
Simple and Efficient Local Codes for Distributed Stable
Network Construction∗

Othon Michail
Computer Technology Institute & Press

“Diophantus” (CTI)
Patras, Greece

michailo@cti.gr

Paul G. Spirakis
Department of Computer Science, University of

Liverpool, Liverpool, UK
& CTI, Patras, Greece

P.Spirakis@liverpool.ac.uk

ABSTRACT
In this work, we study protocols so that populations of dis-
tributed processes can construct networks. In order to high-
light the basic principles of distributed network construction
we keep the model minimal in all respects. In particular, we
assume finite-state processes that all begin from the same
initial state and all execute the same protocol. Moreover,
we assume pairwise interactions between the processes that
are scheduled by a fair adversary. In order to allow processes
to construct networks, we let them activate and deactivate
their pairwise connections. When two processes interact, the
protocol takes as input the states of the processes and the
state of their connection and updates all of them. Initially
all connections are inactive and the goal is for the processes,
after interacting and activating/deactivating connections for
a while, to end up with a desired stable network. We give
protocols (optimal in some cases) and lower bounds for sev-
eral basic network construction problems such as spanning
line, spanning ring, spanning star, and regular network. The
expected time to convergence of our protocols is analyzed
under a uniform random scheduler. Finally, we prove sev-
eral universality results by presenting generic protocols that
are capable of simulating a Turing Machine (TM) and ex-
ploiting it in order to construct a large class of networks.
We additionally show how to partition the population into
k supernodes, each being a line of log k nodes, for the largest
such k. This amount of local memory is sufficient for the
supernodes to obtain unique names and exploit their names
and their memory to realize nontrivial constructions.

Categories and Subject Descriptors:
C.2.4 [Computer-communication Networks]: Distributed Sys-
tems; C.2.1 [Computer-communication Networks]: Network
Architecture and Design—distributed networks, network com-

∗Supported in part by the project FOCUS, implemented un-
der the “ARISTEIA” Action of the OP EdLL co-funded by
the EU (ESF) and Greek National Resources. Full version:
http://ru1.cti.gr/aigaion/?page=publication&kind=single&
ID=989

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’14, July 15–18, 2014, Paris, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2944-6/14/07 ...$15.00.
http://dx.doi.org/10.1145/2611462.2611466.

munications, network topology ; F.1.1 [Computation By Ab-
stract Devices]: Models of Computation—automata, com-
putability theory, unbounded-action devices; F.1.2 [Compu-
tation By Abstract Devices]: Modes of Computation—paral-
lelism and concurrency, probabilistic computation; J.2 [Com-
puter Applications]: Physical Sciences and Engineering—
Chemistry, Physics

Keywords: network construction; distributed protocol; in-
teracting automata; stabilization; population; fairness; ran-
dom schedule; structure formation; self-organization

1. INTRODUCTION

1.1 Motivation
Suppose a set of tiny computational devices (possibly at

the nanoscale) is injected into a human circulatory system
for the purpose of monitoring or even treating a disease.
The devices are incapable of controlling their mobility. The
mobility of the devices, and consequently the interactions
between them, stems solely from the dynamicity of the en-
vironment, the blood flow inside the circulatory system in
this case. Additionally, each device alone is incapable of
performing any useful computation, as the small scale of
the device highly constrains its computational capabilities.
The goal is for the devices to accomplish their task via co-
operation. To this end, the devices are equipped with a
mechanism that allows them to create bonds with other de-
vices (mimicking nature’s ability to do so). So, whenever
two devices come sufficiently close to each other and inter-
act, apart from updating their local states, they may also
become connected by establishing a physical connection be-
tween them. Moreover, two connected devices may at some
point choose to drop their connection. In this manner, the
devices can organize themselves into a desired global struc-
ture. This network-constructing self-assembly capability al-
lows the artificial population of devices to evolve greater
complexity, better storage capacity, and to adapt and opti-
mize its performance to the needs of the specific task to be
accomplished.

1.2 Our Approach
In this work, we study the fundamental problem of net-

work construction by a distributed computing system. The
system consists of a set of processes that are capable of per-
forming local computation (via pairwise interactions) and
of forming and deleting connections between them. Connec-
tions between processes can be either physical or virtual de-
pending on the application. In the most general case, a con-

nection between two processes can be in one of a finite num-
ber of possible states. For example, state 0 could mean that
the connection does not exist while state i ∈ {1, 2, . . . , k}, for
some finite k, that the connection exists and has strength
i. We consider here the simplest case, which we call the
on/off case, in which, at any time, a connection can either
exist or not exist, that is there are just two states for the
connections. If a connection exists we also say that it is
active and if it does not exist we say that it is inactive.
Initially all connections are inactive and the goal is for the
processes, after interacting and activating/deactivating con-
nections for a while, to end up with a desired stable network.
In the simplest case, the output-network is the one induced
by the active connections and it is stable when no connection
changes state any more.
Our aim in this work is to initiate this study by proposing

and studying a very simple, yet sufficiently generic, model
for distributed network construction. To this end, we assume
the computationally weakest type of processes. In particu-
lar, the processes are finite automata that all begin from
the same initial state and all execute the same finite pro-
gram which is stored in their memory (i.e. the system is
homogeneous). The communication model that we consider
is also very minimal. In particular, we consider processes
that are inhabitants of an adversarial environment that has
total control over the inter-process interactions. We model
such an environment by an adversary scheduler that oper-
ates in discrete steps selecting in every step a pair of pro-
cesses which then interact according to the common pro-
gram. This represents very well systems of (not necessarily
computational) entities that interact in pairs whenever two
of them come sufficiently close to each other. When two
processes interact, the program takes as input the states of
the interacting processes and the state of their connection
and outputs a new state for each process and a new state
for the connection. The only restriction that we impose on
the scheduler in order to study the constructive power of
the model is that it is fair, by which we mean the weak re-
quirement that, at every step, it assigns to every reachable
configuration of the system a non-zero probability to occur.
In other words, a fair scheduler cannot forever conceal an al-
ways reachable configuration of the system. Note that such
a generic scheduler gives no information about the running
time of our constructors. Thus, to estimate the efficiency of
our solutions we assume a uniform random scheduler, one
of the simplest fair probabilistic schedulers. The uniform
random scheduler selects in every step independently and
uniformly at random a pair of processes to interact from all
such pairs. What renders this model interesting is its ability
to achieve complex global behavior via a set of notably sim-
ple, uniform (i.e. with codes that are independent of the size
of the system), anonymous, homogeneous, and cooperative
entities.
We now give a simple illustration of the above. Assume

a set of n very weak processes that can only be in one of
two states, “black” or “red”. Initially, all processes are black.
We can think of the processes as small particles that move
randomly in a fair solution. The particles are capable of
forming and deleting physical connections between them, by
which we mean that, whenever two particles interact, they
can read and write the state of their connection. Moreover,
for simplicity of the model, we assume that fairness of the
solution is independent of the states of the connections. This

