
Recent Advances in Population Protocols?

Ioannis Chatzigiannakis1,2, Othon Michail1,2, and Paul G. Spirakis1,2

1 Research Academic Computer Technology Institute (RACTI), +302610960200,
Patras, Greece

2 Computer Engineering and Informatics Department (CEID), University of Patras,
26500, Patras, Greece.

Email: {ichatz, michailo, spirakis}@cti.gr

Abstract. The population protocol model (PP) proposed by Angluin
et al. [2] describes sensor networks consisting of passively mobile finite-
state agents. The agents sense their environment and communicate in
pairs to carry out some computation on the sensed values. The mediated
population protocol model (MPP) [13] extended the PP model by com-
munication links equipped with a constant size buffer. The MPP model
was proved in [13] to be stronger than the PP model. However, its most
important contribution is that it provides us with the ability to devise
optimizing protocols, approximation protocols and protocols that decide
properties of the communication graph on which they run. The latter
case, suggests a simplified model, the GDM model, that was formally
defined and studied in [11]. GDM is a special case of MPP that captures
MPP’s ability to decide properties of the communication graph. Here we
survey recent advances in the area initiated by the proposal of the PP
model and at the same time we provide new protocols, novel ideas and
results.

1 Introduction

Most recent advances in microprocessor, wireless communication and
sensor/actuator-technologies envision a whole new era of computing, pop-
ularly referred to as pervasive computing. Autonomous, ad-hoc networked,
wirelessly communicating and spontaneously interacting computing de-
vices of small size appearing in great number, and embedded into en-
vironments, appliances and objects of everyday use will deliver services
adapted to the person, the time, the place, or the context of their use.
The nature and appearance of devices will change to be hidden in the
fabric of everyday life, invisibly networked, and will be augmenting ev-
eryday environments to form a pervasive computing landscape, in which
the physical world becomes merged with a “digital world”.
? This work has been partially supported by the ICT Programme of the European

Union under contract number ICT-2008-215270 (FRONTS).



2 Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

In a seminal work, Angluin et al. [2] (also [3]) considered systems
consisting of very small resource limited sensor nodes that are passively
mobile. Such nodes, also called agents, have no control over their own
movement and interact in pairs, via a local low-power wireless commu-
nication mechanism, when they are sufficiently close to each other. The
agents form a (usually huge) population that together with the agent’s
permissible interactions form a communication graph G = (V, E), where
V is a population of |V | = n agents and E is the set of permissible (di-
rected) interactions of cardinality denoted by m. In their model, finite-
state, and complex behavior of the system as a whole emerges from simple
rules governing pairwise interaction of the agents. The most important
innovations of the model are inarguably the constant memory constraint
imposed to the agents and the nondeterminism inherent to the interaction
pattern. These assumptions provide us with a concrete and realistic model
for future systems. Their model is called Population Protocol model and
is discussed in Section 2.

The initial goal of the model was to study the computational limita-
tions of cooperative systems consisting of many limited devices (agents),
imposed to passive (but fair) communication by some scheduler. Much
work showed that there exists an exact characterization of the computable
predicates: they are precisely the semilinear predicates or equivalently the
predicates definable by first-order logical formulas in Presburger arith-
metic [2, 3, 5–7]. More recent work has concentrated on performance, sup-
ported by a random scheduling assumption. [12] proposed a collection of
fair schedulers and examined the performance of various protocols. [9,
10] considered a huge population hypothesis (population going to infin-
ity), and studied the dynamics, stability and computational power of
probabilistic population protocols by exploiting the tools of continuous
nonlinear dynamics. In [9] it was also proven that there is a strong re-
lation between classical finite population protocols and models given by
ordinary differential equations.

There exist a few extensions of the basic model in the relevant lit-
erature to more accurately reflect the requirements of practical systems.
In [1] they studied what properties of restricted communication graphs
are stably computable, gave protocols for some of them, and proposed the
model extension with stabilizing inputs. The results of [5] show that again
the semilinear predicates are all that can be computed by this model. Fi-
nally, some works incorporated agent failures [14] and gave to some agents
slightly increased computational power [8] (heterogeneous systems). For
an excellent introduction to most of the preceding subjects see [7].



Recent Advances in Population Protocols 3

In [13] the Population Protocol model was extended in a natural way.
Essentially the model was augmented to include a Mediator, i.e., a global
storage capable of storing very limited information for each communica-
tion arc (the state of the arc). When pairs of agents interact, they can read
and update the state of the link (arc). Interestingly, although anonymity
and uniformity (for the definition of those notions the reader is referred
to Section 3) are preserved in the extended model, the presence of a me-
diator provides us with significantly more computational power and gives
birth to a new collection of interesting problems in the area of tiny net-
worked and possibly moving artefacts; we can now build systems with the
ability of computing subgraphs and solve optimization problems concern-
ing the communication graph. In [13] it was shown that the new model
is capable of computing non-semilinear predicates and that any stably
computable predicate belongs to NSPACE(m), where m denotes the
number of edges of the interaction graph. The extended model is called
Mediated Population Protocol model and we present it in Section 3.

One of the most interesting and applicable capabilities of the Medi-
ated Population Protocol model is its ability to decide graph properties.
To understand properties of the communication graph is an important
step in almost any distributed system. In particular, in [11] the authors
temporarily disregarded the input notion of the population and assumed
that all agents simply start from a unique initial state (and the same
holds for the edges). The obtained model is called GDM. The authors
focused on protocols of the GDM model that, when executed fairly on
any communication graph G, after a finite number of steps stabilize to a
configuration where all agents give 1 as output if G belongs to a graph
language L, and 0 otherwise. This is motivated by the idea of having pro-
tocols that eventually accept all communication graphs (on which they
run) that satisfy a specific property, and eventually reject all remaining
communication graphs. The motivation for the proposal of a simplified
version of the Mediated Population Protocol model was that it enables us
to study what graph properties are stably computable by the mediated
model without the need to keep in mind its remaining parameters (which,
as a matter of fact, are a lot). The GDM model is discussed in Section 4.
Finally, in Section 5 we discuss some future research directions.



4 Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

2 The Population Protocol model

2.1 Formal Definition

Definition 1. A population protocol (PP) is a 6-tuple (X, Y,Q, I, O, δ),
where X, Y , and Q are all finite sets and

1. X is the input alphabet,
2. Y is the output alphabet,
3. Q is the set of states,
4. I : X → Q is the input function,
5. O : Q → Y is the output function, and
6. δ : Q×Q → Q×Q is the transition function.

