
Mediated Population Protocols?

Ioannis Chatzigiannakis1,2, Othon Michail2, and Paul G. Spirakis1,2

1 Research Academic Computer Technology Institute (CTI), P.O. Box 1382, N.
Kazantzaki Str., 26500 Patras, Greece

2 Computer Engineering and Informatics Department (CEID), University of Patras,
26500, Patras, Greece.

Email: {ichatz, spirakis}@cti.gr, michailo@ceid.upatras.gr

Abstract. We extend here the Population Protocol model of Angluin et
al. [2] in order to model more powerful networks of very small resource-
limited artefacts (agents) that are possibly mobile. The main feature of
our extended model is to allow edges of the communication graph, G,
to have states that belong to a constant size set. We also allow edges to
have readable only costs, whose values also belong to a constant size set.
Our protocol specifications are still independent of the population size
and do not use agent ids, i.e. they preserve uniformity and anonymity.
Our Mediated Population Protocols (MPP) can stably compute graph
properties of the communication graph. We show this for the properties
of maximal matchings (in undirected communication graphs), also for
finding the transitive closure of directed graphs and for finding all edges
of small cost. We demonstrate that our mediated protocols are stronger
than the classical population protocols, by presenting a MPP for a non-
semilinear predicate. To show this fact, we state and prove a general
theorem about the composition of two stably computing mediated pop-
ulation protocols. We also show that all predicates stably computable in
our model are (non-uniformly) in the class NSPACE(|E(G)|).

1 Introduction

1.1 Population Protocols

In a seminal work, Angluin et al. in [2] proposed the population protocol model
in order to represent sensor networks consisting of extremely limited agents that
may move and interact in pairs. Due to their severe limitations, the agents can
be represented as a population V of |V | = n finite state machines. A common
assumption is that a global start signal initiates computation by informing the
agents to sense their environment in order to receive a piece of the input. Two
agents communicate when they come sufficiently close to each other. The move-
ment is carried out by an adversary scheduler. A strong global fairness condition
is imposed on the adversary to ensure the protocol makes progress.

? This work has been partially supported by the ICT Programme of the European
Union under contract number ICT-2008-215270 (FRONTS).

Formally, a population protocolA consists of finite input and output alphabets
X and Y , a finite set of states Q, an input function I : X → Q mapping inputs
to states, an output function O : Q → Y mapping states to outputs, and a
transition function δ : Q×Q→ Q×Q. The critical assumption that diversifies
the population protocol model from traditional distributed systems is that the
protocol specifications are independent of the population size (that is, need O(1)
total memory capacity in each agent), which is known as the uniformity property
of population protocols. Moreover, population protocols are anonymous since
there is no room in the state of an agent to store a unique identifier.

A network communication graph G = (V,E) (see [1]) describes the permis-
sible ordered pairwise interactions. G is assumed to be a directed graph with no
multi-edges or self-loops (simple) and its n nodes are numbered 1 through n. An
edge (u, υ) ∈ E indicates the possibility of a communication between u and υ,
in which u is the initiator and υ the responder. The basic population protocol
model assumes the all-pairs family of directed communication graphs, denoted
Gd

All, which simply contains for each n the complete directed graph on n vertices.

A population configuration is a mapping C : V → Q providing a snapshot
of the population states. C → C ′ denotes that configuration C can go to C ′

through a single interaction, i.e. there is an edge e = (u, υ) ∈ E such that
δ(C(u), C(υ)) = (C ′(u), C ′(υ)) and C ′(ω) = C(ω) for all ω ∈ V −{u, υ}. In this
case we say that C goes to C ′ via encounter e = (u, υ), and to emphasize that,
we write C e→ C ′. C ′ is said to be reachable from C, denoted C

∗→ C ′, if C can
be converted to C ′ in one or more steps.

An execution is a finite or infinite sequence of configurations C0, C1, C2, . . .,
where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. At any point
during the execution of a population protocol, each agent’s state determines its
output at that time (the output of u under configuration C is O(C(u)), for each
u ∈ V). An infinite execution is fair if for every possible transition C → C ′,
if C occurs infinitely often in the execution, then C ′ occurs infinitely often. A
computation is an infinite fair execution.

