all permissible pairs of node-ports
have an equal probability to interact, in order to give termi-
nating protocols that are correct with high probability. This is
crucial not only because it allows to improve eventual stabi-
lization to eventual termination but, most importantly, be-
cause it allows to develop terminating subroutines that can
be sequentially composed to form larger modular protocols.
Such protocols are more efficient, more natural, and more
amenable to clear proofs of correctness, compared to exist-
ing protocols that are based on composing all subroutines
in parallel and “sequentializing” them eventually by perpet-
ual reinitializations. To the best of our knowledge, [13] is
the only work that has considered this issue but with totally
different and more deterministic assumptions. Several other
papers [1, 2, 12] have already exploited a uniform random
interaction model, but in all cases for analyzing the expected
time to convergence of stabilizing protocols and not for max-
imizing the correctness probability of terminating protocols,
as we do here.

Our model for shape construction is strongly inspired by
the Population Protocol model [1] and the Mediated Popu-
lation Protocol model [10]. For introductory texts on popu-
lation protocols see [3, 11]. For further literature related to
the present work, consult the full paper and [12].

Section 2 formally defines the model under consideration
and brings together all definitions and basic facts that are
used throughout the paper. Section 3 introduces our tech-
nique for counting the size n of the system with high prob-
ability. The main result of that section (i.e. Theorem 1) is
of particular importance as it underlies all sequential com-
position arguments that follow in the paper. In particu-
lar, the protocol of Section 3.1 is used as a subroutine in
our universal constructors, establishing that it is possible
to construct with high probability arbitrarily complex shapes
(and patterns) by terminating protocols. These universality
results are discussed in Section 4. Finally, in Section 5 we
conclude and give further research directions that are opened
by our work. In the full paper we also provide direct con-
structors for some basic shape construction problems and
study the problem of shape self-replication.

2. THE MODEL
The system consists of a population V of n distributed

processes (finite-state machines), called nodes throughout.
Every node has a bounded number of ports which it uses to
interact with other nodes. In the 2-dimensional (2D) case,
there are four ports py, px, p−y, and p−x, which for nota-
tional convenience are usually denoted u, r, d, and l, respec-
tively (for up, right, down, and left, respectively). Neigh-
boring ports are perpendicular to each other, forming local
axes; that is u ⊥ r, r ⊥ d, d ⊥ l, and l ⊥ u. Similar as-
sumptions hold for the 3D case. An important remark is

that the above coordinates are only for local purposes and
do not necessarily represent the actual orientation of a node
in the system. Nodes may interact in pairs, whenever a port
of one node w is at unit distance and in straight line (w.r.t.
to the local axes) from a port of another node v.

Definition 1. A 2D protocol is defined by a 4-tuple (Q,
q0, Qout, δ), where Q is a finite set of node-states, q0 ∈ Q is
the initial node-state, Qout ⊆ Q is the set of output node-
states, and δ : (Q×P)× (Q×P)×{0, 1} → Q×Q×{0, 1}
is the transition function, where P = {u, r, d, l} is the set
of ports. When required, also a special initial leader-state
L0 ∈ Q may be defined.

If δ((a, p1), (b, p2), c) = (a′, b′, c′), we call (a, p1), (b, p2),
c→ (a′, b′, c′) a transition (or rule). A transition (a, p1), (b,
p2), c→ (a′, b′, c′) is called effective if x 6= x′ for at least one
x ∈ {a, b, c} and ineffective otherwise.

Let E = {(v1, p1)(v2, p2) : v1 6= v2 ∈ V and p1, p2 ∈ P}
be the set of all unordered pairs of node-ports (cf. [12] for
more details on unordered interactions). A configuration C
is a pair (CV , CE), where CV : V → Q specifies the state
of each node and CE : E → {0, 1} specifies the state of
every possible pair of node-ports (or edge). In particular,
an edge in state 0 is called inactive and an edge in state 1
is called active. The initial configuration is always the one
in which all nodes are in state q0 (apart possibly from a
unique leader in state L0) and all edges are inactive. Exe-
cution of the protocol proceeds in discrete steps. In every
step, a pair of node-ports (v1, p1)(v2, p2) is selected by an
adversary scheduler and these nodes interact via the corre-
sponding ports and update their states and the state of the
edge joining them according to the transition function δ.

Every configuration C defines a set of shapes G[A(C)],
where A(C) = C−1

E [1]; i.e. the network induced by the ac-
tive edges of C. Observe that not all possible A(C) are
valid given our geometrical restrictions, that connections are
made at unit distance and are perpendicular whenever they
correspond to consecutive ports of a node. For example,
if (v1, r)(v2, l) ∈ A(C) then (v1, l)(v2, r) /∈ A(C). In gen-
eral, A(C) is valid if any connected component defined by
it (when arranged according to the geometrical constraints)
is a subnetwork of the 2D grid network with unit distances.
A valid A(Ct−1) also restricts the possible selections of the
scheduler at step t ≥ 1. In particular, (v1, p1)(v2, p2) ∈ E
can be selected for interaction (or is permitted) at step t iff
A(Ct−1) ∪ {(v1, p1)(v2, p2)} is valid. Observe that any edge
that is active before step t is trivially permitted at step t.
From now on, we call a 2D (3D) shape any connected sub-
network of the 2D (3D) grid network with unit distances.

Throughout the paper we restrict attention to configura-
tions C in which A(C) is valid. We write C → C′ if C′ is
reachable in one step from C (meaning via a single interac-
tion that is permitted on C). We say that C′ is reachable
from C and write C C′, if there is a sequence of con-
figurations C = C0, C1, . . . , Ct = C′, such that Ci → Ci+1

for all i, 0 ≤ i < t. An execution is a finite or infinite
sequence of configurations C0, C1, C2, . . ., where C0 is the
initial configuration and Ci → Ci+1, for all i ≥ 0. We only
consider fair executions, so we require that for every pair
of configurations C and C′ such that C → C′, if C occurs
infinitely often in the execution then so does C′. In most
cases, we assume that interactions are chosen by a uniform
random scheduler which in every step selects independently

and uniformly at random one of the permitted interactions.
The uniform random scheduler is fair with probability 1. In
this work, with high probability (abbreviated w.h.p.) means
with probability at least 1− 1/nc for some constant c ≥ 1.