If δ(a, b) = (a′, b′), we call (a, b) → (a′, b′) a transition and we define
δ1(a, b) = a′ and δ2(a, b) = b′.

A population protocol A = (X, Y,Q, I, O, δ) runs on a communication
graph G = (V, E). Initially, all agents (i.e. the elements of V ) receive a
global start signal, sense their environment and each one receives an input
symbol from X. All agents are initially in a special empty state t /∈ Q.
When an agent receives an input symbol σ, applies the input function to
it and goes to its initial state I(σ) ∈ Q. An adversary scheduler selects
in each step a directed pair of agents (u, υ) ∈ E, where u, υ ∈ V and
u 6= υ, to interact. The interaction happens only if both agents are not in
the empty state (they must both have been initialized). Assume that the
scheduler selects the pair (u, υ), that the current states of u and υ are
a, b ∈ Q, respectively, and that δ(a, b) = (a′, b′). Agent u plays the role of
the initiator in the interaction (u, υ) and υ that of the responder. During
their interaction u and υ apply the transition function to their directed
pair of states, and, as a result, u goes to a′ and υ to b′ (both update their
states according to δ, and specifically, the initiator applies δ1 while the
responder δ2).

A configuration is a snapshot of the population states. Formally, a
configuration is a mapping C : V → Q specifying the state of each agent
in the population. C0 is the initial configuration (for simplicity we assume
that all agents apply the input function at the same time, which is one
step before C0, so in C0 all empty states have been already replaced, and
that’ s the reason why we have chosen not to include t in the model
definition) and, for all u ∈ V , C0(u) = I(x(u)), where x(u) is the input
symbol sensed by agent u. Let C and C ′ be configurations, and let u, υ



Recent Advances in Population Protocols 5

be distinct agents. We say that C goes to C ′ via encounter e = (u, υ),
denoted C

e→ C ′, if

C ′(u) = δ1(C(u), C(υ)),
C ′(υ) = δ2(C(u), C(υ)), and
C ′(w) = C(w) for all w ∈ V − {u, υ},

that is, C ′ is the result of the interaction of the pair (u, υ) under config-
uration C and is the same as C except for the fact that the states of u,
υ have been updated according to δ1 and δ2, respectively. We say that
C can go to C ′ in one step, denoted C → C ′, if C

e→ C ′ for some en-
counter e ∈ E. We write C

∗→ C ′ if there is a sequence of configurations
C = C0, C1, . . . , Ct = C ′, such that Ci → Ci+1 for all i, 0 ≤ i < t, in
which case we say that C ′ is reachable from C.

An execution is a finite or infinite sequence of configurations C0, C1,
C2, . . ., where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0.
We have both finite and infinite kinds of executions since the scheduler
may stop in a finite number of steps or continue selecting pairs for ever.
Moreover, note that, according to the preceding definitions, a scheduler
may partition the agents into non-communicating clusters. If that’s the
case, then it is easy to see that no meaningful computation is possible. To
avoid this unpleasant scenario, a strong global fairness condition is im-
posed on the scheduler to ensure the protocol makes progress. An infinite
execution is fair if for every pair of configurations C and C ′ such that
C → C ′, if C occurs infinitely often in the execution, then C ′ also occurs
infinitely often in the execution. A scheduler is fair if it always leads to
fair executions. A computation is an infinite fair execution.

The following are two critical properties of population protocols:

1. Uniformity : Population protocols are uniform. This means that any
protocol’s description is independent of the population size. Since we
assume that the agents have finite storage capacity, and independent
of the population size, uniformity enables us to store the protocol code
in each agent of the population.

2. Anonymity : Population protocols are anonymous. The set of states is
finite and does not depend on the size of the population. This imp-
ies that there is no room in the state of an agent to store a unique
identifier, and, thus, all agents are treated in the same way by the
transition function.



6 Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

2.2 Stable Computation

Assume a fair scheduler that keeps working forever and a protocol A that
runs on a communication graph G = (V, E). Initially, each agent receives
an input symbol from X. An input assignment x : V → X is a mapping
specifying the input symbol of each agent in the population. Let X = XV

be the set of all possible input assignments, given the population V and
the input alphabet X of A. Population protocols, when controlled by
infinitely working schedulers, do not halt. Instead of halting we require
any computation of a protocol to stabilize. An output assignment y :
V → Y is a mapping specifying the output symbol of each agent in the
population. Any configuration C ∈ C = QV is associated with an output
assignment yC = O ◦ C. A configuration C is said to be output-stable if
for any configuration C ′ such that C

∗→ C ′ (any configuration reachable
from C) yC′ = yC . In words, a configuration C is output-stable if all
agents maintain the output symbol that have under C in all subsequent
steps, no matter how the scheduler proceeds thereafter. A computation
C0, C1, C2, . . . is stable if it contains an output-stable configuration Ci,
where i is finite.

Definition 2. A population protocol A running on a communication graph
G = (V, E) stably computes a predicate p : X → {0, 1}, if, for any
x ∈ X , every computation of A on G beginning in C0 = I ◦ x reaches in
a finite number of steps an output-stable configuration Cstable such that
yCstable

(u) = p(x) for all u ∈ V . A predicate is stably computable if some
population protocol stably computes it.

Assume that a computation of A on G begins in the configuration
corresponding to an input assignment x. Assume, also, that p(x) = 1. If
A stably computes p, then we know that after a finite number of steps (if,
of course, the scheduler is fair) all agents will give 1 as output, and will
continue doing so for ever. This means, that if we wait for a sufficient,
but finite, number of steps we can obtain the correct answer of p with
input x by querying any agent in the population.

Definition 3. The basic population protocol model (or standard) as-
sumes that the communication graph G is always directed and complete.

Semilinear predicates are predicates whose support is a semilinear set.
A semilinear set is the finite union of linear sets. A set of vectors in INk

is linear if it is of the form

{b + l1a1 + l2a2 + · · ·+ lmam | li ∈ IN},



Recent Advances in Population Protocols 7

where b is a base vector, ai are basis vectors, and li are non-negative
integer coefficients. Moreover, semilinear predicates are precisely those
predicates that can be defined by first-order logical formulas in Presburger
arithmetic, as was proven by Ginsburg and Spanier in [15].