Generally, population protocols do not halt. Instead, halting is replaced by an
interesting property called stability. Stability was defined in [2] to be a situation
where computation reaches a configuration C, after which, no matter how the
computation proceeds, no agent will be able to change its output value. Such a
configuration C is called an output-stable configuration. A protocol A (stably)
computes a function f that maps multisets of elements of X to Y if, for every
such multiset x and every computation that starts from the initial configuration
corresponding to x, the output value of every agent eventually stabilizes to f(x).

For the basic population protocol model there exists an exact characteriza-
tion of the computable predicates: they are precisely the semilinear predicates
or equivalently the predicates definable by first-order logical formulas in Pres-
burger arithmetic [2, 4, 5]. In the stabilizing inputs variant of the basic model [1],
convergence to a stable common output value is only required after the inputs
stop changing (here, each agent has an input field that can change over time).

The results of [4] show that again the semilinear predicates are all that can be
computed by this model.

1.2 Other Previous Work

The motivation given for the population protocol model was the study of sen-
sor networks in which passive agents were carried along by other entities. Much
work has been devoted to the, now, well known fact that the set of computable
predicates of the basic (complete interaction graph) population protocol model
and most of its variants is exactly equal or closely related to the set of semi-
linear predicates. Also, in [2], the probabilistic population protocol model was
proposed, in which the scheduler selects randomly and uniformly the next pair
to interact. More recent work has concentrated on performance, supported by
this random scheduling assumption. [6] and [9] considered a huge population
hypothesis (population going to infinity), and studied the dynamics, stability
and computational power of probabilistic population protocols by exploiting the
tools of continuous nonlinear dynamics. In [6] it was also proven that there is a
strong relation between classical finite population protocols and models given by
ordinary differential equations. Distributed computing with advice (in the spirit
of our model) was considered in [10]. Moreover, several extensions of the basic
model have been proposed to more accurately reflect the requirements of prac-
tical systems. In [1] they studied what properties of restricted communication
graphs are stably computable, gave protocols for some of them, and proposed
the model extension with stabilizing inputs. Finally, some works incorporated
agent failures and gave to the agents slightly increased memory capacity. For an
excellent introduction to the subject see [5].

1.3 Our Approach

We extend the population protocol model with communication links satisfying
the following properties: Each e ∈ E is equipped with a buffer of O(1) total
storage capacity. Before an interaction e = (u, υ), the interacting pair reads
the contents of the corresponding buffer, that is, the state of e, to provide it
to the transition function. After an interaction e = (u, υ), the interacting pair
updates the contents of the corresponding buffer, according to the new state
of e, returned by the transition function. Since the memory of the edges is
constant and independent of the population size, the protocol specifications are
independent of n, i.e. both uniformity and anonymity are preserved.

By letting the edges keeping states, the first gain is that we manage to get
more computational power in comparison to the basic population protocol model.
The additional computational power is limited (as expected) due to the fact that
this additional set of states is again of constant cardinality (and usually we try
to keep it low, i.e. one or two bits suffice). We prove that the derived model is
able to compute at least one non-semilinear predicate.

The new model also gives rise to many other novel computational possibil-
ities. By defining a natural relaxation of stability, that we call r-stability, we

obtain protocols that are able to locate subgraphs of the communication graph.
By associating each edge with a read-only cost, under certain assumptions, we
are able to devise protocols that solve optimization problems concerning the
communication graph. This cost can be assumed to be stored (together with the
state) in the constant size buffer of the edge.

2 The New Model

2.1 Mediated Population Protocols

A mediated population protocol A consists of finite input and output alphabets X
and Y , a finite set of agent states Q, an agent input function I : X → Q mapping
inputs to agent states, an agent output function O : Q→ Y mapping agent states
to outputs, a finite set of edge states S, an edge input function ι : X → S mapping
inputs to edge states, an edge output function ω : S → Y mapping edge states
to outputs, an output instruction r, a finite totally ordered cost set K, a cost
function c : E → K assigning a cost to each edge of the communication graph
and a transition function δ : Q×Q×K×S → Q×Q×K×S (from now on we will
always assume that the cost remains the same after applying δ and so we will omit
specifying an output cost). If δ(qi, qj , x, s) = (q′i, q

′
j , s
′) (which, according to our

assumption, is equivalent to δ(qi, qj , x, s) = (q′i, q
′
j , x, s

′)), we call (qi, qj , x, s)→
(q′i, q

′
j , s
′) a transition, and we define δ1(qi, qj , x, s) = q′i, δ2(qi, qj , x, s) = q′j and

δ3(qi, qj , x, s) = s′. We will call δ1 the initiator’s acquisition, δ2 the responder’s
acquisition, and δ3 the edge acquisition after the corresponding interaction.