is in contrast to schedulers that would take into account the
geometry of the active connections and would, for example,
forbid two non-neighboring particles of the same component
to interact with each other. In particular, we assume that
throughout the execution every pair of processes may be se-
lected for interaction. Consider now the following simple
problem. We want to identically program the initially dis-
organized particles so that they become self-organized into
a spanning star. In particular, we want to end up with
a unique black particle connected (via active connections)
to n − 1 red particles and all other connections (between
red particles) being inactive. Equivalently, given a (possi-
bly physical) system that tends to form a spanning star we
would like to unveil the code behind this behavior. Consider
the following program. When two black particles that are
not connected interact, they become connected and one of
them becomes red. When two connected red particles in-
teract they become disconnected (i.e. reds repel). Finally,
when a black and a red that are not connected interact they
become connected (i.e. blacks and reds attract). The pro-
tocol forms a spanning star as follows. As whenever two
blacks interact only one survives and the other becomes red,
eventually a unique black will remain and all other particles
will be red (we say “eventually”, meaning “in finite time”,
because we do not know how much time it will take for all
blacks to meet each other but from fairness we know that
this has to occur in a finite number of steps). As blacks and
reds attract while reds repel, it is clear that eventually the
unique black will be connected to all reds while every pair of
reds will be disconnected. Moreover, no rule of the program
can modify such a configuration thus the constructed span-
ning star is stable. It is worth noting that this very simple
protocol is optimal both w.r.t. to the number of states that
it uses and w.r.t. to the time it takes to construct a stable
spanning star under the uniform random scheduler.

Our model for network construction is strongly inspired
by the Population Protocol model [3] and the Mediated Pop-
ulation Protocol model [18]. States on the connections were
first introduced in the latter. The main difference to our
model is that in those models the focus was on the compu-
tation of functions of some input values and not on network
construction. Another important difference is that we al-
low the edges to choose between only two possible states
which was not the case in [18]. Interestingly, when oper-
ating under a uniform random scheduler, population pro-
tocols are formally equivalent to chemical reaction networks
(CRNs), which model chemistry in a well-mixed solution and
are widely used to describe information processing occurring
in natural cellular regulatory networks [13]. However, CRNs
and population protocols can only capture the dynamics of
molecular counts and not of structure formation. Our model
then may also be viewed as an extension of population proto-
cols and CRNs aiming to capture the stable structures that
may occur in a well-mixed solution. From this perspective,
our goal is to determine what stable structures can result
in such systems (natural or artificial), how fast, and under
what conditions (e.g. by what underlying codes/reaction-
rules). Most computability issues in the area of population
protocols have now been resolved. Finite-state processes on
a complete interaction network, i.e. one in which every pair
of processes may interact, (and several variations) compute
the semilinear predicates [4]. Semilinearity persists up to
o(log log n) local space but not more than this [9]. If addi-

tionally the connections between processes can hold a state
from a finite domain (note that this is a stronger require-
ment than the on/off that the present work assumes) then
the computational power dramatically increases to the com-
mutative subclass of NSPACE(n2) [18]. Other important
works include [16] and [7]. For a very recent introductory
text see [19].
The paper essentially consists of two parts. In the first

part, we give simple (i.e. small) and efficient (i.e. polynomial-
time) protocols for the construction of several fundamental
networks. In particular, we give protocols for spanning lines,
spanning rings, cycle-covers, partitioning into cliques, and
regular networks. We remark that the spanning line prob-
lem is of outstanding importance because it constitutes a
basic ingredient of universal constructors. We give three
different protocols for this problem each improving on the
running time but using more states to this end. Addition-
ally, we establish a Ω(n logn) generic lower bound on the
expected running time of all constructors that construct a
spanning network and a Ω(n2) lower bound for the span-
ning line, where n throughout this work denotes the number
of processes. Our fastest protocol for the problem runs in
O(n3) expected time and uses 9 states while our simplest
uses only 5 states but pays in an expected time which is
between Ω(n4) and O(n5). In the second part, we investi-
gate the more generic question of what is in principle con-
structible by our model. We arrive there at several satisfac-
tory characterizations establishing some sort of universality
of the model. The main idea is as follows. To construct a
decidable graph-language L we (i) construct on k of the pro-
cesses (called the waste) a network G1 capable of simulating
a Turing Machine (abbreviated“TM”throughout the paper)
and of constructing a random network on the remaining n−k
processes (called the useful space), (ii) use G1 to construct a
random network G2 ∈ Gn−k,1/2 on the remaining n−k pro-
cesses, (iii) execute on G1 the TM that decides L with G2 as
input. If the TM accepts, then we output G2 (note that this
is not a terminating step - the reason why will become clear
in Section 6; the protocol just freezes and its output forever
remains G2), otherwise we go back to (ii) and repeat. Using
this core idea we prove several universality results for our
model. Additionally, we show how to organize the popula-
tion into a distributed system with names and logarithmic
local memories.
In Section 2, we discuss further related literature. In Sec-

tion 3, we formally define the model of network construc-
tors and the network construction problems that are con-
sidered in this work. In Section 4, we study the spanning
line problem. In Section 5, we provide direct constructors
for all the other basic network construction problems. Sec-
tion 6 presents our universality results. Finally, in Section
7 we conclude and give further research directions that are
opened by our work.

2. FURTHER RELATED WORK
Algorithmic Self-Assembly. There are already several
models trying to capture the self-assembly capability of nat-
ural processes with the purpose of engineering systems and
developing algorithms inspired by such processes. For ex-
ample, [12] proposes to learn how to program molecules to
manipulate themselves, grow into machines and at the same
time control their own growth. The model guiding the study
in algorithmic self-assembly is the Abstract Tile Assembly

Model (aTAM) [24, 21] and variations. In contrast to those
models that try to incorporate the exact molecular mecha-
nisms, we propose a very abstract combinatorial rule-based
model, free of specific application-driven assumptions, with
the aim of revealing the fundamental laws governing the dis-
tributed (algorithmic) generation of networks. Our model
may serve as a common substructure to more applied mod-
els that may be obtained from our model by imposing re-
strictions on the scheduler, the degree, and the number of
local states.
Distributed Network Construction. To the best of our
knowledge, classical distributed computing has not consid-
ered the problem of constructing an actual communication
network from scratch. From the seminal work of Angluin [1],
that initiated the theoretical study of distributed computing
systems, up to now, the focus has been more on assuming
a given communication topology and constructing a virtual
network over it, e.g. a spanning tree for the purpose of fast
dissemination of information, most of the time under the
assumption of unique identities and unbounded memories.
An exception is the area of geometric pattern formation by
mobile robots (cf. [23, 10]). A great difference, though, to
our model is that in mobile robotics the computational enti-
ties have complete control over their mobility and thus over
their future interactions. Additionally, as observed in [11],
in the area of self-organizing particle systems, only very little
theoretical work has been done. This further supports the
importance of introducing a simple yet sufficiently generic
model for distributed network construction.
Cellular Automata. A cellular automaton (cf. e.g. [22])
consists of a grid of cells each cell being a finite automa-
ton. A cell updates its own state by reading the states
of its neighboring cells. Cellular automata have been used
as models for self-replication, for modeling several physical
systems, and for understanding emergence, complexity, and
self-organization issues. Though there are some similarities
there are also significant differences between our model and
cellular automata. Cellular automata are more suitable for
studying the formation of patterns on e.g. a discrete surface
of static cells while our model is more suitable for studying
how a totally dynamic (e.g. mobile) and initially disordered
collection of entities can self-organize into a network.
Social Networks. There is a great amount of work dealing
with networks formed by a group of interacting individuals,
called players, which usually have incentives and connec-
tions between them indicate some social relationship. The
network is formed by allowing the individuals to form or
delete connections usually selfishly by trying to maximize
their own utility (see e.g. [17, 8]). This is a game-theoretic
setting which is very different from the setting considered
here as the latter does not include incentives and utilities.
Another important line of research considers random social
networks in which new links are formed according to some
probability distribution (see e.g. [6]). Though, in princi-
ple, we allow processes to perform a coin tossing during an
interaction, our focus is not on the formation of a random
network but on cooperative (algorithmic) construction ac-
cording to a common set of rules.
Network Formation in Nature. Nature has an intrinsic
ability to form complex structures and networks via a pro-
cess known as self-assembly. By self-assembly, small com-
ponents (like e.g. molecules) automatically assemble into
large, and usually complex structures (like e.g. a crystal)

