
Passively Mobile Communicating Machines that Use
Restricted Space∗

Ioannis Chatzigiannakis
R. A. Computer Technology

Institute (CTI), Patras, Greece
ichatz@cti.gr

Othon Michail
R. A. Computer Technology

Institute (CTI), Patras, Greece
michailo@cti.gr

Stavros Nikolaou
R. A. Computer Technology

Institute (CTI), Patras, Greece
nikolaou@cti.gr

Andreas Pavlogiannis
Department of Computer
Science, UCDavis, Davis

apavlogiannis@ucdavis.edu

Paul G. Spirakis
R. A. Computer Technology

Institute (CTI), Patras, Greece
spirakis@cti.gr

ABSTRACT
We propose a new theoretical model for passively mobile
Wireless Sensor Networks, called PM , standing for Pas-
sively mobile Machines. The main modification w.r.t. the
Population Protocol model [Angluin et al. 2006] is that the
agents now, instead of being automata, are Turing Machines.
We provide general definitions for unbounded memories, but
we are mainly interested in computations upper-bounded by
plausible space limitations. However, we prove that our re-
sults hold for more general cases. We focus on complete
interaction graphs and define the complexity classes PM-
SPACE(f(n)) parametrically, consisting of all predicates
that are stably computable by some PM protocol that uses
O(f(n)) memory in each agent. We provide a protocol that
generates unique identifiers from scratch only by using O(log
n) memory, and use it to provide an exact characterization
of the classes PMSPACE(f(n)) when f(n) = Ω(logn):
they are precisely the classes of all symmetric predicates in
NSPACE(nf(n)). As a consequence, we obtain a space
hierarchy of the PM model when the memory bounds are
Ω(logn). Finally, we establish that the minimal space re-
quirement for the computation of non-semilinear predicates
is O(log logn).

Categories and Subject Descriptors
F.1.1 [Models of Computation]; F.1.2 [Modes of Com-
putation]: Alternation and nondeterminism; F.1.3 [Comp-
lexity Measures and Classes]: Complexity hierarchies;
F.1.3 [Complexity Measures and Classes]: Relations
among complexity classes

∗Supported in part by the ICT Programme of the European
Union under contract number ICT-2008-215270 (FRONTS).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOMC’11, June 9, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0779-6/11/06 ...$10.00.

General Terms
Theory

Keywords
population protocols, communicating machines, diffuse com-
putation, passively mobility, sensor network

1. INTRODUCTION
Theoretical models for Wireless Sensor Networks (WSNs)

have received great attention over the past few years. Re-
cently, Angluin et al. [3] proposed the Population Protocol
(PP) model. Their aim was to model sensor networks con-
sisting of tiny computational devices (called agents) with
sensing capabilities that follow some unpredictable and un-
controllable mobility pattern. Due to the minimalistic na-
ture of their model, the class of computable predicates was
proven to be fairly small: it is the class of semilinear pred-
icates [12], which does not e.g. support multiplication of
input variables.

The work of Angluin et al. shed light and opened the way
towards a brand new and very promising direction. The
lack of control over the interaction pattern, as well as its
inherent nondeterminism, gave rise to a variety of new the-
oretical models for WSNs. These models draw most of their
beauty precisely from their inability to organize interactions
in a convenient and predetermined way. In fact, the PP
model was the minimalistic starting-point of this area of
research. Most efforts are now towards strengthening the
model of Angluin et al. with extra realistic and imple-
mentable assumptions, in order to gain more computational
power and/or speed-up the time to convergence and/or im-
prove fault-tolerance [9, 13].

In this work, we want to allow the agents to use f(n)
space for various f , where n is the population size (i.e. the
number of agents), while preserving the uniformity property
of PPs. We think of each agent as being a Turing Machine
(TM). In particular, we propose a new theoretical model for
passively mobile sensor networks, called the PM model. It
is a model of Passively mobile Machines (that we keep call-
ing agents) with sensing capabilities, equipped with two-way
communication. We initially focus on PM protocols that use
O(logn) memory, which is an interesting space bound since
(as we shall prove) it allows the assignment of unique identi-

fiers (uids) to the agents of the population and plays a major
role on establishing the computational power of the model.
In addition, we explore the computability of the PM model
on different space bounds in order to get an insight of the
trade-off between computational power and resource (mem-
ory) availability. How are the computational capabilities
affected under modifications of the available memory? For
example, does more available memory to the agents imply
increased computational power? We arrive at exact charac-
terizations for the input symmetric computations performed
by communicating TMs using some natural space bounds.
As we shall see, for all f(n) = Ω(logn) there is a PM proto-
col using O(f(n)) space that can organize the agents into a
distributed Nondeterministic TM (NTM) that makes use of
all the available space. In the case where f(n) = o(log log n),
however, we establish that PM protocols are computation-
ally equal to PPs.