We define the output of a configuration C as the set of
shapes Gout(C) = (Vs, Es) where Vs = {u ∈ V : CV (u) ∈
Qout} and Es = A(C) ∩ {(v1, p1)(v2, p2) : v1 6= v2 ∈ Vs and
p1, p2 ∈ P}. In words, the output shapes of a configuration
consist of those nodes that are in output states and those
edges between them that are active. Throughout this work,
we are interested in obtaining a single shape as the final out-
put of the protocol. As already mentioned, our main focus
will be on terminating protocols. In this case, we assume
that Qout ⊆ Qhalt ⊆ Q, where, for all qhalt ∈ Qhalt, every
rule containing qhalt is ineffective.

Definition 2. We say that an execution of a protocol on
n processes constructs (stably constructs) a shape G, if it
terminates (stabilizes, resp.) with output G.

Every 2D shapeG has a unique minimum 2D rectangle RG

enclosing it. RG is a shape with its nodes labeled from {0, 1}.
The nodes of G are labeled 1, the nodes in V (RG)\V (G)
are labeled 0, and all edges are active. It is like filling G
with additional nodes and edges to make it a rectangle. In
fact, RG can also be constructed by a protocol, given G (see
the full paper). The dimensions of RG are defined by hG,
which is the horizontal distance between a leftmost node
and a rightmost node of the shape (x-dimension), and vG,
which is the vertical distance between a highest and a lowest
node of the shape (y-dimension). Let also max dimG :=
max{hG, vG} and min dimG := min{hG, vG}. Then RG

can be extended by max dimG −min dimG extra rows or
columns, depending on which of its dimensions is smaller, to
yield a max dimG ×max dimG square SG enclosing G (we
mean here a {0, 1}-node-labeled square, as above, in which
G can be identified). Observe, that such a square is not
unique. For example, if G is a horizontal line of length d
(i.e. hG = d and vG = 1) then it is already equal to RG and
has to be extended by d−1 rows to become SG. These rows
can be placed in d distinct ways relative to G, but all these
squares have the same size max dimG×max dimG denoted
by |SG|.

A 2D (3D) shape language L is a subset of the set of all
possible 2D (3D) shapes. We restrict our attention here
to shape languages that contain a unique shape for each
possible maximum dimension of the shape. In this case,
it is equivalent, and more convenient, to translate L to a
language of labeled squares. In particular, we define in this
work a shape language L by providing for every d ≥ 1 a single
d×d square with its nodes labeled from {0, 1}. Such a square
may also be defined by a d2-sequence Sd = (s0, s1, . . . , sd2−1)
of bits or pixels, where sj ∈ {0, 1} corresponds to the jth
node as follows: We assume that the pixels are indexed in a
“zig-zag” fashion, beginning from the bottom left corner of
the square, moving to the right until the bottom right corner
is encountered, then one step up, then to the left until the
node above the bottom left corner is encountered, then one
step up again, then right, and so on. The shape Gd defined
by Sd, called the shape of Sd, is the one induced by the nodes
of the square that are labeled 1 and throughout this work
we assume that max dimGd = d.

For simulation purposes, we also need to introduce appro-
priate shape-constructing Turing Machines (TMs). We now

describe such a TM M : M ’s goal is to construct a shape on
the pixels of a

√
n × √n square, which are indexed in the

zig-zag way described above. M takes as input an integer
i ∈ {0, 1, . . . , n − 1} and the size n or the dimension

√
n of

the square (all in binary) and decides whether pixel i should
belong or not to the final shape, i.e. if it should be on or off,
respectively. 1 Moreover, in accordance to our definition of
a shape, the construction of the TM, consisting of the pixels
that M accepts (as on) and the active connections between
them, should be connected (i.e. it should be a single shape).

Definition 3. We say that a shape language L = (S1, S2,
S3, . . .) is TM-computable (or TM-constructible) in space
f(d), if there exists a TM M (as defined above) such that,
for every d ≥ 1, when M is executed on the pixels of a
d × d square results in Sd (in particular, on input (i, d),
where 0 ≤ i ≤ d2 − 1, M gives output Sd[i]), by using space
O(f(d)) in every execution.

Definition 4. We say that a protocol A constructs a
shape language L with useful space g(n) ≤ n, if g(n) is
the greatest function for which: (i) for all n, every execu-
tion of A on n processes constructs a shape G ∈ L 2 of
order at least g(n) (provided that such a G exists) and, ad-
ditionally, (ii) for all G ∈ L there is an execution of A on
n processes, for some n satisfying |V (G)| ≥ g(n), that con-
structs G. Equivalently, we say that A constructs L with
waste n− g(n).

We now give as an illustrating example, a stabilizing pro-
tocol for the problem of constructing a spanning square.
More protocols are given in the full paper. We assume,
for simplicity, that

√
n is integer and that there is a pre-

elected unique leader in state Lu and all other nodes are ini-
tially in state q0. The effective rules are (Lu, u), (q0, d), 0→
(q1, Lr, 1), (Lr, r), (q0, l), 0→ (q1, Ld, 1), (Ld, d), (q0, u), 0→
(q1, Ll, 1), (Ll, l), (q0, r), 0→ (q1, Lu, 1), (Lu, u), (q1, d), 0→
(Ll, q1, 1), (Lr, r), (q1, l), 0→ (Lu, q1, 1), (Ld, d), (q1, u), 0→
(Lr, q1, 1), and (Ll, l), (q1, r), 0→ (Ld, q1, 1).