[12]. There is an abundance of such examples in the phys-
ical world. Through billions of years of prebiotic molecular
selection and evolution, nature has produced a basic set of
molecules. By combining these simple elements, natural pro-
cesses are capable of fashioning an enormously diverse range
of fabrication units, which can further self-organize into re-
fined structures, materials and molecular machines that not
only have high precision, flexibility and error-correction ca-
pacity, but are also self-sustaining and evolving. In fact, na-
ture shows a strong preference for bottom-up design which
inspires the fabrication of biomaterials by attempting to
mimic these phenomena with the aim of creating new and
varied structures with novel utilities well beyond the gifts
of nature [25]. Moreover, there is already a remarkable
amount of work envisioning our future ability to engineer
computing and robotic systems by manipulating molecules
with nanoscale precision. Ambitious long-term applications
include molecular computers [5] and miniature (nano)robots
for surgical instrumentation, diagnosis and drug delivery in
medical applications (e.g. it has very recently been reported
that DNA nanorobots could even kill cancer cells [14]) and
monitoring in extreme conditions (e.g. in toxic environ-
ments). However, the road towards this vision passes first
through our ability to discover the laws governing the capa-
bility of distributed systems to construct networks. The gain
of developing such a theory will be twofold: It will give some
insight to the role (and the mechanisms) of network forma-
tion in the complexity of natural processes and it will allow
us engineer artificial systems that achieve this complexity.

3. A MODEL OF NETWORK CONSTRUC-
TORS

Definition 1. A Network Constructor (NET) is a dis-
tributed protocol defined by a 4-tuple (Q, q0, Qout, δ), where
Q is a finite set of node-states, q0 ∈ Q is the initial node-
state, Qout ⊆ Q is the set of output node-states, and δ :
Q×Q× {0, 1} → Q×Q× {0, 1} is the transition function.

If δ(a, b, c) = (a′, b′, c′), we call (a, b, c) → (a′, b′, c′) a tran-
sition (or rule) and we define δ1(a, b, c) = a′, δ2(a, b, c) = b′,
and δ3(a, b, c) = c′. A transition (a, b, c) → (a′, b′, c′) is
called effective if x 6= x′ for at least one x ∈ {a, b, c} and in-
effective otherwise. When we present the transition function
of a protocol we only present the effective transitions. Ad-
ditionally, we agree that the size of a protocol is the number
of its states, i.e. |Q|.
The system consists of a population VI of n distributed

processes (also called nodes when clear from context). In the
generic case, there is an underlying interaction graph GI =
(VI , EI) specifying the permissible interactions between the
nodes. Interactions in this model are always pairwise. In
this work, GI is a complete undirected interaction graph,
i.e. EI = {uv : u, v ∈ VI and u 6= v}, where uv = {u, v}.
Initially, all nodes in VI are in the initial node-state q0.
A central assumption of the model is that edges have bi-

nary states. An edge in state 0 is said to be inactive while
an edge in state 1 is said to be active. All edges are initially
inactive.
Execution of the protocol proceeds in discrete steps. In

every step, a pair of nodes uv from EI is selected by an
adversary scheduler and these nodes interact and update
their states and the state of the edge joining them according

to the transition function δ. In particular, we assume that,
for all distinct node-states a, b ∈ Q and for all edge-states
c ∈ {0, 1}, δ specifies either (a, b, c) or (b, a, c). So, if a, b,
and c are the states of nodes u, v, and edge uv, respectively,
then the unique rule corresponding to these states, let it be
(a, b, c) → (a′, b′, c′), is applied, the edge that was in state
c updates its state to c′ and if a 6= b, then u updates its
state to a′ and v updates its state to b′, if a = b and a′ = b′,
then both nodes update their states to a′, and if a = b and
a′ 6= b′, then the node that gets a′ is drawn equiprobably
from the two interacting nodes and the other node gets b′.

A configuration is a mapping C : VI ∪ EI → Q ∪ {0, 1}
specifying the state of each node and each edge of the in-
teraction graph. Let C and C′ be configurations, and let
u, υ be distinct nodes. We say that C goes to C′ via en-
counter e = uυ, denoted C

e→ C′, if (C′(u), C′(v), C′(e)) =
δ(C(u), C(v), C(e)) or (C′(v), C′(u), C′(e)) = δ(C(v), C(u),
C(e)) and C′(z) = C(z), for all z ∈ (VI\{u, v})∪ (EI\{e}).
We say that C′ is reachable in one step from C, denoted
C → C′, if C

e→ C′ for some encounter e ∈ EI . We say
that C′ is reachable from C and write C C′, if there is
a sequence of configurations C = C0, C1, . . . , Ct = C′, such
that Ci → Ci+1 for all i, 0 ≤ i < t.

An execution is a finite or infinite sequence of configura-
tions C0, C1, C2, . . ., where C0 is an initial configuration and
Ci → Ci+1, for all i ≥ 0. A fairness condition is imposed
on the adversary to ensure the protocol makes progress. An
infinite execution is fair if for every pair of configurations C
and C′ such that C → C′, if C occurs infinitely often in the
execution then so does C′. In what follows, every execution
of a NET will by definition considered to be fair.

Note that NETs are uniform and anonymous, that is the
size of the protocol does not depend on the number of nodes
n and there is not enough room in the states of the nodes
to store unique identifiers.

We define the output of a configuration C as the graph
G(C) = (V,E) where V = {u ∈ VI : C(u) ∈ Qout} and
E = {uv : u, v ∈ V, u 6= v, and C(uv) = 1}. In words, the
output-graph of a configuration consists of those nodes that
are in output states and those edges between them that are
active, i.e. the active subgraph induced by the nodes that
are in output states. The output of an execution C0, C1, . . .
is said to stabilize (or converge) to a graph G if there exists
some step t ≥ 0 s.t. G(Ci) = G for all i ≥ t, i.e. from step
t and onwards the output-graph remains unchanged. Ev-
ery such configuration Ci, for i ≥ t, is called output-stable.
The running time (or time to convergence) of an execution
is defined as the minimum such t (or ∞ if no such t exists).
Throughout the paper, whenever we study the running time
of a NET, we assume that interactions are chosen by a uni-
form random scheduler which, in every step, selects indepen-
dently and uniformly at random one of the |EI | = n(n−1)/2
possible interactions. In this case, the running time becomes
a random variable (abbreviated “r.v.”) X and our goal is to
obtain bounds on the expectation E[X] of X. Note that the
uniform random scheduler is fair with probability 1.