In most cases we will assume that K ⊂ ZZ+ and that cmax = maxw∈K {w} =
O(1). Generally, if cmax = maxw∈K {|w|} = O(1) then any agent is capable of
storing at most k cumulative costs (at most the value kcmax), for some k = O(1),
and we say that the cost function is useful (note that a cost range that depends
on the population size could make the agents incapable for even a single cost
storage and any kind of optimization would be impossible).

A mediated population protocol runs in a communication graph G = (V,E),
where V is a population of n agents, and E is an irreflexive binary relation on V ,
of cardinality denoted by m. In the case of an undirected graph we only require
that E is also symmetric, and that for all (u, υ), (υ, u) ∈ E, (u, υ) and (υ, u)
share the same buffer (in the undirected case we also assume in this work that
if δ(qi, qj , x, s) = (q′i, q

′
j , s
′), then δ(qj , qi, x, s) = (q′j , q

′
i, s
′), for all (qi, qj , x, s) ∈

Q×Q×K×S). In both cases (directed and undirected), a (u, υ) ∈ E means that
interaction (u, υ) is permitted in which u is the initiator and υ the responder.

A network configuration is a mapping C : V ∪ E → Q ∪ S specifying the
agent state of each agent in the population and the edge state of each edge
in the communication graph. If we restrict our attention on the states of the
agents only, we can use the mapping CV : V → Q which is called the population
configuration and similarly CE : E → S is the edge configuration. Let C and C ′

be network configurations, and let u, υ be distinct agents. We say that C goes to
C ′ via encounter e = (u, υ), denoted C e→ C ′, if C ′(u) = δ1(C(u), C(υ), x, C(e)),

C ′(υ) = δ2(C(u), C(υ), x, C(e)), C ′(e) = δ3(C(u), C(υ), x, C(e)), and C ′(z) =
C(z), for all z ∈ (V −{u, υ})∪ (E− e). We say that C can go to C ′ in one step,
if C e→ C ′ for some encounter e ∈ E. We write C ∗→ C ′ if there is a sequence of
configurations C = C0, C1, . . . , Ct = C ′, such that Ci → Ci+1 for all i, 0 ≤ i < t,
in which case we say that C ′ is reachable from C. The definitions of execution
and computation are the same as in the population protocol model but concern
network configurations. Note that the mediated population protocol code is of
constant size and, thus, can be stored in each agent (device) of the population.

2.2 Output Interpretation

Following the definition of stability proposed in [2], we say that a network config-
uration C is agent output-stable, if O(C ′(υ)) = O(C(υ)) for all C ′ where C ∗→ C ′

and for all υ ∈ V (we can also write O(C ′V) = O(CV) if we extend O to a map-
ping from population configurations to output assignments like in [2]). Moreover,
a configuration C is said to be edge output-stable, if ω(C ′(e)) = ω(C(e)) for all
C ′ where C ∗→ C ′ and for all e ∈ E (i.e. if ω(C ′E) = ω(CE)) and globally output-
stable, if it is both edge output-stable and agent output-stable.

The instruction r that we have included in the model definition is simply an
instruction that tells the output viewer how to interpret the output of a protocol.
For example, if a protocol is supposed to compute a predicate by reaching an
agent output-stable configuration where all agents agree on the correct output
value, then instruction r would be: “Get any u ∈ V and view its output”. In this
case, an agent output-stable configuration is said to be an r-stable configuration.

A configuration C is r-stable if one of the following holds: If the problem
concerns a subgraph to be found, then C should fix a subgraph that will not
change in any C ′ reachable from C. If the problem concerns a function to be
computed by the agents, then an r-stable configuration drops down to an agent
output-stable configuration.

We will say that a protocol A stably solves a problem Π, if for every in-
stance I of Π and every computation of A on I, the network reaches an r-stable
configuration C that gives the correct solution for I if interpreted according to
the output instruction r. If instead of a problem Π we have a function f to be
computed, we will say that A stably computes f . In the special case where Π
is an optimization problem, a protocol that stably solves Π will be called an
optimizing population protocol for problem Π.

3 Some Graph Protocols

3.1 Maximal Matching

We first give a mediated population protocol MaximalMatching that stably
solves the following problem:

Problem 1. (Maximal matching) Given an undirected communication graph G =
(V,E), find a maximal matching, i.e., a set E′ ⊆ E such that no two members of

E′ share a common end point in V and, moreover, there is no e ∈ E − E′ such
that e shares no common end point with every member of E′.