In [2] and [3] it was proven that any semilinear predicate is stably
computable by the basic population protocol model and in [5] that any
stably computable predicate, by the same model, is semilinear, thus to-
gether providing an exact characterization of the class of stably com-
putable predicates:

Theorem 1. A predicate is stably computable by the basic population
protocol model iff it is semilinear.

An immediate observation is that predicates like “the number of c’s
is the product of the number of a’s and the number of b’s (in the input
assignment)” and “the number of 1’s is a power of 2” are not stably
computable by the basic model.

A graph family, or graph universe, is any set of communication graphs.
Let G be a graph family. For any G ∈ G and given that X is the input
alphabet of some protocol A, there exists a set of all input assignments
appropriate for G, denoted XG = XV (G). Let now XG =

⋃
G∈G(XG×{G})

or, equivalently, XG = {(x,G) | G ∈ G and x is an input assignment
appropriate for G}. Then we have the following definition:

Definition 4. A population protocol A stably computes a predicate p :
XG → {0, 1} in a family of communication graphs G, if, for any G ∈ G
and any x ∈ XG, every computation of A on G beginning in C0 = I ◦ x
reaches in a finite number of steps an output-stable configuration Cstable

such that yCstable
(u) = p(x,G) for all u ∈ V (G).

Moreover, if p is a mapping from G to {0, 1}, that is, a graph property,
then we say that A stably computes property p.

Note that we can also consider undirected communication graphs. In
the case of an undirected graph we only require that E is symmetric, but
we keep the initiator-responder assumption. The latter is important to
ensure deterministic transitions, since otherwise we would not be able to
now which agent applies/gets the result of δ1 and which that of δ2.

2.3 An Example

Let us illustrate what we have seen so far by an example.



8 Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

Problem 1. (Undirected Star) Given a communication graph G = (V, E)
from the unrestricted family of undirected graphs (any possible connected
and undirected simple graph), find whether the topology is an undirected
star.

We devise a protocol, named UndirectedStar, that stably computes prop-
erty Undirected Star, that is, it eventually decides whether the underlying
communication graph G = (V, E) taken from the unrestricted family of
graphs is an undirected star.

UndirectedStar

– X = {0, 1}, Y = {0, 1},
– Q = {(i, j) | i ∈ {0, 1, 2} and j ∈ {0, 1, 2}2} ∪ {z},
– I(x) = (0, (0, 0)), for all x ∈ X,
– O(z) = 0 and O(q) = 1, for all q ∈ Q− {z},
– δ:

((0, (0, 0)), (0, (0, 0))) → ((1, (1, 1)), (2, (0, 0)))

((1, (i, j)), (0, (0, 0))) → ((1, (0, 0)), (2, (i, j + 1))),

if i ∈ {0, 1} and j ∈ {0, 1} or i = 2 and j = 0

→ ((1, (0, 0)), (2, (i, j))), if i = 1 and j = 2

→ (z, z), if i = 2 and j = 1

((2, (l, k)), (0, (0, 0))) → ((2, (0, 0)), (1, (l + 1, k))),

if k ∈ {0, 1} and l ∈ {0, 1} or k = 2 and l = 0

→ ((2, (0, 0)), (1, (l, k))), if k = 1 and l = 2

→ (z, z), if k = 2 and l = 1

((1, (i, j)), (2, (l, k))) → ((1, (2, j + k)), (2, (0, 0))), if j + k < 2 and i + l ≥ 2

→ ((1, (i + l, 2)), (2, (0, 0))), if i + l < 2 and j + k ≥ 2

→ ((1, (i + l, j + k)), (2, (0, 0))), if i + l < 2 and j + k < 2

→ (z, z), if i + l ≥ 2 and j + k ≥ 2

((1, (i, j)), (2, (0, 0))) → ((1, (0, 0)), (2, (i, j)))

((1, (0, 0)), (2, (l, k))) → ((1, (l, k)), (2, (0, 0)))

((1, (i, j)), (1, (l, k))) → (z, z)

((2, (i, j)), (2, (l, k))) → (z, z)

(z, x) → (z, z)

Note that in the transition δ((1, (i, j)), (2, (l, k))) we assume that (i, j) 6=
(0, 0) and (l, k) 6= (0, 0).



Recent Advances in Population Protocols 9

Definition 5. An undirected star of order n (“n-star”) is a tree on n
vertices with one vertex having degree n − 1 and n − 1 vertices having
degree 1.

Lemma 1. A connected undirected graph G = (V,E), with |V | = n ≥ 3,
is an undirected star if and only if there is at most one u ∈ V where
d(u) ≥ 2 (i.e. at most one vertex of degree at least 2).

Proof. For the only if part, Definition 5 states that an undirected star has
only one vertex of degree at least 2. For the other direction, first we note
that since G is connected it must have at least n − 1 edges. Any cycle
should contain at least two vertices of degree 2, so G is acyclic. Since G is
acyclic and connected it is a tree and therefore it has exactly n−1 edges.
The latter, together with the fact that each υ ∈ V has d(υ) ≥ 1, but at
most one u ∈ V has d(u) ≥ 2 implies that d(u) = n − 1 and d(υ) = 1,
for all υ ∈ V − {u}, and, according to Definition 5, this completes the
proof. ut

Corollary 1. A connected undirected graph G = (V, E), with |V | = n ≥
3, is not an undirected star if and only if there are at least two vertices
u, υ ∈ V where d(u) ≥ 2 and d(υ) ≥ 2 (i.e. at least two vertices of degree
at least 2).

So, generally speaking, an algorithm that decides if a connected graph
is an undirected star could only check if there is at most one vertex of
degree at least 2 (if n ≥ 3).

Remark 1. Any simple connected graph with only two vertices is an undi-
rected star.

This remark fills the gap of the assumption in Lemma 1 that n ≥ 3.
Note that n = 1 is meaningless, since in a graph with a unique vertex no
computation can take place (there is not even a single pair of agents to
interact).

We can think of states (i, j) ∈ Q as consisting of two components i and
j. We will call i the basic component and j the counter component. If the
interacting pair consists of two agents in the initial state, the protocol
assigns basic component 1 to one agent and basic component 2 to the
other. Moreover, an agent in basic component 1 gives an agent that is in
the initial state basic component 2 and an agent in basic component 2
gives an agent that is in the initial state basic component 1, while the
pairs (1,2) and (2,1) do nothing w.r.t. the basic components. Clearly, if



10 Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

the topology is a star and if w.l.o.g. the central vertex (vertex of degree
n−1) gets basic component 2, then all peripheral vertices will eventually
get basic component 1 and the protocol will output that the topology is
a star.