Definition 2. We say that an execution of a NET on n
processes constructs a graph (or network) G, if its output
stabilizes to a graph isomorphic to G.

Definition 3. We say that a NET A constructs a graph
language L with useful space g(n) ≤ n, if g(n) is the great-
est function for which: (i) for all n, every execution of A

on n processes constructs a G ∈ L of order at least g(n)
(provided that such a G exists) and, additionally, (ii) for all
G ∈ L there is an execution of A on n processes, for some
n satisfying |V (G)| ≥ g(n), that constructs G. Equivalently,
we say that A constructs L with waste n− g(n).

Definition 4. Define REL(g(n)) to be the class of all
graph languages that are constructible with useful space g(n)
by a NET. We call REL(·) the relation or on/off class.

Also define PREL(g(n)) in precisely the same way as
REL(g(n)) but in the extension of the above model in which
every pair of processes is capable of tossing an unbiased coin
during an interaction between them. In particular, in the
weakest probabilistic version of the model, we allow transi-
tions that with probability 1/2 give one outcome and with
probability 1/2 another. Additionally, we require that all
graphs have the same probability to be constructed by the
protocol.
We denote by DGS(f(l)) (for “Deterministic Graph Spa-

ce”) the class of all graph languages that are decidable by
a TM of (binary) space f(l), where l is the length of the
adjacency matrix encoding of the input graph.

3.1 Problem Definitions
We here provide formal definitions of all the network con-

struction problems that are considered in this work.

Global line. The goal is for the n distributed processes to
construct a spanning line, i.e. a connected graph in which 2
nodes have degree 1 and n− 2 nodes have degree 2.

Cycle cover. Every process in VI must eventually have
degree 2. The result is a collection of node-disjoint cycles
spanning VI .

Global star. The processes must construct a spanning star,
i.e. a connected graph in which 1 node, called the center,
has degree n−1 and n−1 nodes, called the peripheral nodes,
have degree 1. (Already discussed in Section 1)

Global ring. The processes must construct a spanning ring,
i.e. a connected graph in which every node has degree 2.

k-regular connected. The generalization of global ring in
which every node has degree k ≥ 2 (note that k is a constant
and a protocol for the problem must run correctly on any
number n of processes).

c-cliques. The processes must partition themselves into
bn/cc cliques of order c each (again c is a constant).

Replication. The protocol is given an input graph G =
(V,E) on a subset V1 of the processes (|V1| = |V |). The
processes in V1 are initially in state q0 and the edges of
E are the active edges between them. All other edges in
EI are initially inactive. The processes in V2 = VI\V1 are
initially in state r0. The goal is to create a replica of G on
V2, provided that |V2| ≥ |V1|. Formally, we want, in every
execution, the output induced by the active edges between
the nodes of V2 to stabilize to a graph isomorphic to G.

4. CONSTRUCTING A GLOBAL LINE
In this section, we study probably the most fundamental

network-construction problem, which is the problem of con-
structing a spanning line. Its importance lies in the fact that
a spanning line provides an ordering on the processes which
can then be exploited (as shown in Section 6) to simulate a
TM and thus to establish universality of our model.

We begin with a generic lower bound holding for all pro-
tocols that construct a spanning network.

Theorem 1 (Generic Lower Bound). The expected
time to convergence (always under the uniform random sche-
duler) of any protocol that constructs a spanning network is
Ω(n logn).

Proof. Consider the time at which the last edge is acti-
vated. By that time, all nodes have some active edge inci-
dent to them, thus every node has interacted at least once.
The latter can be shown to require an expected number of
Θ(n logn) steps.

We now give an improved lower bound for the particular
case of constructing a spanning line.

Theorem 2 (Line Lower Bound). The expected time
to convergence of any protocol that constructs a spanning
line is Ω(n2).

We proceed by presenting our simplest protocol for the
spanning line problem.
Protocol Simple-Global-Line: (q0, q0, 0) → (q1, l, 1), (l, q0, 0)
→ (q2, l, 1), (l, l, 0) → (q2, w, 1), (w, q2, 1) → (q2, w, 1), (w,
q1, 1) → (q2, l, 1)

Theorem 3. Protocol Simple-Global-Line constructs a
spanning line. It uses 5 states and its expected running time
is Ω(n4) and O(n5).

Proof. Correctness. In the initial configuration C0, all
nodes are in state q0 and all edges are inactive, i.e in state 0.
Every configuration C that is reachable from C0 consists of
a collection of active lines and isolated nodes. Additionally,
every active line has a unique leader which either occupies an
endpoint and is in state l or occupies an internal node, is in
state w, and moves along the line. Whenever the leader lies
on an endpoint of its line, its state is l and whenever it lies
on an internal node, its state is w. Lines can expand towards
isolated nodes and two lines can connect their endpoints to
get merged into a single line (with total length equal to
the sum of the lengths of the merged lines plus one). Both
of these operations only take place when the corresponding
endpoint of every line that takes part in the operation is in
state l.

We have to prove two things: (i) there is a set S of output-
stable configurations whose active network is a spanning
line, (ii) for every reachable configuration C (i.e. C0 C)
it holds that C Cs for some Cs ∈ S. For (i), consider
a spanning line, in which the non-leader endpoints are in
state q1, the non-leader internal nodes in q2, and there is
a unique leader either in state l if it occupies an endpoint
or in state w if it occupies an internal node. For (ii), note
that any reachable configuration C is a collection of active
lines with unique leaders and isolated nodes. We present a
(finite) sequence of transitions that converts C to a Cs ∈ S.
If there are isolated nodes, take any line and if its leader is
internal make it reach one of the endpoints by selecting the
appropriate interactions. Then successively apply the rule
(l, q0, 0) → (q2, l, 1) to expand the line towards all isolated
nodes. Thus we may now w.l.o.g. consider a collection of
lines without isolated nodes. By successively applying the
rule (l, l, 0) → (q2, w, 1) to pairs of lines while always mov-
ing the internal leaders that appear towards an endpoint

it is not hard to see that the process results in an output-
stable configuration from S, i.e. one whose active network
is a spanning line.
Running Time Upper Bound. For the running time upper

bound, we have an expected number of O(n2) steps until
further progress is made (i.e. for another merging to occur
given that at least two l-leaders exist) and O(n4) steps for
the resulting random walk (until state w reaches one end-
point of the line) to finish and to have again the system
ready for progress. O(n4) follows because we have a ran-
dom walk on a line with two absorbing barriers (see e.g.
[15] pages 348-349) delayed on average by a factor of O(n2).
As progress is made n − 2 times, we conclude that the ex-
pected running time of the protocol is upper bounded from
above by (n− 2)[O(n2) +O(n4)] = O(n5).
Running Time Lower Bound. We next prove that we can-

not hope to improve the above upper bound by a better anal-
ysis by more than a factor of n. For this we first prove that
the protocol w.h.p. constructs Θ(n) different lines of length
1 during its course. A set of k disjoint lines implies that k
distinct merging processes have to be executed in order to
merge them all in a common line and each single merging
results in the execution of another random walk. We exploit
all these to prove the desired Ω(n4) lower bound.
Recall that initially all nodes are in q0. Every interac-