MaximalMatching

– X = {0}, Y = {0, 1},
– Q = {q0, q1}, S = {0, 1},
– I(0) = q0,
– ι(0) = 0, ω(0) = 0, ω(1) = 1,
– r: “Get each e ∈ E for which ω(se) = 1 (where se is the state of e)”,
– δ: (q0, q0, 0)→ (q1, q1, 1)

Note that we have omitted specifying costs, since there is no need for them
here, and δ is of the simplified form δ : Q×Q× S → Q×Q× S. Moreover, any
other possibly interacting pair not appearing in δ, e.g. (q0, q1, 0) and (q1, q1, 1), is
assumed throughout this work to be included as an identity rule, that is, a rule
that leaves all interacting components unaffected (e.g. (q0, q1, 0) → (q0, q1, 0)
and (q1, q1, 1) → (q1, q1, 1)). We, also, don’t specify an agent output function
because the protocol’s correctness concerns only the edge output function.

Theorem 1. MaximalMatching stably solves the maximal matching problem.

Proof. Let M be the set of edges in state 1. M is theoretically updated after
each interaction, i.e., at any point, any edge in state 1 belongs to M . For an edge
e = (u, υ) to become a member of M , both its endpoints during the interaction
must be in state q0. If this holds, the edge gets in M and u, υ go to state q1 to
indicate that they both have an edge incident to them that belongs to M . From
now on, no edges adjacent to e can get in M , simply because their end point on
which they coincide with e is in state q1. This, together with the fact that two
interactions happening in parallel cannot concern adjacent edges, proves that M
is always a matching. Moreover, an edge not conflicting with M will eventually
get in M (if no conflict arises in the meanwhile), since it will be in state 0 and
both its end points will be in q0. The latter proves that M is maximal. ut

3.2 Transitive Closure with the Help of a Leader

Assume that G = (V,E) is a graph from the Gd
All family, that is, the all-pairs

family of directed communication graphs, and that a protocol has computed a
subgraph of G, G′ = (V ′, E′), by letting the selected edges (edges in E′) be in
state 1, while all the remaining edges (i.e. all e ∈ E − E′) are in state 0. Note
that V ′ simply contains all nodes that are incident to at least one e ∈ E′. We
want to solve the following problem:

Problem 2. (Transitive Closure) Given a communication graph G = (V,E)
in Gd

All with a subgraph G′ = (V ′, E′) precomputed in the above manner, find
the transitive closure of G′, that is, find a new edge set E∗ that will contain
a directed edge (u, υ) joining any nodes u, υ for which there is a non-null path
from u to υ in G′ (note that always E′ ⊆ E∗).

We assume a controlled input assignment W : E → X that allows us to give
input 1 to any edge belonging to E′ and input 0 to any other edge. Moreover,
we assume that initially all agents are in state q0, except for an elected leader
(by any leader election protocol) that is in state l. The assumption of a leader
and the remark that this helps the protocols was first used in [2] and extensively
studied in [3]. We devise a protocol, TranClos, with the following specification:

TranClos

– X = Y = {0, 1},
– Q = {l, q0, q1, q′1, q2, q′2, q3}, S = {0, 1},
– controlled input assignment : “W (e′) = 1, for all e′ ∈ E′, and W (e) = 0, for

all e ∈ E − E′”,
– ι(x) = x, for all x ∈ X, ω(s) = s, for all s ∈ S,
– r: “Get each e ∈ E for which ω(se) = 1 (where se is the state of e)”,
– δ:

(l, q0, 0)→ (q0, l, 0) (q2, q0, 1)→ (q′2, q3, 1)
(l, q0, 1)→ (q1, q2, 1) (q1, q3, x)→ (q′1, q0, 1), for x ∈ {0, 1}

(q1, q2, 1)→ (q0, l, 1) (q′1, q
′
2, 1)→ (q0, l, 1)

Theorem 2. Protocol TranClos stably solves the transitive closure problem.

For the proof see [8].

3.3 Edges of Minimum Cost

Let us illustrate the incorporation of edge costs in the case of optimization
problems, by a simple optimizing population protocol for the following problem:

Problem 3. (Edges of minimum cost) Given an undirected connected communi-
cation graph G = (V,E) and a useful cost function c : E → K on the set of
edges, where K ⊂ ZZ+, design a protocol that finds the minimum cost edges of
E.