The protocol first constructs a 2 × 2 square. When it
is done, the leader is at the bottom-right corner and is in
state Ld. In general, whenever the leader is at the left (the
up, right, and down cases are symmetric) of the already
constructed square it tries to move right in order to walk
above the square. If it does not succeed, it is because it
has not yet passed over the upper boundary, so it activates
the edge to the right, takes another step up and then tries
again to move right. In this way, the leader always grows
the square perimetrically and clockwise.

3. PROBABILISTIC COUNTING
In this section, we consider the problem of counting n.

In particular, we assume a uniform random scheduler and
we want to give protocols that always terminate but still
w.h.p. count n correctly (or a satisfactory upper bound on
n). The importance of such protocols is further supported
by the fact that we cannot guarantee anything much better
than this. In particular, if we require a population protocol

1Note that if the TM is not provided with the square size
together with the pixel, then it can only compute uni-
form/symmetric shapes that are independent of n.
2G is the shape of a labeled square S ∈ L in case L is defined
in terms of such squares.

to always terminate and additionally to always be correct,
then we immediately obtain an impossibility result.

In Section 3.1, we present a protocol with a unique leader
that solves w.h.p. the counting problem and always termi-
nates. To the best of our knowledge, this is the first pro-
tocol of this sort in the relevant literature. Additionally,
this protocol is crucial because all of our generic construc-
tors, that are developed in Section 4, are terminating by
assuming knowledge of n (stored distributedly on a line of
length logn). They obtain access to this knowledge w.h.p.
by executing the counting protocol as a subroutine. Finally,
knowing n w.h.p. allows to develop protocols that exploit
sequential composition of (terminating) subroutines, which
makes them much more natural and easy to describe than
the protocols in which all subroutines are executed in paral-
lel and perpetual reinitializations is the only means of guar-
anteeing eventual correctness (the latter is the case e.g. in [8,
10, 12], but not in [13] which was the first extension to allow
for sequential composition based on some non-probabilistic
assumptions). In Section 3.2 we establish that if the nodes
have unique ids (UIDs) then it is possible to solve the prob-
lem without a unique leader.

3.1 Fast Probabilistic Counting With a Leader
Keep in mind that in order to simplify the discussion, a

sort of population protocol is presented here. So, there are
no ports, no geometry, and no activations/deactivations of
connections. In every step, a uniform random scheduler se-
lects equiprobably one of the n(n−1)/2 possible node pairs,
and the selected nodes interact and update their states ac-
cording to the transition function. The only difference from
the classical population protocols is that a distinguished
leader node has unbounded local memory (of the order of n).
Later, in Section 4.1, we will adjust the protocol to make it
work in our model (thus also dropping this unbounded local
memory assumption).

Counting-Upper-Bound Protocol: There is initially a
unique leader l and all other nodes are in state q0. As-
sume that l has two n-counters in its memory, initially both
set to 0. So, the state of l is denoted as l(r0, r1), where
r0 is the value of the first counter and r1 the value of the
second counter, 0 ≤ r0, r1 ≤ n. The rules of the proto-
col are (l(r0, r1), q0) → (l(r0 + 1, r1), q1), (l(r0, r1), q1) →
(l(r0, r1 + 1), q2), and (l(r0, r1), ·)→ (halt, ·) if r0 = r1.

Observe that r0 counts the number of q0s in the population
while r1 counts the number of q1s. Initially, there are n− 1
q0s and no q1s. Whenever l interacts with a q0, r0 increases
by 1 and the q0 is converted to q1. Whenever l interacts
with a q1, r1 increases by 1 and the q1 is converted to q2.
The process terminates when r0 = r1 for the first time. We
also give to r0 an initial head start of b, where b can be any
desired constant. So, initially we have r0 = b, r1 = 0 and
i = #q0 = n−b−1, j = #q1 = b (this can be easily achieved
by the protocol). So, we have two competing processes, one
counting q0s and the other counting q1s, the first one begins
with an initial head start of b and the game ends when the
second catches up the first. We now prove that when this
occurs the leader will almost surely have already counted at
least half of the nodes.

Theorem 1. The above protocol halts in every execution.
Moreover, if the scheduler is a uniform random one, when
this occurs, w.h.p. it holds that r0 ≥ n/2.

j
i

q0
q0

q0
q0

q0

q1

q1

q1

q1

q0

q0

q0

q0

r1

q2

q2

r0

q0

q0

q0

Figure 1: A configuration of the system (excluding
the leader).

Proof. The random variable i denotes the number of q0s
and j denotes the number of q1s in the configuration, where
initially i = n − b − 1 and j = b. Observe also that all the
following hold: j = r0 − r1, r0 ≥ r1, r1 = (n− 1)− (i+ j),
and r0 + r1 is equal to the number of effective interactions
(see Figure 1).