tion between two q0-nodes constructs another line of length
1. Call the random interaction of step i a success if both
participants are in q0. Let R be the r.v. of the number
of nodes in state q0; i.e. initially R = n. Note that, at
every step, R decreases by at most 2, which happens only
in a success (it may also remain unchanged, or decrease by
1 if a leader expands towards a q0). Let the r.v. Xi be
the number of successes up to step i and X be the total
number of successes throughout the course of the protocol
(e.g. until no further successes are possible or until stabi-
lization). Our goal is to calculate the expectation of X as
this is equal to the number of distinct lines of length 1 that
the protocol is expected to form throughout its execution
(note that these lines do not necessarily have to coexist).
Given R, the probability of success at the current step is
pR = [R(R − 1)]/[n(n − 1)] ≥ (R − 1)2/n2. As long as
R ≥ (n/2) + 1 = z it holds that pR ≥ (n2/4)/n2 = 1/4.
Moreover, as R decreases by at most 2 in every step, there
are at least (n−z)/2 = [(n/2)−1]/2 = (n/4)−1/2 steps until
R becomes less or equal to z. Thus, our process dominates a
Bernoulli process Y with (n/4)− 1/2 trials and probability
of success p′ = 1/4 in each trial. For this process we have
E[Y] = [(n/4)− 1/2](1/4) = (n/16)− 1/8 = Θ(n).
We now exploit the following Chernoff bound (cf. [20],

page 70) establishing that w.h.p. Y does not deviate much
below its mean µ = E[Y]:
Chernoff Bound. Let Y1, Y2, . . . , Yt be independent Poisson
trials such that, for 1 ≤ i ≤ t, P[Yi = 1] = pi, where 0 <
pi < 1. Then, for Y =

∑t
i=1 Yi, µ = E[Y] =

∑t
i=1 pi, and

0 < δ < 1, P[Y < (1− δ)µ] < exp(−µδ2/2).

Additionally, we have exp(−µδ2/2) = ε ⇔ δ =
√

2 ln 1/ε
µ

.

Thus exp(−µδ2/2) = n−c implies

δ2 = 2c lnn
µ

= 2c lnn
(1/8)(n/2−1)

= 16c lnn
n/2−1

⇒ δ =
√

16c lnn
n/2−1

⇒ (1−

δ)µ = 1
8

(
1−

√
16c lnn
n/2−1

) (
n
2
− 1

)
> 1

16

(
n− 2

√
cn lnn− 2

)
= Θ(n).

So, for all c = O(1), P[Y < 1
16

(
n− 2

√
cn lnn− 2

)
] <

n−c ⇒ P[Y ≥ 1
16

(
n− 2

√
cn lnn− 2

)
] > 1− n−c ⇒ P[Y =

Θ(n)] > 1 − n−c and as X dominates Y , we have P[X =
Θ(n)] > 1 − n−c. In words, w.h.p. we expect Θ(n) lines of
length 1 to be constructed by the protocol.

Now, given that X = Θ(n), we distinguish two cases: (i)
At some point during the course of the protocol two lines
both of length Θ(n) get merged. In this case, the corre-
sponding random walk takes on average Θ(n2) transitions
involving the leader and on average the leader is selected
every Θ(n2) steps to interact with one of the 2 active edges
incident to it. That is, the expected number of steps for the
completion of such a random walk is Θ(n4) and the expected
running time of the protocol is Ω(n4). (ii) In every merg-
ing process, at least one of the two participating lines has
length at most dmax = o(n). We have already shown that
the protocol w.h.p. forms k = Θ(n) distinct lines of length
1. Consider now the interval I = {k/2−dmax +1, . . . , k/2}.
As h = Θ(n) > dmax for all h ∈ I, only a single line can
ever have length h ∈ I and one, call it l1, will necessarily
fall in this interval due to the fact that the length of l1 will
increase by at most dmax in every merging until it becomes
n. Consider now the time at which l1 has length h ∈ I. As
the total length due to lines of length 1 (ever to appear) is
k and the length of l1 is h there is still a remaining length
of at least k − h ≥ k − k/2 = k/2 = Θ(n) to be merged
to l1. As the maximum length of any line different than l1
is dmax, l1 will get merged to the k − h remaining length
via at least j = Θ(n)/dmax distinct mergings with lines of
length at most dmax. These mergings, and thus also the re-
sulting random walks, cannot occur in parallel as all of them
share l1 as a common participant (and a line can only par-
ticipate in one merging at a time). Let di denote the length
of the i-th line merged to l1, for 1 ≤ i ≤ j. If l1 has length
d(l1) just before the i-th merging, then the expected dura-
tion of the resulting random walk is n2 · d(l1) · di and the
new l1 resulting from merging will have length d(l1) + di.
Let Y denote the duration of all random walks, and Yi,
1 ≤ i ≤ j, the duration of the i-th random walk. In total,
the expected duration of all random walks resulting from
the j mergings of l1 is E[Y] = E[

∑j
i=1 Yi] =

∑j
i=1 E[Yi] =∑j

i=1 n
2(h+d1+ . . .+di−1)di ≥ n2 ∑j

i=1 hdi = n2h
∑j

i=1 di
= n2Θ(n)Θ(n) = Θ(n4). The fifth equality follows from the

fact that
∑j

i=1 di = k − h = Θ(n). We conclude that the
expected running time of the protocol is also in this case
Ω(n4).

Now if we define the r.v. W to be the total running
time of the protocol (until convergence), by the law of to-
tal probability and for every constant c ≥ 1, we have that:
E[W] = E[W | X = Θ(n)] · P[X = Θ(n)] + E[W | X =
o(n)] · P[X = o(n)] ≥ E[W | X = Θ(n)] · P[X = Θ(n)] >
Θ(n4)(1−n−c) = Θ(n4−n4−c) = Θ(n4). Thus, the expected
running time of the protocol is Ω(n4).

We now give our fastest protocol for the global line con-
struction. 1 The main difference to the previous protocol is
that we now totally avoid mergings as they seem to consume
much time. The intuition is that when two disjoint lines in-

1In the full paper, we also give an intermediate protocol
that performs a more “deterministic” merging. That proto-
col uses 3 more states than Simple-Global-Line but improves
the expected running time to between Ω(n3) and O(n4).

teract, instead of merging, the corresponding leaders play a
pairwise game. The winner grows by one towards the other
line and the loser sleeps. A sleeping line cannot increase
any more and only loses nodes by lines that are still awake.
A single leader is guaranteed to always win and eventually
remain unique and this occurs quite fast. Then the leader
makes progress (by one) in most interactions and every such
progress is in turn quite fast.
Protocol Fast-Global-Line: (q0, q0, 0) → (q1, l, 1), (l, q0, 0) →
(q2, l, 1), (l, l, 0) → (q′2, l

′, 1), (l′, q2, 1) → (l′′, f1, 0), (l
′, q1, 1)

→ (l′′, f0, 0), (l′′, q′2, 1) → (l, q2, 1), (l, f0, 0) → (q2, l, 1),
(l, f1, 0) → (q′2, l

′, 1)

Theorem 4. Protocol Fast-Global-Line constructs a span-
ning line. It uses 9 states and its expected running time
under the uniform random scheduler is O(n3).