MinEdges

– X = Y = {0, 1},
– Q = K ∪ {q0}, S = {0, 1},
– I(x) = q0, for all x ∈ X,
– ι(x) = 0, for all x ∈ X, ω(s) = s, for all s ∈ S,
– r: “Get each e ∈ E for which ω(se) = 1 (where se is the state of e)”,
– δ:

(q0, q0, c, d)→ (c, c, 1)
(ci, cj , c, d)→ (c, c, 1), if c ≤ min{ci, cj}

→ (min{ci, cj},min{ci, cj}, 0), if c > min{ci, cj}
(ci, q0, c, d)→ (c, c, 1), if c ≤ ci

→ (ci, ci, 0), if c > ci

Theorem 3. MinEdges is an optimizing population protocol for Problem 3.

Proof. We need to show that the system reaches an r-stable configuration C,
where if Eout is the subset of E specified by instruction r, we have e ∈ Eout if
and only if c(e) = copt, where copt = mine∈E{c(e)}.

All rules of δ together with the fairness assumption ensure that every agent
will eventually get copt (a less cost encountered always replaces the current cost
of an agent). At that point the system will be in an agent output-stable config-
uration, since there is no cost less than copt in order to replace it. From now on,
after every interaction (u, υ), where e = {u, υ}, Eout ← Eout∪{e}, if no interact-
ing agent’s cost is less than c(e) (that is, if c(e) = copt) and Eout ← Eout − {e},
otherwise.

It follows that, eventually, the system will enter a configuration C where
e ∈ Eout will imply that c(e) = copt and e /∈ Eout that c(e) > copt. At that time,
no edge will be able to enter or leave Eout, and since Eout is the set specified
by r, C will be an r-stable configuration as needed. These together imply that
MinEdges is indeed an optimizing population protocol for Problem 3. ut

4 Computability

4.1 All-pairs Directed Communication Graphs

We now investigate some aspects of the computational power of the mediated
population protocol (MPP) model and show that in the special case of the all-
pairs family of directed communication graphs it is in fact stronger than the
basic model proposed in [2].

Definition 1. The MPP model with the additional constraint that it runs on
the all-pairs family of directed communication graphs (Gd

All), will be called the
basic MPP model.

Definition 2. We say that a predicate is strongly stably computable by the
MPP model, if it is stably computable in the classical sense of stable computation,
that is, all agents eventually agree on the correct output value.

On the other hand, if we say that a predicate is stably computable by the
MPP model (without including the word “strongly”), it is not obvious if all
agents agree on the same output value or not. Finally, when we say that a pred-
icate is stably computable by the population protocol model, it always means
that all agents eventually agree on the correct output value, since in this case
we always follow the classical definition of stable computation, as appears in [2].

Theorem 4. The population protocol model is a special case of the MPP model.

Proof. Ignoring the edge functions, the edge states, the edge costs, and the
output instruction r in the mediated population protocol model, makes the two
models equivalent. ut

All the following corollaries are immediate consequences of Theorem 4, since
it shows that the population protocol model can be simulated by the mediated
population protocol model. There is nothing that the population protocol model
does that the MPP model is not capable of doing.

Corollary 1. Any predicate stably computable by the population protocol model
is also strongly stably computable by the mediated population protocol model.

Corollary 2. Any predicate stably computable by the basic population protocol
model is also strongly stably computable by the basic MPP model.

Corollary 3. Any predicate stably computable by the population protocol model
with stabilizing inputs is also strongly stably computable by the similar extension
of the mediated population protocol model with stabilizing inputs.

It is well known that Presburger arithmetic does not allow multiplication
of variables. Moreover, any semilinear predicate can be described by first-order
logical formulas in Presburger arithmetic and it is known that a predicate is
computable in the basic population protocol model if and only if it is semilinear.
To demonstrate that the basic MPP model is stronger, it suffices to show that
there is at least one non-semilinear predicate that is strongly stably computable
under this model.

It is obvious that the predicate “the number of c’s is the product of the
number of a’s and the number of b’s” is not semilinear. This holds, because
multiplication of variables cannot be described by first-order logical formulas in
Presburger arithmetic. Let Nq denote the multiplicity of state q in the input
configuration multiset. Then, Nc = Na · Nb is a shorthand of the above predi-
cate and the mediated protocol V arProduct that we will now describe, stably
computes it in Gd

All.