If the topology is not a star, then the protocol must detect that at
least two vertices are of degree at least 2. Note, also, that the agents never
change their basic component except for the case when they get the reject
state z.

Lemma 2. If G is not a star, then protocol UndirectedStar will even-
tually create one of the following two situations:

– Two neighboring agents with the same basic component, or
– at least two agents in basic component 1 and at least two agents in

basic component 2.

Proof. Assume that it won’t. Then any neighboring agents will have dif-
ferent basic components and at most one of the basic components 1 and
2 will appear in at least two different agents. So w.l.o.g. n− 1 agents will
be in component 1 and only one in component 2, since both components
always exist in any computation (except before the first interaction and
sometime after rejection). But since G is connected it must have at least
n − 1 edges. In fact, if it has more than n − 1 edges it will contain a
cycle with at least two vertices (agents) in basic component 1 which will
violate the fact that any neighboring vertices will have different basic
components and thus G must have exactly n−1 edges. But the latter im-
plies that the n− 1 vertices in basic component 1 are directly connected
to the unique vertex in basic component 2, which in turn implies that
G must be an undirected star, a fact that contradicts the fundamental
assumption of the lemma. We could also have proven the statement by
contradicting the fact that G not being an undirected star must have at
least two vertices u, υ ∈ V , where d(u) ≥ 2 and d(υ) ≥ 2. ut

In fact, the protocol always rejects if it finds two neighboring agents
in the same basic component and the same does if it finds out that there
are at the same time at least two agents in basic component 1 and at least
two agents in basic component 2 in the population. The latter is done by
the counter component of the states. Thus, according to the preceding
lemma, the protocol will eventually reject if G is not a star, because it
will provably fall in a situation that leads it to rejection.

Theorem 2. UndirectedStar stably computes property Undirected Star.



Recent Advances in Population Protocols 11

Proof. The correctness of the statement should be clear after the above
discussion. The protocol always reaches an output-stable configuration
and at that point any agent outputs the correct answer for the property
Undirected Star. ut

3 The Mediated Population Protocol model

In [13] the authors considered the following question: “Is there a way to
extend the population protocol model and obtain a stronger model, with-
out violating the uniformity and anonymity properties”? As we shall, in
this section, see, the answer to this question is “Yes”. Although the idea
is simple, it provides us with a model with significantly more compu-
tational power and extra capabilities in comparison to the population
protocol model. The main modification is to allow the edges of the com-
munication graph to store states from a finite set, whose cardinality is
independent of the population size. Two interacting agents read the cor-
responding edge’s state and update it, according to a global transition
function, by also taking into account their own states.

3.1 Formal Definition

Definition 6. A mediated population protocol (MPP) is a 12-tuple (X,
Y,Q, I,O, S, ι, ω, r,K, c, δ), where X, Y , Q, S, and K are all finite sets
and

1. X is the input alphabet,
2. Y is the output alphabet,
3. Q is the set of agent states,
4. I : X → Q is the agent input function,
5. O : Q → Y is the agent output function,
6. S is the set of edge states,
7. ι : X → S is the edge input function,
8. ω : S → Y is the edge output function,
9. r is the output instruction (informing the output-viewer how to inter-

pret the output of the protocol),
10. K is the totally ordered cost set,
11. c : E → K is the cost function
12. δ : Q×Q×K × S → Q×Q×K × S is the transition function.

We assume that the cost remains the same after applying δ and so we omit
specifying an output cost. If δ(qi, qj , x, s) = (q′i, q

′
j , s

′) (which, according



12 Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

to our assumption, is equivalent to δ(qi, qj , x, s) = (q′i, q
′
j , x, s′)), we call

(qi, qj , x, s) → (q′i, q
′
j , s

′) a transition, and we define δ1(qi, qj , x, s) = q′i,
δ2(qi, qj , x, s) = q′j and δ3(qi, qj , x, s) = s′. We call δ1 the initiator’s acqui-
sition, δ2 the responder’s acquisition, and δ3 the edge acquisition (after
the corresponding interaction).

In most cases we assume that K ⊂ ZZ+ and that cmax = maxw∈K

{w} = O(1). Generally, if cmax = maxw∈K {|w|} = O(1) then any agent
is capable of storing at most k cumulative costs (at most the value kcmax),
for some k = O(1), and we say that the cost function is useful (note that
a cost range that depends on the population size could make the agents
incapable for even a single cost storage and any kind of optimization
would be impossible).

A network configuration is a mapping C : V ∪E → Q∪S specifying the
agent state of each agent in the population and the edge state of each edge
in the communication graph. Let C and C ′ be network configurations,
and let u, υ be distinct agents. We say that C goes to C ′ via encounter
e = (u, υ), denoted C

e→ C ′, if

C ′(u) = δ1(C(u), C(υ), x, C(e))
C ′(υ) = δ2(C(u), C(υ), x, C(e))
C ′(e) = δ3(C(u), C(υ), x, C(e))
C ′(z) = C(z), for all z ∈ (V − {u, υ}) ∪ (E − e).

The definitions of execution and computation are the same as in the pop-
ulation protocol model but concern network configurations. Note that
the mediated population protocol model preserves both uniformity and
anonymity properties. As a result, any MPP’s code is of constant size
and, thus, can be stored in each agent (device) of the population.

A configuration C is called r-stable if one of the following conditions
holds:

– If the problem concerns a subgraph to be found, then C should fix a
subgraph that will not change in any C ′ reachable from C.

– If the problem concerns a function to be computed by the agents, then
an r-stable configuration drops down to an output-stable configura-
tion.

We say that a protocol A stably solves a problem Π, if for every
instance I of Π and every computation of A on I, the network reaches an
r-stable configuration C that gives the correct solution for I if interpreted



Recent Advances in Population Protocols 13

according to the output instruction r. If instead of a problem Π we have
a function f to be computed, we say that A stably computes f .

In the special case where Π is an optimization problem, a protocol that
stably solves Π is called an optimizing population protocol for problem
Π.

3.2 An Optimizing Population Protocol

We now give an optimizing population protocol, named SRLpath, for
the problem of finding the shortest path connecting the root of a directed
arborescence to one of its leaves. Formally the problem is the following.

Problem 2. (Shortest Root-Leaf Path) Given that the communication graph
G = (V,E) is a directed arborescence and a useful cost function c : E →
K on the set of edges, design a protocol that finds the minimum cost path
of the (nonempty) set P = {p | p is a path from the root to a leaf and
c(p) = O(1)}, where c(p) is simply another way to write

∑
e∈p c(e).