Given that we have an effective interaction, the probabil-
ity that it is an (l, q0) is pij = i/(i+ j) and the probability
that it is an (l, q1) is qij = 1− pij = j/(i+ j). This random
process may be viewed as a random walk (r.w.) on a line
with n+ 1 positions 0, 1, . . . , n where a particle begins from
position b and there is an absorbing barrier at 0 and a reflect-
ing barrier at n. The position of the particle corresponds to
the difference r0−r1 of the two counters which is equal to j.
Observe now that if j ≥ n/2 then r0−r1 ≥ n/2⇒ r0 ≥ n/2,
so it suffices to consider a second absorbing barrier at n/2.
The particle moves forward (i.e. to the right) with prob-
ability pij and backward with probability qij . This is a
“difficult” r.w. because the transition probabilities not only
depend on the position j but also on the sum i + j which
decreases in time. In particular, the sum decreases when-
ever an (l, q1) interaction occurs, in which case a q1 becomes
q2. Observe also that, in our case, the duration of the r.w.
can be at most n − b, in the sense that if the particle has
not been absorbed after n − b steps then we have success.
The reason for this is that n− b effective interactions imply
that r0 + r1 = n, but as r0 ≥ r1, we have r0 ≥ n/2. In
fact, r0 ≥ n/2 ⇔ j + r1 ≥ n/2. We are interested in up-
per bounding P[failure] = P[reach 0 before r0 ≥ n/2 holds],
which is in turn upper bounded by the probability of reach-
ing 0 before reaching n/2 and before n− b effective interac-
tions have occurred (this is true because, in the latter event,
we have disregarded some winning conditions). It suffices
to bound the probability of reaching 0 before n effective in-
teractions have occurred. Thus, we have r0 + r1 ≤ n but
r1 ≤ r0 ⇒ 2r1 ≤ r0 + r1, thus 2r1 ≤ n ⇒ r1 ≤ n/2 ⇒
(n − 1) − (i + j) ≤ n/2 ⇒ i + j ≥ (n/2) − 1 = n′. And if
we set n′ = (n/2)− 1 we have i+ j ≥ n′. Moreover, observe
that when r0 + r1 = n+ 1 we have n+ 1 = r0 + r1 ≤ 2r0 ⇒
r0 ≥ n/2. In summary, during the first n effective inter-
actions, it holds that i + j ≥ n′ = (n/2) − 1 and when
interaction n + 1 occurs it holds that r0 ≥ n/2, that is, if
the process is still alive after time n, then r0 has managed
to count up to n/2 and the protocol has succeeded.

Now, i+j ≥ n′ implies that pj ≥ (n′−j)/n′ and qj ≤ j/n′
so that now the probabilities only depend on the position j.
This is the well-studied Ehrenfest r.w. coming from the
theory of brownian motion [5, 9]. We will reduce this walk

to one in which the probabilities do not depend on j by
restricting it to the prefix [0, b] of the line. In this part, it
holds that j ≤ b which implies that p ≥ (n′ − b)/n′ and
q ≤ b/n′. Now we set p = (n′− b)/n′ and q = b/n′. Observe
that this may only increase the probability of failure. Recall
that initially the particle is on position b. Imagine now an
absorbing barrier at 0 and another one at b. Whenever the
r.w. is on b − 1 it will either return to b before reaching 0
or it will reach 0 (and fail) before returning to b. Due to
symmetry it is equivalent to assume that the particle begins
from position 1, moves forward with probability p′ = q,
backward with probability q′ = p, and it fails at b. Thus, it
is equivalent to bound P[reach b before 0 (when beginning
from 1)], i.e. the probability of winning in the classical ruin
problem analyzed e.g. in [6] page 345. If we set x = q′/p′ =
p/q = (n′ − b)/b we have that: P[reach b before 0] = 1 −
xb−x
xb−1

= x−1
xb−1

≤ x
xb−1

≈ 1
xb−1 ≈ 1

nb−1 . Thus, whenever the

original walk is on b−1, the probability of reaching 0 before
reaching b again, is at most 1/nb−1. Now assume that we
repeat the above walk n times, i.e. we place the particle on
b− 1, play the game, then if it returns to b we put again the
particle on b− 1 and play the game again, and so on. From
Boole-Bonferroni inequality, we have that:
P[fail at least once] ≤ ∑n

m=1 P[fail at repetition m] ≤∑n
m=1

1
nb−1 = n

nb−1 = 1
nb−2 .

Remark 1. For the Counting-Upper-Bound protocol to
terminate, it suffices for the leader to meet every other node
twice. This takes twice the expected time of a meet every-
body (cf. [12]), thus the expected running time of Counting-
Upper-Bound is O(n2 logn) (interactions).

Remark 2. When the Counting-Upper-Bound protocol ter-
minates, w.h.p. the leader knows an r0 which is between n/2
and n. So any subsequent routine can use directly this esti-
mation and pay in an a priori waste which is at most half
of the population. In practice, this estimation is expected to
be much closer to n than to n/2 (in all of our experiments
for up to 1000 nodes, the estimation was always close to
(9/10)n and usually higher). On the other hand, if we want
to determine the exact value of n and to have no a priori
waste, then we can have the leader wait an additional large
polynomial (in r0) number of steps, to ensure that the leader
has met every other node w.h.p..

In the full paper, we also give some evidence that the
unique leader assumption is probably necessary, but leave it
as an interesting open question. In contrast, we show in the
next section that it can be dropped if UIDs are available.

3.2 Counting Without a Leader but With UIDs
Now nodes have unique ids from a universe U . Nodes ini-

tially do not know the ids of other nodes nor n. The goal is
again to count n w.h.p.. All nodes execute the same program
and no node can initially act as unique leader, because nodes
do not know which ids from U are actually present in the
system. Nodes have unbounded memory but we try to min-
imize it, e.g. if possible store only up to a constant number
of other nodes’ ids. We show that under these assumptions,
the counting problem can be solved without the necessity of
a unique leader.

The idea of the protocol is to have the node with the
maximum id in the system to perform the same process as
the unique leader in the protocol with no ids of Theorem

1. Of course, initially all nodes have to behave as if they
were the maximum (as they do not know in advance who the
maximum is) and we must also guarantee that no other node
ever terminates (with sufficiently large probability) early,
giving as output a wrong count.

Informal description: Every node u has a unique id
idu and tries to simulate the behavior of the unique leader
of the protocol of Theorem 1. In particular, whenever it
meets another node for the first time it wants to mark it
once and the second time it meets that node it wants to
mark it twice, recording the number of first-meetings and
second-meetings in two local counters. The problem is that
now many nodes may want to mark the same node. One
idea, of course, could be to have a node remember all the
nodes that have marked it so far but we want to avoid this
because it requires a lot of memory and communication.
Instead, we allow a node to only remember a single other
node’s id at a time. Every node tries initially to increase
its first-meetings counter to b so that it creates an initial b
head start of this counter w.r.t. the other. Every node that
succeeds, starts executing its main process. The main idea
is that whenever a node u interacts with another node that
either has or has been marked by an id greater than idu, u
becomes sleeping and stops counting. This guarantees that
only umax will forever remain awake. Moreover, every node
u always remembers the maximum id that has marked it
so far, so that the probabilistic counting process of a node
u can only be affected by nodes with id greater than idu
and, as a result, no one can affect the counting process of
umax. The formal protocol and the proof that it correctly
simulates the counting process of Theorem 1, thus providing
w.h.p. an upper bound on n, can be found in the full paper.