5. OTHER BASIC CONSTRUCTORS
Protocol Cycle-Cover: (q0, q0, 0) → (q1, q1, 1), (q1, q0, 0) →

(q2, q1, 1), (q1, q1, 0) → (q2, q2, 1)

Theorem 5 (Cycle Cover). Protocol Cycle-Cover
constructs a cycle cover with waste 2. It uses 3 states, its
expected running time is Θ(n2), and it is optimal w.r.t. time.

Theorem 6 (Ring Lower Bound). The expected time
to convergence of any protocol that constructs a spanning
ring is Ω(n2).

Protocol Global-Ring: The rules of Protocol Simple-Global-
Line and additionally (l, q1, 0) → (l′, q′1, 1), (x′, y, 0) →
(x′′, y, 0), for x ∈ {l, q1} and y ∈ {l, w, q1, q0}, (x′, y′, 0) →
(x′′, y′′, 0), for x ∈ {l, q1} and y ∈ {l, q1}, (l′′, q′1, 1) → (l, q1,
0), (l′, q′′1 , 1) → (l, q1, 0), (l

′′, q′′1 , 1) → (l, q1, 0)

Theorem 7 (Global Ring). Protocol Global-Ring
constructs a spanning ring using 9 states.

The following protocols can be found in the full paper.

Theorem 8 (k-Regular Connected). We provide a
parameterized protocol (called kRC) which, for every fixed
integer k ≥ 2 and every population of size n ≥ k + 1,
constructs a connected spanning network in which at least
n − k + 1 nodes have degree k and each of the remaining
l ≤ k − 1 nodes has degree at least l − 1 and at most k − 1.

Theorem 9 (Many Small Components). We provi-
de a parameterized protocol (c-Cliques) which, for every fixed
positive integer c, constructs bn/cc cliques of order c each.

Theorem 10 (Replication). We provide a proto-
col (Leader-Replication) that constructs a copy of any con-
nected input graph G1 = (V1, E1) with no waste. It uses 12
states and its expected running time is Θ(n4 logn).

Table 1 summarizes all upper and lower bounds that we
established in Sections 1 (global star), 4 and 5.

6. GENERIC CONSTRUCTORS
In this section, we ask whether there is a generic construc-

tor capable of constructing a large class of networks. We
answer this in the affirmative by presenting (i) constructors
that simulate a Turing Machine (TM) and (ii) a constructor

that simulates a distributed system with names and loga-
rithmic local memories. Denote by l the binary length of
the input of a TM and by n the size of a population. Note
that Theorems 11 to 14 construct a random graph in the
useful space and that graph constitutes the input to a TM.
Thus, if the useful space consists of h nodes, the input to the
TM has size l = Θ(h2) and, as all of our constructors have
h = Θ(n), in what follows it holds that l = Θ(n2). More-
over, the TM can use space at most O((n − h)2) = O(n2),
where n− h is the waste.

Theorem 11 (Linear Waste-Half). DGS(O(
√
l))

⊆ PREL(bn/2c). In words, for every graph language L

that is decidable by a O(
√
l)-space TM, there is a protocol

that constructs L equiprobably with useful space bn/2c.

Proof. We present here the main idea. Given a popula-
tion of size n, the protocol, call it A, partitions the popula-
tion (apart from one node when n is odd) into two equal sets
U and D such that all nodes in U are in state qu, all nodes
in D are in state qd and each u ∈ U is matched via an active
edge to a v ∈ D, i.e. there is an active perfect matching be-
tween U and D. By using the Simple-Global-Line protocol
of Section 4 on the nodes of set U , A constructs a spanning
line in U which has the endpoints in state q1, the internal
nodes in state q2, and has additionally a unique leader on
some node. We should mention that, though we use proto-
col Simple-Global-Line here as our reference, any protocol
that constructs a spanning line would work. Given such a
construction, A organizes the line into a TM. The goal is
for the TM to compute a graph from L and construct it on
the nodes of set D. To achieve this, the TM implements
a binary counter (log n bits long) in its memory and uses
it in order to uniquely identify the nodes of set D accord-
ing to their distance from one endpoint, say e.g. the left
one. Whenever it wants to modify the state of edge (i, j) of
the network to be constructed, it marks by a special acti-
vating or deactivating state the D-nodes at distances i and
j from the left endpoint, respectively. Then an interaction
between two such marked D-nodes activates or deactivates,
respectively, the edge between them. To compute a graph
from L equiprobably, the TM performs the following ran-
dom experiment. It activates or deactivates each edge of D
equiprobably (i.e. each edge becomes active/inactive with
probability 1/2) and independently of the other edges. In
this manner, it constructs a random graph G in D and all
possible graphs have the same probability to occur. Then
it simulates on input G the TM that decides L in

√
l space

to determine whether G ∈ L. Notice that the n/2 space of
the simulator is sufficient to decide on an input graph en-
coded by an adjacency matrix of (n/2)2 binary cells (which
are the edges of U). If the TM rejects, then G /∈ L and the
protocol repeats the random experiment to produce a new
random graph G′ and starts another simulation on input G′

this time. When the TM accepts for the first time, the con-
structed random network belongs to L and the protocol re-
leases the constructed network by deactivating one after the
other the active (qu, qd) edges and at the same time updates
the state of each D-node to a special qout state. Finally,
we should point out that, whenever the Simple-Global-Line
protocol makes progress, all edges in D are deactivated and
the TM-configuration is reinitialized to ensure that, when
the final progress is made (resulting in the final line span-
ning U) the TM will be executed from the beginning on a

Protocol # states Expected Time Lower Bound

Simple-Global-Line 5 Ω(n4) and O(n5) Ω(n2)
Fast-Global-Line 9 O(n3) Ω(n2)
Cycle-Cover 3 Θ(n2) (optimal) Ω(n2)
Global-Star 2 (optimal) Θ(n2 logn) (optimal) Ω(n2 logn)
Global-Ring 9 Ω(n2)
kRC 2(k + 1) Ω(n logn)
c-Cliques 5c− 3 Ω(n logn)
Leader-Replication 12 Θ(n4 logn)

Table 1: All upper and lower bounds established in this work. Leader-Replication is a randomized protocol
thus it concerns class PREL, while all other protocols do not use randomization and concern REL.

correct configuration (free of residues from previous partial
simulations).

We now show an interesting trade-off between the space of
the simulated TM and the order of the constructed network.
In particular, we prove that if the constructed network is
required to occupy 1/3 instead of half of the nodes, then the
available space of the TM-constructor dramatically increases
to O(n2) from O(n).

Theorem 12 (Linear Waste-Two Thirds). DGS(

l +O(
√
l)) ⊆ PREL(bn/3c).

Proof. The idea is to partition the population into three
equal sets U , D, and M instead of the two sets of Theorem
11. The purpose of sets U and D is more or less as in
Theorem 11. The purpose of the additional set M is to
constitute a Θ(n2) memory for the TM to be simulated.
The goal is to exploit the (n/3)(n/3 − 1)/2 edges of set M
as the binary cells of the simulated TM (see Figure 1). The
set U now, instead of executing the simulation on its own
nodes, uses for that purpose the edges of setM . Reading and
writing on the edges of set M is performed in precisely the
same way as reading/writing the edges of set D (described
in Theorem 11).
As everything works in precisely the same way as in The-

orem 11, we only present the subroutine that constructs the
(U,D,M) partitioning.