We assume that the greatest value that any agent is capable of storing is
kcmax, where both k and cmax = maxe∈Ec(e), are fixed and independent
of the size of the population |V | = n, given a nonnegative integer-valued
cost function c : E → K (i.e. K ⊂ ZZ+).

If there is at least one path p where c(p) =
∑

e∈P c(e) < kcmax (c(p)
denotes the path length or the total cost of the path), then SRLpath
will eventually return the shortest path connecting the root to one of
the leaves, otherwise it will just return one of the paths with cost at least
kcmax (one of all root-leaf paths), without guaranteeing that it will be the
shortest one, but the output of the root will be 0 indicating that there
was no such path.

SRLpath

– X = {0, 1},
– Y = {0, 1} ∪Q,
– Q = {q0, qs} ∪ {(i, j) | i ∈ {q1, q2, q3, qs} and j ∈ {0, 1, 2, . . . , kcmax},
– I(x) = q0, for all x ∈ X,
– O(q1, kcmax) = 0, O(q) = q, for all q ∈ Q− {(q1, kcmax)},
– S = {0, 1},
– ι(x) = 0, for all x ∈ X,
– ω(s) = s, for all s ∈ S,
– r: “If the root outputs 0, fail, else start from the root and follow every

edge with output 1, until you reach a leaf ”,



14 Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

– δ:

(q0, q0, c, 0) → ((q1, c), q0, 1)
(q0, (q1, c1), c, 0) → ((q1, kcmax), (q1, c1), 1), if c1 + c > kcmax

→ ((q1, c1 + c), (q1, c1), 1), otherwise
((q1, c1), (q1, c2), c, 1) → ((q1, kcmax), (q1, c2), 1), if c2 + c > kcmax

→ ((q1, c2 + c), (q1, c2), 1), otherwise
((q1, c1), (q1, c2), c, 0) → ((q2, c2 + c), (qs, c2), 1), if c2 + c < c1

((q2, c1), (qi, c2), c, 1) → ((q3, c1), (qi, c2), 0), for i ∈ {1, 2, 3}
((q3, c1), (qs, c2), c, 1) → ((q1, c1), (q1, c2), 1)

((q1, c1), q0, c, 0) → ((q2, c), qs, 1), if c < c1

((q2, c1), q0, c, 1) → ((q3, c1), q0, 0)
((q3, c1), qs, c, 1) → ((q1, c1), q0, 1)

Theorem 3. If there is at least one root-leaf path p, where c(p) < kcmax,
then SRLpath is an optimizing population protocol for Problem 2. Oth-
erwise, the root outputs 0, indicating that there is no such path.

Proof. The proof is by induction on the number of nodes of the directed
arborescence T . Let Ti = {T | T is a directed arborescence of i nodes},
i.e. the family of all directed arborescences of i nodes. There is only one
directed arborescence in T1, and only one in T2, the one that consists
of two nodes connected by a directed edge. Obviously, SRLpath always
finds the shortest root-leaf path for every directed arborescence of at most
2 nodes (finds it trivially). Assume that for every directed arborescence
of at most n nodes, SRLpath always finds the shortest root-leaf path.
Let Tn+1 be any directed arborescence of (n + 1) nodes. By ignoring the
root of Tn+1 and the corresponding edges we get at least one directed
arborescence of at most n nodes. On any such subtree we know by the
inductive hypothesis that SRLpath always finds the shortest root-leaf
path. Moreover, it is easy to see that the protocol always keeps in the root
of the tree the cost of the selected root-leaf path. Let, u be the removed
root, and υj , where j = {1, 2, . . . , t}, its t children. Each child υj has
eventually marked the shortest root-leaf path in the subtree in which υj

is the root and eventually contains the cost of this path in its state, c(pj).
So, eventually u will select the child υj , for which minυj{c(pj) + c(u, υj)}
holds, which will be the shortest root-leaf path of Tn+1. Note that if



Recent Advances in Population Protocols 15

minυj{c(pj) + c(u, υj)} < kcmax, then at least one such path can be
selected by the root (which will never give 0 as output). On the other
hand, if there is no such path, then minυj{c(pj) + c(u, υj)} ≥ kcmax and
u can only store kcmax which combined with q1 gives always output 0,
indicating that no such path exists. ut

3.3 Approximation Protocols

Consider now the following problem:

Problem 3. (Maximal matching) Given an undirected communication gra-
ph G = (V, E), find a maximal matching, i.e., a set E′ ⊆ E such that no
two members of E′ share a common end point in V and, moreover, there
is no e ∈ E − E′ such that e shares no common end point with every
member of E′.

A simple protocol to solve this problem is the following: Initially all
agents are in state q0 and all edges in state s0. When two agents in q0

interact via an edge in s0, they both go to q1 to indicate that they are
endpoints of an edge that belongs to the matching formed so far, and
the edge goes to s1 to indicate that it has been put in the matching. All
the other transitions have no effect. It is easy to see that eventually the
edges in s1 will form a maximal matching. Moreover, ω(s1) = O(q1) = 1
and ω(s0) = O(q0) = 0. An appropriate instruction r could be: “Get each
e ∈ E for which ω(se) = 1 (where se is the state of e)”, which simply
informs the user how to interpret the output of the protocol to get the
correct answer (i.e. which edges form the matching).

Definition 7. Let Π be a minimization problem, and let δ be a positive
real number, δ ≥ 1. A protocol A is said to be a δ factor approximation
protocol for Π if for each instance I of Π, and every computation of A
on I, the network reaches an r-stable configuration C, that, if interpreted
according to the output instruction r of A, gives a feasible solution s for
I such that

fΠ(I, s) ≤ δ ·OPT(I),

where fΠ(I, s) denotes the objective function value of solution s of in-
stance I, and OPT(I) denotes the objective function value of an optimal
solution of instance I.

Now, consider the well-known minimum vertex cover problem defined
as follows:



16 Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

Problem 4. (Minimum vertex cover) Given an undirected communication
graph G = (V, E), find a minimum cardinality vertex cover, i.e., a set
V ′ ⊆ V such that every edge has at least one end point incident at V ′.

Let V ertexCover be a MPP that agrees on everything to the one already
described for Maximal matching, except for the output instruction r,
which is now r: “Get each υ ∈ V for which O(qυ) = 1 (where qυ is the
state of υ)”. Intuitively, we now collect all agents incident to an edge in
the maximal mathcing M (for all e ∈ M we collect the end points of e).