4. GENERIC CONSTRUCTORS
In this section, we give a characterization for the class

of constructible 2D shape languages. In particular, we es-
tablish that shape constructing TMs (defined in Section 2),
can be simulated by our model and therefore we can real-
ize their output-shape in the actual distributed system. To
this end, we begin in Section 4.1 by adapting the Counting-
Upper-Bound protocol of Section 3.1 to work in our model.
The result is w.h.p. a line of length Θ(logn), containing
n in binary, and having a unique leader. Then, in Section
4.2 the leader exploits the knowledge of n to construct a√
n × √n square. In the sequel (Section 4.3), it simulates

the TM on the square n distinct times, one for each pixel of
the square. Each time, the input provided to the TM is the
index of the pixel and

√
n, both in binary. Each simulation

decides whether the corresponding pixel should be on or off.
When all simulations have completed, the leader releases in
the solution the connected shape consisting of the on pixels
and the active edges between them. The connections of all
other (off) pixels become deactivated and the corresponding
nodes become free (isolated) nodes in the solution.

4.1 Storing the Count on a Line
We begin by adapting the Counting-Upper-Bound proto-

col of Theorem 1 so that when the protocol terminates the
final correct count is stored distributedly in binary on an
active line of length logn.

Counting-on-a-Line Protocol: The probabilistic process
that is being executed is essentially the same as that of

the Counting-Upper-Bound protocol. Again the protocol
assumes a unique leader that forever controls the process.
A difference now is that every node has four ports (in the
2D case). The leader operates as a TM that stores the r0
and r1 counters in its tape in binary. The ith cell of the tape
has two components, one storing the ith bit of r0 and the
other storing the ith bit of r1. We say that the tape is full,
if the bits of all r0 components of the tape are set to 1. The
tape of the TM is the active line that the leader has formed
so far, each node in the line implementing one cell of the
tape. Initially the tape consists of a single cell, stored in the
memory of the unique leader node. As in Counting-Upper-
Bound, the leader first tries to obtain an initial advantage
of b for the r0 counter. To achieve the advantage, the leader
does not count the q1s that it interacts with until it holds
that r0 ≥ b. Observe that the initial length of the tape is
not sufficient for storing the binary representation of b (of
course b is constant so, in principle, it could be stored on
a single node, however we prefer to keep the description as
uniform as possible). In order to resolve this, the leader does
the following. Whenever it meets the left port of a q0 from
its right port, if its tape is not full yet, it switches the q0 to
q1, leaving it free to move in the solution, and increases the
r0 counter by one. To increase the counter, it freezes the
probabilistic process (that is, during freezing it ignores all
interactions with free nodes), and starts moving on its tape,
which is a distributed line attached to its left port. After
incrementing the counter, the leader keeps track of whether
the tape is now full and then it moves back to the right end-
point of the line to unfreeze and continue the probabilistic
process. On the other hand, if the tape is full, it binds the
encountered q0 to its right by activating the connection be-
tween them (thus increasing the length of the tape by one),
then it reorganizes the tape, it again increases r0 by one,
and finally moves back to the right endpoint to continue
the probabilistic process. This time, the leader also records
that it has bound a q0 that should have been converted to
q1. This debt is also stored on the tape in another counter
r2. Whenever the leader meets a q2, if r2 ≥ 1, it converts q2
to q1 and decreases r2 by one. So, q2s may be viewed as a
deposit that is used to pay back the debt. In this manner,
the q0s that are used to form the tape of the leader are not
immediately converted to q1 when first counted. Instead,
the missing q1s are introduced at a later time, one after ev-
ery interaction of the leader with a q2, and all of them will
be introduced eventually, when a sufficient number of q2s
will become available. Finally, whenever the leader inter-
acts with the left port of a q1 from its right port, it freezes,
increases the r1 counter by one (observe that r0 ≥ r1 always
holds, so the length of the tape is always sufficient for r1
increments), and checks whether r0 = r1. If equality holds,
the leader terminates, otherwise it moves back to the right
endpoint and continues the process. Correctness is captured
by the following lemma.

Lemma 1. Counting-on-a-Line protocol terminates in ev-
ery execution. Moreover, when the leader terminates, w.h.p.
it has formed an active line of length logn containing n in
binary in the r0 components of the nodes of the line (each
node storing one bit).

Proof. We begin by showing that the probabilistic pro-
cess of the Counting-Upper-Bound protocol is not negatively
affected in the Counting-on-a-Line protocol. This implies

that the high probability argument of Theorem 1 holds also
for Counting-on-a-Line. First, observe that the four ports of
the nodes introduce more choices for the scheduler in every
step. However, these new choices, if treated uniformly, re-
sult in the same multiplicative factor for both the “positive”
(an (l, q0) interaction) and the “negative” (an (l, q1) inter-
action) events, so the probabilities of the process are not
affected at all by this. Moreover, neither the debt affects
the process. The reason is that the only essential differ-
ence w.r.t. to the process is that the conversion of some
counted q0s to the corresponding q1s is delayed. But this
only decreases the probability of early termination and thus
of failure. It remains to show that not even a single q1 re-
mains forever as debt, because, otherwise, some executions
of the protocol would not terminate. The reason is that
the protocol cannot terminate before converting all the q1s
plus the debt to q2. To this end, observe that the line of
the leader has always length blg r0c + 1, thus r2 ≤ blg r0c,
because the debt is always at most the length of the line
excluding the initial leader. So, at least r0 − blg r0c nodes
have been successfully converted from q0 to q1 which im-
plies that there is an eventual deposit of at least r0−blg r0c
nodes in state q2. These q2s are not immediately available,
but they will become available in the future, because every
interaction of the leader with a q1 results in a q2. Finally,
observe that r0−blg r0c ≥ blg r0c holds for all r0 ≥ 1. Thus,
r0 − blg r0c ≥ r2, which means that the eventual deposit is
not smaller than the debt, so the protocol eventually pays
back its debt and terminates.