1.1 Other Previous Work
Several extensions of the basic model have been proposed

in order to more accurately reflect the requirements of prac-
tical and more powerful systems. The Mediated Popula-
tion Protocol (MPP) model of [9] was based on the addi-
tional assumption that each edge of the interaction graph
is a finite storage. It has been recently proved [8] that
in the case of complete graphs the corresponding class of
stably computable predicates is the symmetric subclass of
NSPACE(n2), rendering the MPP model extremely pow-
erful. Guerraoui and Ruppert [13] made another natural
assumption: each agent has its own unique id and can store
up to a constant number of other agents’ ids. In this model,
which they named Community Protocol model, the only per-
mitted operation on ids is comparison. It was proven that
the corresponding class consists of all symmetric predicates
in NSPACE(n logn). Some other works incorporated agent
failures [10] and gave to some agents slightly increased com-
putational power [6] (heterogeneous systems). For some in-
troductory texts to the subject of PPs see [5, 14, 2].

2. OUR RESULTS - ROADMAP
In Section 3, we begin with a formal definition of the PM

model. The section proceeds with a thorough description
of the functionality of the systems under consideration and
then provides definitions of configurations and fair execu-
tions. In Section 4, first stable computation and the family
of classes PMSPACE(f(n)) (stably computable predicates
by the PM model using O(f(n)) space in each agent) are
defined and then an illustrating example of a PM protocol
using O(logn) space in each agent is presented. In Section 5,
we show that the PM model using O(f(n)) space can simu-
late a NTM (Theorem 2) of space O(nf(n)), for any f(n) =
Ω(logn). This along with Theorem 3, establishing that
PMSPACE(f(n)) ⊆ SNSPACE(nf(n)) (the symmetric
subclass of NSPACE(nf(n))), provide the following exact
characterizations: PMSPACE(f(n)) = SNSPACE(nf(n))
for all f(n) = Ω(logn). Based on the results of this section,
we establish a space hierarchy theorem for the PM model,
when the corresponding protocols use Ω(logn) space (Theo-
rem 7). In Section 6, we examine the interesting case of the
o(log logn) space bounded protocols, showing that this par-
ticular bound acts as a computability threshold. In fact, we
show that PMSPACE(f(n)) is equal to the class of semi-
linear predicates when f(n) = o(log logn) and a proper su-

perset of the semilinear predicates when f(n) = Ω(log log n).
Finally, in Section 7 we conclude and discuss some interest-
ing open problems. Due to space restrictions, some of our
proofs are intuitive and incomplete. The reader is refered to
the full version of this paper ([7]) for rigorous proofs of our
arguments.

3. THE MODEL
In this section, we formally define the PM model and

describe its functionality. In what follows, we denote by
G = (V,E) the (directed) interaction graph: V is the set of
agents, or population, and E is the set of permissible ordered
pairwise interactions between these agents. We provide defi-
nitions for general interaction graphs and unbounded memo-
ries, although in this work we deal with complete interaction
graphs only and we are mainly interested in computations
that are space-bounded by a logarithm of the population
size. We generally denote by n the population size (i.e.
n ≡ |V |).

Definition 1. A PM protocol is a 6-tuple (X,Γ, Q, δ, γ, q0)
where X, Γ and Q are all finite sets and

1. X is the input alphabet, where t /∈ X,

2. Γ is the tape alphabet, where t ∈ Γ and X ⊂ Γ,

3. Q is the set of states,

4. δ : Q×Γ4 → Q×Γ4×{L,R, S}4×{0, 1} is the internal
transition function,

5. γ : Q×Q→ Q×Q is the external transition function
(or interaction transition function), and

6. q0 ∈ Q is the initial state.