Constructing the (U,D,M) partitioning. The rules that
guarantee the desired partitioning into the three sets are:
(q0, q0, 0) → (q′u, qd, 1), (q

′
u, q0, 0) → (qu, qm, 1), (q′u, q

′
u, 0) →

(qu, q
′
m, 1), and (q′m, qd, 1) → (qm, q0, 0). The idea is to con-

sider a U -node as unsatisfied as long as it has not managed
to obtain a qm neighbor. The unsatisfied state of a U -node
is q′u. If a q′u meets a q0 then it makes that q0 its qm neighbor
and becomes satisfied. Note that it is possible that at some
point the population may only consist of q′u nodes matched
to D-nodes which is not a desired outcome. For this reason,
we have allowed q′u nodes to be capable of making other q′u
nodes their qm neighbors. That is, when two q′u nodes inter-
act, one of them becomes satisfied, the other becomes q′m,
and the edge joining them becomes active. A q′m just waits
to meet its active connection to a D-node, deactivates it,
isolates the D-node by making it q0 again, and becomes qm.
Then, for the construction of the line spanning U , we only
allow satisfied U -nodes to participate to the construction.
As a satisfied U -node never becomes unsatisfied again, this
choice is safe.

We now relax our requirement for simulation space in or-
der to reduce the waste.

qu qu qu qu qu

qd qd qd qd qd

U

D

qm qm qm qm qm
M

Figure 1: A partitioning into three equal sets U ,
D, and M . The line of set U plays the role of an
ordering that will be exploited both by the random
graph drawing process and by the TM-simulation.
The line of set U instead of using its Θ(n) memory
as the memory of the TM it now uses the Θ(n2)
memory of set M for this purpose. Set D is again
the useful space on which the output-network will
be constructed. Sets U and M constitute the waste.

Theorem 13 (Logarithmic Waste). DGS(O(log l))
⊆ PREL(n− logn).

Proof. We give the main idea. The protocol first con-
structs a spanning line. Let us for now assume that the
spanning line has been somehow constructed by the proto-
col. Then the protocol exploits the line to count the number
of nodes in the network. We may assume that counting is
performed in the rightmost cells of the line. The head vis-
its one after the other the nodes from left to right and for
each next move it increments the binary counter by one.
When the head reaches the right endpoint, counting stops
and the binary counter will have occupied approximately
logn nodes (in fact, the rightmost log n nodes). Now the
protocol releases the counter without altering its line struc-
ture and additionally makes all remaining n − logn nodes
isolated by resetting their states and deactivating the edges
between them. From now on, we may assume w.l.o.g. that
there is a line of log n nodes with a unique leader and with a
distributed variable containing a very good estimate of the
number of isolated nodes (for this, we just compute in the
logarithmic memory n − logn, where n was already stored
in binary and log n is the number of cells of the memory; an-
other way to achieve this is to stop counting when the head -

moving from left to right - reaches the first, i.e. leftmost, cell
occupied by the counter). All nodes of the memory are in a
special m state while all remaining nodes are in some other
state, e.g. f , so the two sets are distinguishable. Next the
leader starts a random experiment in order to construct a
random graph on the free nodes as follows. It picks the first
free node that it sees, call it u1, activates the edge between
them and informs it to start tossing coins on each one of
the edges joining it to other free nodes. Whenever u1 tosses
a coin on a new edge, it marks the corresponding node to
avoid it in the future and informs the leader to decrement
its (n − logn)-counter by 1. When the counter becomes 0,
u1 has tossed coins on all its edges, by a similar counting
process it removes all marks from the other free nodes, and
remains marked so that the leader avoids picking it again in
the future. Then the leader moves to some other free node
u2, repeating more or less the same process. At the same
time the leader decrements another (n − logn)-counter by
one to know when all free uis have been picked. In this man-
ner, a random graph is drawn equiprobably on the set of free
nodes. Next, the leader simulates a logarithmic TM in its
memory trying to decide whether the random graph belongs
or not to a given language L. If yes, then we are done. If
not, then the TM just repeats the random experiment and
restarts the simulation.

Reinitialization. The protocol cannot know when the line
that it was initially trying to construct has become spanning.
Due to this, after every expansion of the line it assumes that
the line has become spanning and starts counting. It is clear
that every counting process leads to the formation of a small
line with a leader (of length logarithmic in the length of the
original line) and several free nodes. The small line and
its leader are kept forever by the simulation process. This
implies that if there are more than one such lines, they will
eventually interact and detect that their original line was not
spanning. At that point, the interacting lines may merge to
form a new line. It is clear that the only stable case is the
one in which the original line was spanning and this will
eventually occur.

We next prove that a large class of graph-families can be
constructed with no waste.

Theorem 14 (No Waste). Let L be a graph language
such that: (i) there exists a natural number d s.t. for all
G ∈ L there is a subgraph G′ of G of logarithmic order
s.t. either G′ or its complement is connected and has degree
upper bounded by d and (ii) L is decidable in logarithmic
space. Then L ∈ PREL(n), i.e. there is a protocol that
constructs L equiprobably with useful space n.

Proof. We give again the main idea. As in Theorem 13,
the protocol first constructs a spanning line used to separate
a subpopulation S of VI of size approximately log n. Before
deactivating the line of T = VI\S of length n−logn the pro-
tocol first exploits it to construct a random graph in S of
active or inactive degree (choosing randomly between these)
upper bounded by d (note that d is finite and thus it is known
in advance by the protocol). Then the line of T organizes
the bounded-degree graph of S into a TM M (which is feasi-
ble due to the fact that the degree is bounded; see Theorem
7 of [2]) of logarithmic space with a unique leader on some
node. Next M draws (more or less as in Theorem 13) a ran-
dom graph on the edges of EI\E[S], i.e. on all edges apart

from those between the nodes of S (to prevent destroying
the structure of the TM). Note that, in order for the TM to
be able to distinguish the nodes of S, the protocol has all
these nodes in a special state that is not present in T . Ob-
serve now that, in this manner, the protocol has constructed
on VI a random graph from those having a connected sub-
graph of logarithmic order and degree upper bounded by d.
It remains to verify whether the one constructed indeed be-
longs to L. To do this, M simulates the TM N that decides
L in logarithmic space. If N rejects then M builds another
line in T that repeats the whole process, i.e. draws a new
random graph in S and so on. When N first accepts, the
protocol sleeps (in the sense that it does not terminate but
does not alter edges anymore either).

Remark 1. If the graph-property L (in any of the above
results) happens to occur with probability at least 1/f(n),
where f(n) is polynomial on n, in the Gn,1/2 random graph
model, then its corresponding generic constructor runs in
polynomial expected time (e.g. connectivity, hamiltonicity).

Finally, we establish that a population consisting of n
nodes can be partitioned into k supernodes each consisting
of log k nodes, for the largest such k. The internal structure
of each supernode is a line, thus it can be operated as a
TM of memory logarithmic in the total number of supern-
odes. This amount of storage is sufficient for the supernodes
to obtain unique names and exploit their names and their
internal storage to realize nontrivial constructions. We are
interested in the networks that can be constructed at the
supernode abstraction layer.