Theorem 4. V ertexCover is a 2 approximation protocol for the mini-
mum vertex cover problem.

Proof. According to the previous discussion, the edges collected form a
maximal matching on G. Moreover, the set C formed by the end points of
the edges of M is a minimum vertex cover where |C| ≤ 2·OPT , according
to the analysis in the introductory chapter of [16]. Thus, V ertexCover is
a 2 approximation protocol for the minimum vertex cover problem. ut

3.4 Computational Power

It is easy to see that the population protocol model is a special case of
the mediated population protocol model. In [13] it was proven that there
exists a MPP protocol that stably computes the non-semilinear predicate
Nc = Na ·Nb. In words, it eventually decides whether the number of c’s in
the input assignment is equal to the product of the number of a’s and the
number of b’s. To do so, the authors stated a composition theorem, that
simplifies the proof of existence of MPP protocols. Here we also provide
a complete proof of that theorem.

Definition 8. A MPP A has stabilizing states if in any computation
of A, after a finite number of interactions, the states of all agents stop
changing.

Definition 9. We say that a predicate is strongly stably computable
by the MPP model, if it is stably computable with the predicate output
convention, that is, all agents eventually agree on the correct output value.

Theorem 5. Any mediated population protocol A, that stably computes a
predicate p with stabilizing states in some family of directed and connected
communication graphs G, containing an instruction r that defines a semi-
linear predicate t on multisets of A’s agent states, can be composed with
a provably existing mediated population protocol B, that strongly stably



Recent Advances in Population Protocols 17

computes t with stabilizing inputs in G, to give a new mediated population
protocol C satisfying the following properties:

– C is formed by the composition of A and B,
– its input is A’s input,
– its output is B’s output, and
– C strongly stably computes p (i.e. all agents agree on the correct out-

put) in G.

Proof. Protocol A has stabilizing states and an instruction r that defines
a semilinear predicate t on multisets of A’s states. Let XA be the input
alphabet of A, QA the set of A’s states, δA the transition function of A,
and similarly for any other component of A. We will use the indexes B
and C, for the corresponding components of the other two protocols.

Since predicate t is semilinear, according to a result in [1], there is a
population protocol B′ that stably computes t with stabilizing inputs in
the unrestricted family of graphs (denoted by Gd

Unr, and consisting of all
possible directed and connected communication graphs). Note that G is
a subset of Gd

Unr (G ⊆ Gd
Unr), so any predicate stably computable (both

with or without stabilizing inputs) in Gd
Unr is also stably computable in

G, since it is stably computable in any possible communication graph.
So, B′ stably computes t with stabilizing inputs in G. Moreover, there
also exists a mediated population protocol B (the one that is the same
as B′ but simply ignores the additional components of the new model)
that strongly stably computes t with stabilizing inputs in G. Note that
the input alphabet of B is XB = QA, and its transition function is of the
form δB : (QA ×QB)× (QA ×QB) → QB ×QB, since there is no need to
specify edge states (formally we should, but the protocol ignores them).
QA is the set of A’s agent states and B’s inputs that eventually stabilize.

We define a mediated population protocol C as follows: XC = XA,
YC = YB = {0, 1}, QC = QA × QB, IC : XA → QC defined as IC(x) =
(IA(x), iB), for all x ∈ QC where iB ∈ QB is the initial state of protocol
B, SC = SA, ιC : XC → SC , that is, ιC(x) = ιA(x), for all x ∈ XC ,
OC(a, b) = OB(b), for all q = (a, b) ∈ QC , and finally its transition function
δC : QC ×QC × SC → QC ×QC × SC (we omit specifying costs since there
is no need for them) is defined as

δC((a, b), (a′, b′), s) = ((δA1(a, a′, s), δB1((a, b), (a′, b′))),
(δA2(a, a′, s), δB2((a, b), (a′, b′))),
δA3(a, a′, s)),



18 Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

where for δA(x, y, z) = (x′, y′, z′) (in A’s transition function), we have
that δA1(x, y, z) = x′, δA2(x, y, z) = y′, δA3(x, y, z) = z′, and similarly for
δB.

Intuitively, C consists of A and B running in parallel. The state of each
agent is a pair c = (a, b), where a ∈ QA, b ∈ QB, and the state of each
edge is a member of SA. Initially each agent senses an input x from XA
and this is transformed according to IC to such a pair, where a = IA(x)
and b is always a special B’s initial state iB ∈ QB. When two agents in
states (a, b) and (a′, b′) interact through an edge in state s, then protocol
A updates the first components of the agent states, i.e. a and a′, and the
edge state s, as if B didn’t exist. On the other hand, protocol B updates
the second components by taking into account the first components that
represent its separate input ports at which the current input symbol of
each agent is available at every interaction (B takes A’s states for agent
input symbols that may change arbitrarily between any two computation
steps, but the truth is that they change due to A’s computation). Since
the first components of C’s agent states eventually stabilize as a result of
A’s stabilizing states, protocol B will eventually obtain stabilizing inputs,
consequently will operate correctly, and will strongly stably compute t as
if it had began computing on A’s final (output) configuration. But, since
t provides the correct answer for p if applied on A’s final configuration, it
is obvious that C must strongly stably compute p in G, and the theorem
follows. ut

Since MPP strongly stably computes a non-semilinear predicate and
PP is a special case of MPP, it follows that the class of stably computable
predicates by MPP is a proper superset of the class of stably computable
predicates by PP. In other words, the MPP model is computationally
stronger than the PP model.

In [13] the authors also proved the following result: “Any predicate
that is stably computable by the MPP model in any family of communi-
cation graphs belongs to the space complexity class NSPACE(m)”. The
idea is simple: By using the MPP that stably computes the predicate we
construct a nondeterministic Turing machine that guesses in each step
the next selection of the scheduler (thus the next configuration). The ma-
chine always replaces the current configuration with a new legal one, and,
since any configuration can be represented explicitly with O(m) space,
any branch uses O(m) space. The machine accepts if some branch reaches
a configuration C that satisfies instruction r of the protocol, and if, more-
over, no configuration reachable from C violates r (i.e. C must also be
r-stable).