Each agent is equipped with: (i) a sensor in order to
sense its environment and receive a piece of the input, (ii)
four read/write tapes: the working tape, the output tape, the
incoming message tape and the outgoing message tape. We
assume that all tapes are bounded to the left and unbounded
to the right, (iii) a control unit that contains the state of the
agent and applies the transition functions, (iv) four heads
(one for each tape) that read from and write to the cells of
the corresponding tapes and can move one step at a time,
either to the left or to the right, or remain stationary, and
(v) a binary working flag either set to 1 meaning that the
agent is working internally or to 0 meaning that the agent
is ready for interaction.

Initially, all agents are in state q0, their working flag is set
to 1, and all their cells contain the blank symbol t. We as-
sume that all agents concurrently receive their sensed input
(different agents may sense different data) as a response to
a global start signal. The input to each agent is a symbol
from X and is written on the leftmost cell of its working
tape. We call an input assignment to the population, any
string x = σ1σ2 . . . σn ∈ X∗, with n being the size of the
population. In particular, by assuming an ordering on V ,
the input to agent i is the symbol σi, 1 ≤ i ≤ n.

When its working flag is set to 1 we can think of an agent
working as a usual multitape TM (with the additional step
of writing the working flag). In particular, while the working
flag is set to 1 the internal transition function δ is applied,
the control unit reads the symbols under the heads and its

own state, updates all of them, moves each head one step to
the left or to the right or keeps it stationary, and sets the
working flag to 0 or 1, according to δ.

As it is common in the PP literature, an adversary sched-
uler selects ordered pairs of agents (edges from E) to in-
teract. Assume now that two agents u and υ are about to
interact with u being the initiator of the interaction and υ
being the responder, i.e. the interacting pair is (u, v). Let
f : V → {0, 1} be a function returning the current value of
each agent’s working flag. If at least one of f(u) and f(υ)
is equal to 1, then nothing happens, because at least one
agent is still working internally. Otherwise, both agents are
ready and an interaction is established. In the latter case,
the external transition function γ is applied, the states of
the agents are updated accordingly, the outgoing message
of the initiator is copied to the leftmost cells of the incom-
ing message tape of the responder (replacing its contents
and writting t to all other previously non-blank cells) and
vice versa (we call this the message swap), and finally the
working flags of both agents are again set to 1. 1 These
operations are also considered as atomic, which intuitively
means that the interacting agents cannot take part in an-
other interaction before the completion of these operations.

Since each agent is a TM, we use the notion of a con-
figuration to capture its “state”. An agent configuration is
a tuple (q, lw, rw, lo, ro, lim, rim, lom, rom, f), where q ∈ Q,
lj , rj ∈ Γ∗ for j ∈ {w, o, im, om}, and f ∈ {0, 1}. q is the
state of the control unit, lw (lo, lim, lom) is the string of the
working (output, incoming message, outgoing message) tape
to the left of the head (including the symbol scanned), rw
(ro, rim, rom) is the string of the working (output, incoming
message, outgoing message) tape to the right of the head
(excluding the blank cells), and f is the working flag indi-
cating whether the agent is ready to interact (f = 0) or
carrying out some internal computation (f = 1). We call an
agent configuration initial if the agent is in state q0, all its
tape cells contain the blank symbol except from the leftmost
cell of the working tape that contains its input symbol, and
the flag bit is 0. Let B be the set of all agent configurations.
Given two agent configurations A,A′ ∈ B, we say that A
yields A′ if A′ follows A by a single application of δ.

A population configuration is a mapping C : V → B, speci-
fying the agent configuration of each agent in the population.
A population configuration specifying the initial agent con-
figuration of each of the population’s agents is called initial
population configuration. Note that every input assignment
corresponds to an initial configuration of the population, in
which each agent is in state q0 and has a symbol of the input
assignment written in its working tape. Let C, C′ be pop-
ulation configurations and let u ∈ V . We say that C yields
C′ via agent transition u, denoted C

u→ C′, if C(u) yields
C′(u) and C′(w) = C(w), ∀w ∈ V − {u}.