Theorem 15 (Partitioning into Supernodes). For
every network G that can be constructed by k nodes having
local memories dlog ke and unique names there is a NET
that constructs G on n = kdlog ke nodes.

7. CONCLUSION AND OPEN PROBLEMS
There are many open problems related to the findings of

the present work. Though our universal constructors show
that a large class of networks is in principle constructible,
they do not imply neither the simplest nor the most efficient
protocols. To this end, we have provided direct constructors
for some of the most basic networks, but there are still many
other constructions to be investigated like grids or planar
graphs. Moreover, a look at Table 1 makes it evident that
there is even more work to be done towards the probabilistic
analysis of protocols and in particular towards the establish-
ment of tight bounds. Of special interest is the spanning line
problem as it is a key component of universal construction.
All of our attempts to give a protocol asymptotically faster
than O(n3) have failed (our best lower bound for the prob-
lem is Ω(n2)). Is there a Θ(n2 logn) constructor?

Another very intriguing issue has to do with the size of
network constructors. In particular, we would like to give
problem-specific lower bounds and to formalize the appar-
ent relationship between the size and the running time of a
protocol. Is there some sort of hierarchy showing that with
more states we can produce faster protocols (until optimality
is obtained)? Moreover, it is worth considering non-uniform
protocols that when executed on the correct number of nodes
are required to construct a unique network. For example,
given a population of 10 processes is there a protocol that
stabilizes to the Petersen graph?

Another interesting open problem is to characterize the
class REL in which protocols do not have access to (inter-
nal) randomness. Note that in REL we can again construct
a sufficiently long line (as our protocols for global line are
in REL) and exploit it as a space-bounded TM. It is also
worth noting that our results on universal construction in-
dicate that the constructive power increases as a function
of the available waste. A complete characterization of this
dependence would be of special value.
There is also a practically unlimited set of variations of the

proposed model that is worth considering. An immediate
extension of our model is to allow the connections to have
more than just the two states that we considered in this
work. Another route is to assume other natural probabilistic
scheduling models, than the uniform considered here, which
would probably require different algorithmic developments
and techniques to achieve efficiency.
Finally, a very valuable and challenging interdisciplinary

goal is to further investigate and formalize the apparent ap-
plicability of the model proposed here (and potential vari-
ations of it) in physical and chemical (possibly biological)
processes. As already stated, we envision that a potential
usefulness of such models is to unveil the algorithmic proper-
ties underlying the structure/network formation capabilities
of natural processes.

Acknowledgments: We would like to thank Leslie Ann
Goldberg for bringing to our attention the importance of
constructing regular networks and also the reviewers of this
work and some previous versions of it whose comments have
helped us to improve our work substantially.

8. REFERENCES
[1] D. Angluin. Local and global properties in networks of

processors. In Proceedings of the 12th annual ACM
symposium on Theory of computing (STOC), pages
82–93. ACM, 1980.

[2] D. Angluin, J. Aspnes, M. Chan, M. J. Fischer,
H. Jiang, and R. Peralta. Stably computable
properties of network graphs. In 1st IEEE
International Conference on Distributed Computing in
Sensor Systems (DCOSS), volume 3560 of LNCS,
pages 63–74. Springer-Verlag, June 2005.

[3] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and
R. Peralta. Computation in networks of passively
mobile finite-state sensors. Distributed Computing,
pages 235–253, March 2006.

[4] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert.
The computational power of population protocols.
Distributed Computing, 20(4):279–304, November
2007.

[5] A. Bandyopadhyay, R. Pati, S. Sahu, F. Peper, and
D. Fujita. Massively parallel computing on an organic
molecular layer. Nature Physics, 6(5):369–375, 2010.

[6] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, 1999.

[7] J. Beauquier, J. Burman, J. Clement, and S. Kutten.
On utilizing speed in networks of mobile agents. In
Proceedings of the 29th ACM SIGACT-SIGOPS
symposium on Principles of distributed computing
(PODC), pages 305–314. ACM, 2010.

[8] L. Blume, D. Easley, J. Kleinberg, R. Kleinberg, and

É. Tardos. Network formation in the presence of

contagious risk. ACM Transactions on Economics and
Computation, 1(2):6, 2013.

[9] I. Chatzigiannakis, O. Michail, S. Nikolaou,
A. Pavlogiannis, and P. G. Spirakis. Passively mobile
communicating machines that use restricted space.
Theoretical Computer Science, 412(46):6469–6483,
October 2011.

[10] S. Das, P. Flocchini, N. Santoro, and M. Yamashita.
On the computational power of oblivious robots:
forming a series of geometric patterns. In Proceedings
of the 29th ACM SIGACT-SIGOPS symposium on
Principles of distributed computing (PODC), pages
267–276, 2010.

[11] S. Dolev, R. Gmyr, A. W. Richa, and C. Scheideler.
Ameba-inspired self-organizing particle systems. arXiv
preprint arXiv:1307.4259, 2013.

[12] D. Doty. Theory of algorithmic self-assembly.
Communications of the ACM, 55:78–88, 2012.

[13] D. Doty. Timing in chemical reaction networks. In
Proc. of the 25th Annual ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 772–784, 2014.

[14] S. M. Douglas, I. Bachelet, and G. M. Church. A
logic-gated nanorobot for targeted transport of
molecular payloads. Science, 335(6070):831–834, 2012.

[15] W. Feller. An Introduction to Probability Theory and
Its Applications, Vol. 1, 3rd Edition, Revised Printing.
Wiley, 1968.

[16] R. Guerraoui and E. Ruppert. Names trump malice:
Tiny mobile agents can tolerate byzantine failures. In
36th International Colloquium on Automata,
Languages and Programming (ICALP), volume 5556
of LNCS, pages 484–495. Springer-Verlag, 2009.

[17] M. O. Jackson. A survey of network formation models:
Stability and efficiency. Group Formation in
Economics: Networks, Clubs and Coalitions, ed. G.
Demange and M. Wooders, pages 11–57, 2005.

[18] O. Michail, I. Chatzigiannakis, and P. G. Spirakis.
Mediated population protocols. Theoretical Computer
Science, 412(22):2434–2450, May 2011.

[19] O. Michail, I. Chatzigiannakis, and P. G. Spirakis.
New Models for Population Protocols. N. A. Lynch
(Ed), Synthesis Lectures on Distributed Computing
Theory. Morgan & Claypool, 2011.

[20] R. Motwani and P. Raghavan. Randomized algorithms.
Cambridge university press, 1995.

[21] P. W. K. Rothemund and E. Winfree. The
program-size complexity of self-assembled squares. In
Proceedings of the 32nd annual ACM symposium on
Theory of computing (STOC), pages 459–468, 2000.

[22] J. L. Schiff. Cellular automata: a discrete view of the
world, volume 45. Wiley-Interscience, 2011.

[23] I. Suzuki and M. Yamashita. Distributed anonymous
mobile robots: Formation of geometric patterns.
SIAM J. Comput., 28(4):1347–1363, Mar. 1999.

[24] E. Winfree. Algorithmic Self-Assembly of DNA. PhD
thesis, California Institute of Technology, June 1998.

[25] S. Zhang. Fabrication of novel biomaterials through
molecular self-assembly. Nature biotechnology,
21(10):1171–1178, 2003.