Recent Advances in Population Protocols 19

4 The GDM model

In [13] MPP’s ability to decide graph languages was implicitly observed.
In fact, the authors made a similar observation: “MPPs are able to locate
subgraphs”. Based on this observation, in [11] the authors considered a
special case of the mediated population protocol model, the graph decision
mediated population protocol model, or simply GDM. The purpose of GDM
was to simplify the study of decidability capabilities of the MPP model.

4.1 Formal Definition

Definition 10. A GDM is an 8-tuple (Y,Q, O, S, r, δ, q0, s0), where Y ,
Q, and S are all finite sets and

1. Y = {0, 1} is the binary output alphabet,
2. Q is the set of agent states,
3. O : Q → Y is the agent output function,
4. S is the set of edge states,
5. r is the output instruction,
6. δ : Q×Q× S → Q×Q× S is the transition function,
7. q0 ∈ Q is the initial agent state, and
8. s0 ∈ S is the initial edge state.

If δ(a, b, s) = (a′, b′, s′), we call (a, b, s) → (a′, b′, s′) a transition and we
define δ1(a, b, s) = a′, δ2(a, b, s) = b′, and δ3(a, b, s) = s′.

Let U be a graph universe. A graph language L is a subset of U con-
taining communication graphs that share some common property. For
example, a common graph universe is the set of all possible directed and
weakly connected communication graphs, denoted by G, and L = {G ∈ G
| G has an even number of edges} is a possible graph language w.r.t. G.

A GDM protocol may run on any graph from a specified graph uni-
verse. The graph on which the protocol runs is considered as the input
graph of the protocol. Note that GDM protocols have no sensed input.
Instead, we require each agent in the population to be initially in the
initial agent state q0 and each edge of the communication graph to be
initially in the initial edge state s0. In other words, the initial network
configuration, C0, of any GDM is defined as C0(u) = q0, for all u ∈ V ,
and C0(e) = s0, for all e ∈ E, and any input graph G = (V, E).

We say that a GDM A accepts an input graph G if in any computation
of A on G after finitely many interactions all agents output the value 1
and continue doing so in all subsequent (infinite) computational steps.
By replacing 1 with 0 we get the definition of the reject case.



20 Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

Definition 11. We say that a GDM A decides a graph language L ⊆ U
if it accepts any G ∈ L and rejects any G /∈ L.

Definition 12. A graph language is said to be decidable if some GDM
decides it.

4.2 Weakly Connected Graphs

Decidability

The most meaningful graph universe is G containing all possible directed
and weakly connected communication graphs, without self-loops or mul-
tiple edges, of any finite number of nodes greater or equal to 2 (we do
not allow the empty graph, the graph with a unique node and we neither
allow infinite graphs). Here the graph universe is G and, thus, a graph
language can only be a subset of G (moreover, its elements must share
some common property).

In [11] it was proven that the class of decidable graph languages is
closed under complement, union and intersection operations. Moreover,
the authors provided protocols (and proved their correctness) that decide
the following graph languages:

1. Neven = {G ∈ G | |V (G)| is even},
2. Eeven = {G ∈ G | |E(G)| is even},
3. Nout

k = {G ∈ G | G has some node with at least k outgoing neighbors}
for any k = O(1),

4. Kout
k = {G ∈ G | Any node in G has at least k outgoing neighbors}

for any k = O(1),
5. Mout = {G ∈ G | G has some node with more outgoing than incoming

neighbors}, and
6. Pk = {G ∈ G | G has at least one directed path of at least k edges}

for any k = O(1).

So, all the above languages are decidable by the GDM model, and, by
closure under complement, the same holds for their complements. For
example, N

out
k contains all graphs that have no node with at least k =

O(1) outgoing neighbors, and is decidable. In other words, GDM can
decide if all nodes have less than k outgoing edges, which is simply the
well-known bounded by k out-degree predicate.

To illustrate the formal description of GDM protocols we provide the
code of the protocol DirPath that was proven in [11] to decide the lan-
guage Pk = {G ∈ G | G has at least one directed path of at least k edges}



Recent Advances in Population Protocols 21

for any k = O(1).

DirPath

– Q = {q0, q1, 1, . . . , k}, S = {0, 1},
– O(k) = 1, O(q) = 0, for all q ∈ Q− {k},
– r: “Get any u ∈ V and read its output”,
– δ:

(q0, q0, 0) → (q1, 1, 1)
(q1, x, 1) → (x− 1, q0, 0), if x ≥ 2

→ (q0, q0, 0), if x = 1
(x, q0, 0) → (q1, x + 1, 1), if x + 1 < k

→ (k, k, 0), if x + 1 = k

(k, ·, ·) → (k, k, ·)
(·, k, ·) → (k, k, ·)

Undecidability

If we allow only GDMs with stabilizing states, i.e. GDMs that in any
computation after finitely many interactions stop changing their states,
then we can prove that a specific graph language w.r.t. G is undecidable.
In particular, we can prove that there exists no GDM with stabilizing
states to decide the graph language

2C = {G ∈ G | G has at least two nodes u, υ s.t. both (u, υ), (υ, u)
∈ E(G) (in other words, G has at least one 2-cycle)}.

The proof is based on the following lemma.

Lemma 3. For any GDM A and any computation C0, C1, C2, . . . of A
on G (Figure 1(a)) there exists a computation C ′

0, C
′
1, C

′
2, . . . , C

′
i, . . . of A

on G′ (Figure 1(b)) s.t.

Ci(υ1) = C ′
2i(u1) = C ′

2i(u3)
Ci(υ2) = C ′

2i(u2) = C ′
2i(u4)

Ci(e1) = C ′
2i(t1) = C ′

2i(t3)
Ci(e2) = C ′

2i(t2) = C ′
2i(t4)

for any finite i ≥ 0.



22 Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

(a) Graph G (b) Graph G′

Fig. 1. G ∈ 2C and G′ /∈ 2C.

Proof. The proof is by induction on i.

Lemma 3 shows that if a GDM A with stabilizing states could decide
2C then there would exist a computation of A on G′ forcing all agents
to output incorrectly the value 1 in finitely many steps. But G′ does
not belong to 2C, and, since A decides 2C, all agents must correct their
states to eventually output 0. By taking into account the fact that A has
stabilizing states it is easy to reach a contradiction and prove that no
GDM with stabilizing states can decide 2C. Whether the graph language
2C is undecidable by the GDM model in the general case (not only by
GDMs with stabilizing states) remains an interesting open problem.