4.2 Constructing a √n×√n Square
We now show how to organize the nodes into a spanning

square, i.e. a
√
n×√n one. As before, we assume that

√
n

is integer and that the leader has n stored in its line (w.h.p.)
after executing the Counting-on-a-Line subroutine. Observe
that knowledge of n allows the protocol to terminate after
constructing the square and to know that the square has
been successfully constructed.

Square-Knowing-n Protocol: The initial leader L first
computes

√
n on its line by any plausible algorithm and

then expands its line to the right by attaching free nodes
to make its length

√
n. Then it exploits the down ports

to create a replica of its line. The replica has also length√
n and has its own leader but in a distinguished state Ls.

This new line plays the role of a seed that starts creating
other self-replicating lines of length

√
n. In particular, the

seed attaches free nodes to its down ports, until all positions
below the line are filled by nodes and additionally all hori-
zontal connections between those nodes are activated. Then
it introduces a leader Lr to one endpoint of the replica and
starts deactivating the vertical connections to release the
new line of length

√
n. These lines with Lr leaders are to-

tally self-replicating, meaning that their children also begin
in state Lr. The initial leader L waits until the up ports of
a non-seed replica r become totally aligned with the down
ports of the square segment that has been constructed so
far. So, initially it waits until a replica becomes attached to
the lower side of its own line. When this occurs, it activates
all intermediate vertical connections to make the construc-
tion rigid, increments a row-counter by one (initially 0), and
moves to the new lowest row. If at the time of attachment
r was in the middle of an incomplete replication, then there

Lr

Ls
seed replica

replicas

L

Lr

Lr Lr

LrLr

free nodes

square segment

√
n

original line

Lr

Figure 2: The seed at the top has created another
replica which has just been released in the solution.
At the bottom appears the square segment that has
been constructed so far. A replica has just arrived
(from below) and will be attached to the segment.

will be nodes attached to the down ports of r. L releases all
these nodes, by deactivating the active connections of r to
them, and then waits for another non-seed replica to arrive.
When the row-counter becomes equal to

√
n− 1, the leader

for the first time accepts the attachment of the seed to its
construction and when the seed is successfully attached the
leader terminates. This completes the construction of the√
n×√n square. See Figure 2 for an illustration.
The reason for attaching the seed last, and in particular

when no further free nodes have remained, is that otherwise
self-replication could possibly cease in some executions. Ob-
serve also that we have allowed the L-leader to accept the
attachment of a replica to the square segment even though
the replica may be in the middle of an incomplete replica-
tion. This is important in order to avoid reaching a point at
which some free lines are in the middle of incomplete repli-
cations but there are no further free nodes for any of them
to complete. For a simple example, consider the seed and
a replica r and

√
n free nodes (all other nodes have been

attached to the square segment). It is possible that
√
n− 1

of the free nodes become attached to the seed and the last
free node becomes attached to r. We have overcome this
deadlock by allowing L to accept the attachment of r to the
square segment. When this occurs, the free node will be
released and eventually it will be attached to the last free
position below the seed.

We now give, in Protocol 1, one of the possible codes for
replicating the lines. We present a version that does not
use the line’s leader in order to successfully self-replicate.
A direct replication controlled by the leader is simpler to
conceive but its code is lengthy (it can be found in the full
paper). Without loss of generality, we assume that one line
has e on both of its endpoints and i on the internal nodes,
and every (free) node is in state q0. The protocol works
as follows. Free nodes are attached below the nodes of the
original line. When a node is attached below an internal
node i, both become i1 and when a node is attached below
an endpoint e, both become e1. Moreover, adjacent nodes of

the replica connect to each other and every such connection
increases their index, so that their index counts their degree.
An internal node of the replica can detach from the original
line only when it has degree 3, that is when, apart from its
vertical connection, it has also already become connected to
both a left and a right neighbor on the replica. On the other
hand, an endpoint detaches when it has a single internal
neighbor. It follows that the replica can only detach when its
length (counted in number of horizontal active connections)
is equal to that of the original line. To see this, assume
that a shorter line detaches at some point. Clearly, such a
line must have at least one endpoint that corresponds to an
internal node ij of the replica. But this node is an endpoint
of the shorter line, so its degree is less than 3, i.e. j < 3,
and we conclude that it cannot have detached. To make the
protocol also replicate the leader-state simply replace one
e with L, Ls, or Lr and map it to Ls, Lr, Lr, resp., in the
replica, when detaching.

Protocol 1 No-Leader-Line-Replication

Q = {q0, e, e1, i, i1, i2, i3}
δ:

(i, d), (q0, u), 0→ (i1, i1, 1)

(e, d), (q0, u), 0→ (e1, e1, 1)

(ij , r), (ik, l), 0→ (ij+1, ik+1, 1) for all j, k ∈ {1, 2}
(i1, r), (e1, l), 0→ (i2, e2, 1)

(i2, r), (e1, l), 0→ (i3, e2, 1)

(e1, r), (i1, l), 0→ (e2, i2, 1)

(e1, r), (i2, l), 0→ (e2, i3, 1)

(i3, u), (i1, d), 1→ (i, i, 0)

(e2, u), (e1, d), 1→ (e, e, 0)

Lemma 2. There is a protocol (described above) that when
executed on n nodes (for all n with integer

√
n) w.h.p. con-

structs a
√
n×√n square and terminates.