Denote by Aq the state component of an agent configu-
ration A. For any external transition γ(q1, q2) = (q′1, q

′
2)

define γ1(q1, q2) = q′1 and γ2(q1, q2) = q′2. We say that C

yields C′ via encounter e = (u, υ) ∈ E, denoted C
e→ C′,

if one of the following two cases holds: (i) both agents are
ready for an interaction under population configuration C
(f(C(u)) = f(C(υ)) = 0) and therefore the message swap

1These operations could be handled by the protocols them-
selves, but then protocol descriptions would become awk-
ward. So, we simply think of them as automatic operations
performed by the hardware.

takes place and the state components of the participating
agents are updated according to the external transition func-
tion (C′q(u) = γ1(Cq(u), Cq(υ)), C′q(υ) = γ2(Cq(u), Cq(υ))
and C′q(w) = Cq(w) ∀w ∈ V −{u, υ}), (ii) at least one agent
between u and υ is working internally under the popula-
tion configuration C (f(C(u)) = 1 or f(C(υ)) = 1) and no
effective interaction takes place (C′(w) = C(w), ∀w ∈ V).

Generally, we say that C yields (or can go in one step

to) C′, and write C → C′, if C
e→ C′ for some e ∈ E (via

encounter) or C
u→ C′ for some u ∈ V (via agent tran-

sition). We say that C′ is reachable from C, and write

C
∗→ C′ if there is a sequence of population configurations

C = C0, C1, . . . , Ct = C′ such that Ci → Ci+1 holds for
all i ∈ {0, 1, . . . , t − 1}. An execution is a finite or infinite
sequence of population configurations C0, C1 . . . , where C0

is an initial configuration and Ci → Ci+1. An infinite exe-
cution is fair if for all population configurations C, C′ such
that C → C′, if C appears infinitely often then so does C′.
This global fairness condition is a restriction imposed on
the adversary to ensure that the protocol makes progress.
A computation is an infinite fair execution.

The space used by an agent running any protocol A is the
number of tape cells used to store its configuration, that
is the sum of the number of tape cells for its finite-state
control, for the contents of its four tapes and for its flag.
In addition, we say that a PM protocol A uses f(n) space
if the maximum space used by any agent for storing any
configuration over all computations is f(n). A (N)TM is
called f(n) space bounded if for every input of size n (and
in any of its computation paths in the case of a NTM) it
scans at most f(n) tape cells on any of its tapes. Similarly
we call a protocol A, f(n) space bounded if it uses f(n) space.

4. STABLY COMPUTABLE PREDICATES
Any mapping p : X∗ → {0, 1} is a predicate on input as-

signments. Such a predicate p is called symmetric if for every
x ∈ X∗ and any x′ which is a permutation of x’s symbols,
it holds that p(x) = p(x′). In words, permuting the input
symbols does not affect the symmetric predicate’s outcome.
From each predicate p the language Lp = {x ∈ X∗ | p(x) =
1} is derived and Lp is symmetric (a.k.a. commutative) iff
p is symmetric.

A population configuration C is called output stable if for
every configuration C′ that is reachable from C it holds that
ω(C′) = ω(C), where ω(C) ∈ {0, 1} according to the output
value that all agents agree to. In other words, the system
does not change its overall output in any subsequent step
and no matter how the computation proceeds. A predicate
on input assignments p is said to be stably computable by
a PM protocol A in a graph family U if, for any input as-
signment x ∈ X∗, any computation of A, on any interaction
graph from U of order |x|, contains an output stable configu-
ration in which all agents have p(x) written on their output
tape. In what follows, we always assume that the graph
family under consideration contains only complete interac-
tion graphs.

We say that a predicate p overX∗ belongs to SPACE(f(n))
(NSPACE(f(n))) if there exists some deterministic (non-
deterministic, resp.) TM that decides Lp using O(f(n))
space. A TM is called a decider if it accepts all x ∈ Lp

and rejects all x /∈ Lp (a decider halts on every input). A
deterministic (nondeterministic, resp.) TM decides a lan-

guage Lp using f(n) space if it halts on every input x of size
n, accepting (or, in the case of NTMs, there is at least one
computation path that accepts) if x ∈ Lp and rejecting (for
all computation paths of an NTM) otherwise, and the maxi-
mum number of tape cells scanned/used (in any branch of its
computation for an NTM) is f(n). Throughout this work,
we use SSPACE(f(n)) and SNSPACE(f(n)) to denote
the SPACE(f(n))’s and NSPACE(f(n))’s restrictions to
symmetric predicates, respectively. In addition, we denote
by SEM, the class of the semilinear predicates, consisting
of all predicates definable by first-order logical formulas of
Presburger arithmetic (see, e.g., [12]).