4.3 All Possible Directed Graphs

In [11] it was, also, proven that if we allow the graph universe, H, to con-
tain also disconnected communication graphs, then in this case the GDM
model is incapable of deciding even a single nontrivial graph language (we
call a graph language L nontrivial if L 6= ∅ and L 6= H). Here we assume
the graph universe H consisting of all possible directed communication
graphs, without self-loops or multiple edges of any finite number of nodes
greater or equal to 2 (we now also allow graphs that are not even weakly
connected). So, now, a graph language can only be a subset of H. We will
give the proof idea of that general impossibility result.

First we show that for any nontrivial graph language L, there exists
some disconnected graph G in L where at least one component of G does
not belong to L or there exists some disconnected graph G′ in L where at
least one component of G′ does not belong to L (or both). If the statement



Recent Advances in Population Protocols 23

does not hold then any disconnected graph in L has all its components
in L and any disconnected graph in L has all its components in L.

1. All connected graphs belong to L. Then L contains at least one dis-
connected graph (since it is nontrivial) that has all its components in
L, which contradicts the fact that the components of any disconnected
graph in L also belong to L.

2. All connected graphs belong to L. The contradiction is symmetric to
the previous case.

3. L and L contain connected graphs G and G′, respectively. Their dis-
joint union U = (V ∪ V ′, E ∪ E′) is disconnected, belongs to L or L
but one of its components belongs to L and the other to L. The latter
contradicts the fact that both components should belong to the same
language.

To obtain the impossibility result the reader should use the fact that
the class of decidable graph languages is closed under complement and,
also, simply notice that GDMs have no way to transmit data between
agents of different components when run on disconnected graphs (in fact,
it is trivial to see that, when run on disconnected graphs, those protocols
essentially run individually on the different components of those graphs).

5 Further Research Directions

Since the Mediated Population Protocol model was proposed very re-
cently, many important questions concerning it remain open and many
directions emerging from it are yet unexplored. The first question that
comes to one’s mind is if there exists some achievable architecture that
implements the proposed models. Is there some other notion of fairness
(probably weaker) that would be more suitable for real-life applications?
Can we give an exact characterization of the stably computable predicates
by the Mediated Population Protocol model like the one already given for
the Population Protocol model? If we ignore the sensing capabilities of
the MPP model and focus on the GDM model, can we give an exact char-
acterization of the class of decidable graph languages? Is there a general
method for proving impossibility results that best suits the GDM model?
In other words, can we avoid ad-hoc proofs of impossibility results and
borrow or modify techniques from classical distributed computing by also
taking into account the fact that our systems are uniform, anonymous,
have constant protocol descriptions, and have some nondeterminism in-
herent in the interaction pattern? Can we devise some reliable simulation



24 Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

platform or testbed to extensively test or/and verify our protocols before
running them in real application scenarios? Since sensor networks are
most of the time used in critical environments (fire detection is a classical
example), it is reasonable to wonder whether there exists a unified the-
oretical framework for fast and reliable protocol verification. Since such
protocols are usually small we are hoping for the existence of some fast
verification process. Assuming a unique leader in the system has been
always helpful in distributed computing (to get an idea of its usefulness
in population protocols the reader is referred to [4]). It seems that in the
models under consideration assuming a leader in the initial configuration
is more helpful than letting the protocol elect one. In particular, it seems
that an assumed leader provides us with even more computational power,
especially in the case where the goal is the construction of some subgraph
or the decision of some specific property of the communication graph.
Finally, we believe that it is not so bad to assume that some or all agents
have O(log n) storage capacity (note that if the population consists of 1
billion agents, i.e. n = 109, then only about 30 bits of memory are re-
quired in each agent!), then it is possible to assume unique identifiers,
population protocols are no longer anonymous, and it is of great interest
studying this realizable scenario.

References

1. D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, H. Jiang, and R. Peralta. Sta-
bly computable properties of network graphs. In Proc. Distributed Computing in
Sensor Systems: 1st IEEE International Conference, pages 63-74, 2005.

2. D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation in
networks of passively mobile finite-state sensors. In 23rd Annual ACM Sympsium
on Principles of Distributed Computing (PODC ), pages 290-299, New York, NY,
USA, 2004. ACM.

3. D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):
235-253, 2006.

4. D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols
with a leader. Distributed Computing, 21(3): 183-199, Sept. 2008.

5. D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semi-
linear. In Proc. 25th Annual ACM Symposium on Principles of Distributed Com-
puting, pages 292-299, 2006.

6. D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power
of population protocols. Distributed Computing, 20(4): 279-304, November 2007.

7. J. Aspnes and E. Ruppert. An introduction to population protocols. Bulletin of
the European Association for Theoretical Computer Science, 93:98-117, October
2007. Columns: Distributed Computing, Editor: M. Mavronicolas.



Recent Advances in Population Protocols 25

8. J. Beauquier, J. Clement, S. Messika, L. Rosaz, and B. Rozoy. Self-stabilizing
counting in mobile sensor networks. Technical Report 1470, LRI, Université Paris-
Sud 11, 2007.

9. O. Bournez, P. Chassaing, J. Cohen, L. Gerin, and X. Koegler. On the convergence
of population protocols when population goes to infinity. To appear in Applied
Mathematics and Computation, 2009.

10. I. Chatzigiannakis and P. G. Spirakis. The dynamics of probabilistic population
protocols. In Distributed Computing, 22nd International Symposium, DISC, volume
5218 of Lecture Notes in Computer Science, pages 498-499, 2008.

11. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Decidable Graph Languages by
Mediated Population Protocols. FRONTS Technical Report FRONTS-TR-2009-
16, http://fronts.cti.gr/aigaion/?TR=80, May 2009.

12. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Experimental verification and
performance study of extremely large sized population protocols. FRONTS Techni-
cal Report FRONTS-TR-2009-3, http://fronts.cti.gr/aigaion/?TR=61, Jan. 2009.

13. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Mediated Pop-
ulation Protocols. FRONTS Technical Report FRONTS-TR-2009-8,
http://fronts.cti.gr/aigaion/?TR=65, February 2009. To appear in 36th In-
ternational Colloquium on Automata, Languages and Programming (ICALP),
July 5-12, Rhodes, Greece.

14. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and E. Ruppert. When birds
die: Making population protocols fault-tolerant. In Proc. 2nd IEEE International
Conference on Distributed Computing in Sensor Systems, pages 51-66, 2006.

15. S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas, and languages.
Pacific Journal of Mathematics, 16:285-296, 1966.

16. V. Vazirani. Approximation Algorithms. Springer Verlag, 2001.