VarProduct

– X = {a, b, c, 0}, Y = {0, 1},
– Q = {a, ȧ, b, c, c̄, 0}, S = {0, 1},
– I(x) = x, for all x ∈ X, O(a) = O(b) = O(c̄) = O(0) = 1, and O(c) =
O(ȧ) = 0,

– ι(x) = 0, for all x ∈ X,
– r: “If there is at least one agent with output 0, reject, else accept.”,
– δ: (a, b, 0)→ (ȧ, b, 1), (c, ȧ, 0)→ (c̄, a, 0), (ȧ, c, 0)→ (a, c̄, 0)

Theorem 5. Protocol V arProduct stably computes (according to our relaxed
definition of stable computation) predicate Nc = Na ·Nb in Gd

All.

Proof Sketch. Notice that the number of links leading from agents in state a
to agents in state b equals Na · Nb. For each a the protocol tries to erase b c’s.
Each a is able to remember the b’s that has already counted (for every such b a
c has been erased) by marking the corresponding links. If the c’s are less than
the product then at least one ȧ remains and if the c’s are more at least one c

remains. In both cases at least one agent that outputs 0 remains. If Nc = Na ·Nb

then every agent eventually outputs 1. For a full proof see [8].

It is easy to see that V arProduct’s states in every computation eventually
stop changing. Any protocol with the above property will be called a proto-
col with stabilizing states. Keep in mind that original stable computation of
population protocols requires that all agents agree on their output value, and
that it is correct. But V arProduct does not seem to strongly stably compute
Nc = Na ·Nb, since the agents do not always agree on their final output value.
Now we are about to prove that with a slight addition it does.

Note that instruction r defines a semilinear predicate on multisets of states
(members of Q). To see this, simply write r formally as (Nc > 0) ∨ (Nȧ > 0).
The fact that it is semilinear suffices to prove that there is a population protocol
B′ with stabilizing inputs from the set Q of V arProduct’s states, that stably
computes it. This follows from a result in [4], stating that any population pro-
tocol for fixed inputs can be adapted to work with stabilizing inputs. Moreover,
Corollary 3 implies that there is a mediated protocol B with stabilizing inputs
that is equivalent to B′ (the one that ignores edges and does the same things
as B′), that is, it strongly stably computes the predicate defined by r. Finally,
V arProduct has stabilizing states, so its composition with B (their product con-
struction) provides stabilizing inputs to B. If the protocol’s answer is now taken
from B’s output, then it is trivial to see that their composition strongly stably
computes Nc = Na ·Nb.

We state now a composition theorem to generalize this remark. Its proof can
be found in [8]. In fact, our composition theorem holds for any family of directed
and connected communication graphs G.

Theorem 6. Any MPP A, that stably computes a predicate p with stabilizing
states in some family of directed and connected communication graphs G, con-
taining an instruction r that defines a semilinear predicate t on multisets of A’s
agent states, can be composed with a provably existing MPP B, that strongly sta-
bly computes t with stabilizing inputs in G, to give a new MPP C satisfying the
following properties:

– C is formed by the composition of A and B,
– its input is A’s input,
– its output is B’s output, and
– C strongly stably computes p in G.

Definition 3. Let SEM be the class of predicates stably computable, according to
the classical sense of stable computation, by the basic population protocol model
(precisely the semilinear predicates), and MP the class of number predicates
strongly stably computable by the basic mediated population protocol model.

Theorem 7. SEM is a proper subset of MP .

Proof. Corollary 2 implies that SEM ⊆ MP . Theorem 5 shows that there is a
non-semilinear predicate, p : Nc = Na · Nb, that does not belong to SEM but

is stably computable by the basic MPP model (according to our definition of
stable computation). The mediated protocol V arProduct that stably computes
p, contains an output instruction r that defines a semilinear predicate t on mul-
tisets of V arProduct’s states. Consequently, Theorem 6 applies and we get that
p is also strongly stably computable by the basic MPP model (i.e. stably com-
putable according to the classical sense of stable computation), in other words,
p belongs to MP , and the theorem follows. ut

4.2 Any Family of Communication Graphs : Non-uniform upper
bounds on computability

Definition 4. Let UMP be the class of predicates stably computable by the MPP
model in any family G of undirected, connected communication graphs, and DMP
the class of predicates stably computable by the MPP model in any family G′ of
directed, connected communication graphs.