Definition 2. Let PMSPACE(f(n)) be the class of all
predicates that are stably computable by some PM protocol
that uses O(f(n)) space.

All agents are initially identical (they do not have unique
ids) and since the interaction graph is complete and the
executions are fair, all predicates in PMSPACE(f(n)) are
symmetric for any function f(n).

As a simple illustration of the new model, we present a
PM protocol that, using O(logn) memory, stably computes
the non-semilinear predicate (N1 = 2t), where t ∈ Z≥0,
on the complete interaction graph of n nodes, that is, all
agents eventually decide whether the number of 1s in the
input assignment is a power of 2.

The protocol counts in binary the number of 1s in the in-
put. The sum of 1s is eventually aggregated in one awake
agent and all other sleeping agents copy the former’s output
value (see e.g. the parity protocol in [3]). The awake agent
can easily recognize whether its counter holds a power of
2 and performs this check every time the counter is incre-
mented. Eventually, the awake agent will know the correct
answer to the predicate and the rest of population will ob-
tain it.

Note that the counter of 1s can be at most n. Thus, it
requires at most dlogne bits of memory. In addition, the
check of whether the counter is a power of 2 can be easily
computed by an agent in O(logn) space.

Corollary 1. SEM (PMSPACE(logn).

Proof. PM protocols using O(logn) space can simulate
PPs and (N1 = 2t) ∈ PMSPACE(logn), which is non-
semilinear.

5. A SPACE HIERARCHY
In this section, we study the behaviour of the PM model

for various space bounds. Such a study is of particular inter-
est since it is always important to know what computations
is a model capable of dispatching according to the capabili-
ties of the available hardware.

5.1 Lower Bounds
We prove here that, for space functions f(n) = Ω(logn),

the PM model can simulate a NTM of space O(nf(n)) using
O(f(n)) space in each agent.

We begin by proving that PM protocols can assume the
existence of unique consecutive ids and knowledge of the
population size at the space cost of O(logn) (Theorem 1).
In particular, we present a PM protocol that correctly as-
signs unique consecutive ids to the agents and informs them
of the correct population size using only O(logn) memory,

without assuming any initial knowledge of none of them. We
show that this protocol can simulate any PM protocol that
assumes the existence of these ids and knows the population
size.

Protocol 1 I

1: if rid == id then // two agents with the same ids
interact

2: if initiator == 1 then // the initiator
3: id← id+ 1, sid← id // increases its id by one

and stores it in the outgoing message
4: ps ← id + 1, sps ← ps // sets the population

size equal to its updated id + 1
5: else // the responder
6: ps← id+ 2, sps← ps
7: end if
8: // both clear their working block and copy their

input symbol into it
9: // they also clear their output tape

10: working ← binput, output← ∅
11: else // two agents whose ids differ interact
12: if rps > ps then // the one who knows an outdated

population size
13: working ← binput, output ← ∅ // is reinitial-

ized
14: ps ← rps, sps ← ps // and updates its popu-

lation size to the greater value
15: else if rps == ps then // they know the same

population size
16: // so they are both already reinitialized and

can proceed executing A
17: execute A for 1 step
18: end if
19: end if

Definition 3. Let IPM (‘I’ standing for “Ids”) be the ex-
tension of the PM model in which the agents have addition-
ally the unique ids {0, 1, . . . , n− 1} and in which each agent
knows the population size (these are read-only information
stored in a separate read-only tape).

Definition 4. Let IPMSPACE(f(n)) be the class of all
predicates that are stably computable by some IPM protocol
that uses O(f(n)) space in every agent (and in all of its
tapes, excluding the space used for the read-only tape) and
denote by SIPMSPACE(f(n)) its symmetric subclass.

Pick any p ∈ SIPMSPACE(logn). Let A be the IPM
protocol that stably computes it in O(logn) space. We now
present a PM protocol I, containing protocol A as a subrou-
tine (see Protocol 1), that stably computes p, by also using
O(logn) space. I is always executed and its job is to assign
unique ids to the agents, to inform them of the correct pop-
ulation size and to control A’s execution (e.g. restarts its
execution if needed). A, when I allows its execution, sim-
ply reads the unique ids and the population size provided
by I and executes itself normally. We first present I and
then prove that it eventually correctly assigns unique ids
and correctly informs the agents of the population size, and
that when this process comes to a successful end, it restarts
A’s execution in all agents without allowing non-reinitialized
agents to communicate with the reinitialized ones. There-
fore, at some point, A will begin its execution reading the

correct unique ids and the correct population size (provided
by I), thus, it will get correctly executed and will stably
compute p.