4.3 Simulating a TM
We now assume as given (from the discussion of the pre-

vious section) a
√
n × √n square with a unique leader L

at the bottom left corner. However, keep in mind that, in
principle, the simulation described here can begin before the
construction of the

√
n ×√n square is complete. The only

difference in this case, is that the two processes are exe-
cuted in parallel and if at some point the TM needs more
space, it has to wait until it becomes available. The square
may be viewed as a TM-tape of length n traversed by the
leader in a “zig-zag” fashion, first moving to the right un-
til the bottom right corner is encountered, then one step
up, then to the left until the node above the bottom left
corner is encountered, then one step up again, then right,
and so on. To simplify this process, we may assume that a
preprocessing has marked appropriately the turning points.
The tape will be used to simulate a TM M of the form de-
scribed in the Section 2. The n pixels of the square are
numbered according to the above zig-zag process beginning
from the bottom left node, each node corresponding to one
pixel. The space available to the TM is exponential in the
binary representation of the input (i, n) (or (i,

√
n)), because

i ≤ n − 1 and therefore the length of its binary representa-
tion |i| = O(logn), thus |(i, n)| = O(logn), but the available

space is Θ(n) = Θ(2logn) = Ω(2|(i,n)|) (still it is linear in the
size of the whole shape to be constructed).

The protocol invokes n distinct simulations of M , one for
each of the pixels i ∈ {0, 1, . . . , n− 1}, beginning from i = 0
and every time incrementing i by one. The leader maintains
the current value of i in binary, in a pixel-counter pixel
stored in the O(logn) leftmost cells of the tape. Recall that
the leader knows n from the procedures of the previous sec-
tions. So, we may assume that the tape also holds in advance
n and

√
n in binary (again in the leftmost cells). Initially

pixel = 0 and the leader marks the 0th node, that is the
bottom left corner of the square. Then it simulates M on
input (pixel,

√
n). When M decides, if its decision is accept,

the leader marks the node corresponding to pixel as on, oth-
erwise it marks it as off. Then the leader increments pixel
by one, marks the node corresponding to the new value of
pixel (which is the next node on the tape), clears the tape
from residues of the previous simulation, invokes another
simulation of M on the new value of pixel, and marks the
corresponding node as on or off according to M ’s decision.
The process stops when pixel = n, in which case no further
simulation is executed. When this occurs, the leader starts
walking the tape in the opposite direction until it reaches
the bottom left corner. In the way, it deactivates all con-
nections involving at least one off node, leaving active only
the connected 2D shape consisting of the on nodes.

The following theorem states the lower bound implied by
the construction described in this section.

Theorem 2. Let L = (S1, S2, . . .) be a connected 2D shape
language, such that L is TM-computable in space d2. Then
there is a protocol (described above) that w.h.p. constructs
L. In particular, for all d ≥ 1, whenever the protocol is
executed on a population of size n = d2, w.h.p. it con-
structs Sd and terminates. In the worst case, when Gd

(that is, the shape of Sd) is a line of length d, the waste
is (d− 1)d = O(d2) = O(n).

Remark 3. If the system designer knew n in advance,
then he/she could preprogram the nodes to simulate a TM
that constructs a specific shape of size n, e.g. the TM corre-
sponding to the Kolmogorov complexity of the shape. In this
work, n is not known in advance, so we had to preprogram
the nodes with a TM that can work for all n.

Remark 4. The above results can be immediately modi-
fied to construct patterns instead of shapes. The idea is to
keep the same constructor as above and simulate TMs that
for every pixel output a color from a set of colors C.

Remark 5. In all the above constructions the unique lea-
der assumption can be dropped in the price of sacrificing ter-
mination. In this case, the constructions become stabilizing
by the reinitialization technique, as e.g. in [12], but should
be carefully rewritten.

4.4 Parallelizing the Simulations
We now present an approach for parallelizing the simula-

tions. Assume that there is a TM M deciding each pixel in
space k, that k and d are computable in space O(n), and
that n = k · d2.

The leader, instead of constructing a square, constructs
now a spanning line of length d2, say in the x dimension,

corresponding to a linear expansion of the pixels of a d× d
square. Moreover, the leader creates a seed of length k − 1
and uses it to partition the rest of the nodes into lines of
length k − 1 in the y dimension. Each such line will be at-
tached below one of the nodes of the x-line. When all y-lines
have been attached, the leader, for all 0 ≤ i ≤ d2 − 1, ini-
tializes the memory of the line attached below pixel i with
(i, d). Then all simulations of M are executed in parallel
and eventually each one of them sets its x-pixel to either on
or off. When all simulations have ended, the leader releases
the y-lines and then partitions the x-line into consecutive
segments of length d (see Figure 3(a)). Each segment cor-
responds to a row of the d× d square to be constructed. In
particular, segment i ≥ 1 (counting from left) corresponds
to row i (bottom-up). Moreover, if i is even (odd), segment i
should match with its upper (lower) side to the upper (lower)
side of segment i − 1. The leader marks appropriately the
nodes of each segment to make them aware of the orientation
that they should have in the square. Moreover, it assigns a
unique key-marking to each segment so that segment i can
easily and locally detect segment i− 1. In particular, if i is
odd (even), it marks nodes i and i−1 of the segment count-
ing from left to right (right to left); see Figure 3(b). Then
the leader releases, one after the other, all segments. The
segments are free to move in the solution until they meet
and recognize their counterpart, and when this occurs the
two segments bind together. Eventually, the d× d square is
constructed and every pixel is in the correct position. The
leader can detect this and release the constructed shape con-
sisting of the on pixels.

5. CONCLUSION AND OPEN PROBLEMS
There are several interesting open problems related to the

findings of this work. A very intriguing problem is to give
a proof, or strong experimental evidence (we have already
some preliminary such evidence), that there is no analogue
of Theorem 1 if all processes are identical (i.e. no unique
leader). A possibility left open then would be to achieve
high probability counting with f(n) leaders. There is also
work to be done w.r.t. analyzing the running times of our
protocols and our generic constructors and proposing more
efficient solutions. Also it is not yet clear whether the proto-
col of Section 3.1 is the fastest possible nor that its success
probability or the upper bound on n that it guarantees can-
not be improved; a proof would be useful. Moreover, it is
not obvious what is the class of shapes and patterns that the
TMs considered here compute. Of course, it was sufficient
as a first step to draw the analogy to such TMs because it
helped us establish that our model is quite powerful. How-
ever, still we would like to have a characterization that gives
some more insight to the actual shapes and patterns that
the model can construct.