Let m denote the number of edges of any communication graph G.

Theorem 8. All predicates in DMP and UMP are in the class NSPACE(m).

Proof. Let A be a mediated protocol that stably computes such a predicate p
in some family of graphs G, and let G ∈ G be any graph of this family. Since
G is always connected, we have that m ≥ n − 1. A network configuration can
be represented explicitly, by storing a state per node and a state per edge of G.
This takes O(m) space. Note that w.l.o.g. we can talk about languages instead
of predicates. So, A stably computes the language L corresponding to p (its
support).

We will now present a nondeterministic Turing machine MA that decides L
in space O(m). MA works as follows: To accept input x, MA must verify two
conditions: That there exists a configuration C reachable from I(x) (the initial
configuration corresponding to x), in which all relevant states satisfy the output
instruction r, and that there is no configuration C ′ reachable from C, in which
r is violated.

The first condition is verified by guessing and checking a sequence of network
configurations, starting from I(x) and reaching such a C. MA guesses a Ci+1

each time, verifies that Ci → Ci+1 (begins from C0 = I(x), i.e. i = 0) and, if
so, replaces Ci by Ci+1, otherwise drops this Ci+1. The second condition is the
complement of a similar reachability problem. But NSPACE is closed under
complement for all space functions ≥ log n (see [11]). Thus, MA decides L in
O(m) space. ut

Note that, as far as a DMP is concerned, even a “standard” (not mediated)
population protocol whose G is a directed line can simulate a deterministic linear
space Turing machine [2]. Thus, by applying Savitch’s theorem [12], one can say
informally that DMP is between NSPACE(

√
n) and NSPACE(m). However,

for UMP , we only know that SEM ⊂ UMP ⊆ NSPACE(m).

5 Future Work

We are currently experimenting with Population Protocols (see [7]) and investi-
gating the possible graph properties that can be computed by Mediated Popu-
lation Protocols.

Acknowledgements. We thank Maria Serna for posing the question of Tran-
sitive Closure and its importance.

References

1. D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, H. Jiang, and R. Peralta. Sta-
bly computable properties of network graphs. In Proc. Distributed Computing in
Sensor Systems: 1st IEEE International Conference, pages 63-74, 2005.

2. D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation in
networks of passively mobile finite-state sensors. In 23rd Annual ACM Sympsium
on Principles of Distributed Computing (PODC), pages 290-299, New York, NY,
USA, 2004. ACM.

3. D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols
with a leader. Distributed Computing, 21(3): 183-199, Sept. 2008.

4. D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semi-
linear. In Proc. 25th Annual ACM Symposium on Principles of Distributed Com-
puting, pages 292-299, 2006.

5. J. Aspnes and E. Ruppert. An introduction to population protocols. Bulletin of the
European Association for Theoretical Computer Science, 93:98-117, October 2007.
Columns: Distributed Computing, Editor: M. Mavronicolas.

6. O. Bournez, P. Chassaing, J. Cohen, L. Gerin, and X. Koegler. On the convergence
of population protocols when population goes to infinity. To appear in Applied
Mathematics and Computation, 2009.

7. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Experimental verification and
performance study of extremely large sized population protocols. FRONTS Techni-
cal Report FRONTS-TR-2009-3, http://fronts.cti.gr/aigaion/?TR=61, Jan. 2009.

8. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Mediated Pop-
ulation Protocols. FRONTS Technical Report FRONTS-TR-2009-8,
http://fronts.cti.gr/aigaion/?TR=65, Feb. 2009.

9. I. Chatzigiannakis and P. G. Spirakis. The dynamics of probabilistic population
protocols. In Distributed Computing, 22nd International Symposium, DISC, volume
5218 of Lecture Notes in Computer Science, pages 498-499, 2008.

10. P. Fraigniaud, C. Gavoille, D. Ilcinkas, and A. Pelc. Distributed computing with
advice: Information sensitivity of graph coloring. 34th International Colloquium on
Automata, Languages and Programming (ICALP), 2007.

11. N. Immerman. Nondeterministic space is closed under complementation. SIAM J.
Comput., 17(5):935-938, Oct. 1988 (see also page 153 C. H. Papadimitriou “Com-
putational Complexity”).

12. W. J. Savitch. Relationship between nondeterministic and deterministic tape
classes. J.CSS, 4, pages 177-192, 1970 (see also page 149-150 C. H. Papadimitriou
“Computational Complexity”).