A possible refinement of the model could be a distinction
between the speed of the scheduler and the internal opera-
tion speed of a component. Such a distinction is very nat-
ural, because a connected component should operate at a
different speed than it takes for the scheduler to bring two
nodes into contact. It would also be interesting to consider
for the first time a hybrid model combining active mobility
controlled by the protocol and passive mobility controlled
by the environment.

There is also work to be done towards the development
of even more applied models (e.g. variations of the one pro-

L
d1 2

3

4 5

(a)
1

2

3

4

5

(b)

Figure 3: (a) d2 lines of length k − 1 each, are pendent below the d2 pixels. The pixels are arranged linearly
in dimension x and have been partitioned into equal segments of length d each (see the black delimiters). (b)
The segments have been released in the solution, and now they have to gather together and form the square.

posed here) that take other real physical considerations into
account. In this work, we have restricted attention on some
geometrical constraints. Other properties of interest could
be weight, mass, strength of bonds, rigid and elastic struc-
ture, collisions, and the interplay of these with the interac-
tion pattern and the protocol. Moreover, in real applications
mere shape construction will not be sufficient. Typically, we
will desire to output a shape/structure that optimizes some
global property, like energy and strength, or that achieves a
desired behavior in the given physical environment.

Finally, it would be interesting to develop routines that
can rapidly reconstruct broken parts. For example, imagine
that a shape has stabilized but a part of it detaches, all the
connections of the part become deactivated, and all its nodes
become free. Can we detect and reconstruct the broken part
efficiently (and without resetting the whole population and
repeating the construction from scratch)? What knowledge
about the whole shape should the nodes have in order to be
able to reconstruct missing parts of it?

Acknowledgments: The author would like to thank D.
Amaxilatis and M. Logaras for implementing (in Java) the
counting protocol of Section 3.1 and experimentally verifying
its correctness and also D. Doty for a few fruitful discussions
on the same protocol at the very early stages of this work.

6. REFERENCES
[1] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and

R. Peralta. Computation in networks of passively
mobile finite-state sensors. Distributed Computing,
pages 235–253, March 2006.

[2] D. Angluin, J. Aspnes, and D. Eisenstat. Fast
computation by population protocols with a leader.
Distributed Computing, 21(3):183–199, September
2008.

[3] J. Aspnes and E. Ruppert. An introduction to
population protocols. Bulletin of the European
Association for Theoretical Computer Science,
93:98–117, October 2007.

[4] D. Doty. Timing in chemical reaction networks. In
Proc. of the 25th Annual ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 772–784, 2014.

[5] P. Ehrenfest and T. Ehrenfest-Afanassjewa. Über zwei
bekannte einwände gegen das boltzmannsche
h-theorem. Phys.Zeit., 8:311–314, 1907.

[6] W. Feller. An Introduction to Probability Theory and
Its Applications, Vol. 1, 3rd Edition, Revised Printing.
Wiley, 1968.

[7] S. C. Goldstein, J. D. Campbell, and T. C. Mowry.
Programmable matter. Computer, 38(6):99–101, 2005.

[8] R. Guerraoui and E. Ruppert. Names trump malice:
Tiny mobile agents can tolerate byzantine failures. In
36th International Colloquium on Automata,
Languages and Programming (ICALP), volume 5556
of LNCS, pages 484–495. Springer-Verlag, 2009.

[9] M. Kac. Random walk and the theory of brownian
motion. American Mathematical Monthly, pages
369–391, 1947.

[10] O. Michail, I. Chatzigiannakis, and P. G. Spirakis.
Mediated population protocols. Theoretical Computer
Science, 412(22):2434–2450, May 2011.

[11] O. Michail, I. Chatzigiannakis, and P. G. Spirakis.
New Models for Population Protocols. N. A. Lynch
(Ed), Synthesis Lectures on Distributed Computing
Theory. Morgan & Claypool, 2011.

[12] O. Michail and P. G. Spirakis. Simple and efficient
local codes for distributed stable network
construction. In Proceedings of the 33rd ACM
Symposium on Principles of Distributed Computing
(PODC), pages 76–85. ACM, 2014.

[13] O. Michail and P. G. Spirakis. Terminating population
protocols via some minimal global knowledge
assumptions. Journal of Parallel and Distributed
Computing (JPDC), 81:1–10, 2015.

[14] P. W. Rothemund. Folding dna to create nanoscale
shapes and patterns. Nature, 440(7082):297–302, 2006.

[15] M. Rubenstein, A. Cornejo, and R. Nagpal.
Programmable self-assembly in a thousand-robot
swarm. Science, 345(6198):795–799, 2014.

[16] J. L. Schiff. Cellular automata: a discrete view of the
world, volume 45. Wiley-Interscience, 2011.

[17] D. Woods, H.-L. Chen, S. Goodfriend, N. Dabby,
E. Winfree, and P. Yin. Active self-assembly of
algorithmic shapes and patterns in polylogarithmic
time. In Proceedings of the 4th conference on
Innovations in Theoretical Computer Science, pages
353–354. ACM, 2013.

[18] M. Zakin. The next revolution in materials. DARPA’s
25th Systems and Technology Symposium
(DARPATech), 2007.

	Introduction
	Our Approach-Contribution

	The Model
	Probabilistic Counting
	Fast Probabilistic Counting With a Leader
	Counting Without a Leader but With UIDs

	Generic Constructors
	Storing the Count on a Line
	Constructing a nn Square
	Simulating a TM
	Parallelizing the Simulations

	Conclusion and Open Problems
	References