We begin by describing I’s variables. id is the variable
storing the id of the agent (from which A reads the agents’
ids), sid the variable storing the id that an agent writes in
its outgoing message tape in order to send it, and rid the
variable storing the id that an agent receives via interaction.
The model’s definition implies that all variables used for
sending information, like sid, preserve their value in future
interactions unless altered by the agent. Initially, id = sid =
0 for all agents. All agents have an input backup variable
binput which they initially set to their input symbol and
make it read-only. Thus, each agent has always available
its input via binput even if the computation has proceeded.
working represents the block of the working tape that A
uses for its computation and output represents the contents
of the output tape. initiator is a binary flag that after every
interaction becomes true if the agent was the initiator of the
interaction and false otherwise (this is easily implemented
by exploiting the external transition function). ps is the
variable storing the population size, sps the one used to put
it in a outgoing message, and rps the received one. Initially,
ps = sps = 1.

We now describe I’s functionality. Whenever a pair of
agents with the same id interact, the initiator increases its
id by one and both update their population size value to
the greater id plus one. Whenever two agents with different
ids and population size values interact, they update their
population size variables to the greater size. Thus the cor-
rect size (greatest id plus one) is propagated to all agents.
Both interactions described above reinitialize the participat-
ing agents (restore their input and erase all data produced
by the subroutine A, without altering their ids and popula-
tion sizes). A, runs as a subroutine whenever two agents of
different ids and same population sizes interact, using those
data provided by I.

The following lemmas provide some important properties
of Protocol 1. Lemma 1 shows that I correctly assigns
unique consecutive ids and propagates the correct popula-
tion size to the agents of the population in a finite number
of steps, whereas Lemma 2 guarantees the fairness of sub-
routine’s A execution.

Lemma 1. (i) No agent id becomes greater than n−1, and
no ps variable becomes greater than n. (ii) I assigns the ids
{0, 1, . . . , n − 1} in a finite number of interactions. (iii) I
sets the ps variable of each agent to the correct population
size in a finite number of interactions.

Proof. (i) By an easy induction, in order for an id to
reach the value v, there have to be at least v + 1 agents
present in the population. Thus, whenever an id becomes
greater than n − 1, there have to be more than n agents
present, which creates a contradiction. Similar arguments
hold for the ps variables
(ii) Assume on the contrary that it does not. Because of (i),
at each point of the computation there will exist at least two
agents, u, v such that idu = idv. Due to fairness, an inter-
action between such agents shall take place infinitely many
times, creating an arbitrarily large id which contradicts (i).
(iii) The correctness of the id assignment ((i),(ii)) guaran-
tees that after a finite number of steps two agents, u, v will
set their ps variables to the correct population size (upon

interaction in which idu = idv = n − 2). It follows from
(i) that no agent will have its ps variable greater than n.
Fairness guarantees that each other agent will interact with
u or v, updating its ps to n.

Lemma 2. Given that I’s execution is fair, A’s execution
is fair as well.

Proof. The state of each agent may be thought of as con-
taining an I-subcomponent and an A-subcomponent, with
obvious contents. Denote by CA the unique subconfigu-
ration of C consisting only of the A-subcomponents of all
agents and note that some CA may correspond to many su-
perconfigurations C. Assume that CA → C′A and that CA
appears infinitely often. CA → C′A implies that there exist
superconfigurations C, C′ of CA, C′A, respectively, such that
C → C′. Due to I’s fairness, if C appears infinitely often,
then so does C′ and so does C′A since it is a subconfiguration
of C′. Thus, it remains to show that C appears infinitely
often. Since CA appears infinitely often, then the same must
hold for all of its superconfigurations. The reasoning is as
follows. All those superconfigurations differ only in the I-
subcomponents, that is, they only differ in some variable
checks performed by I (after the id-assignment process and
the population size propagation have come to an end, noth-
ing else is performed by I). But all of them are reachable
from and can reach a common superconfiguration of CA in
which no variable checking is performed by I, thus, they
only depend on which pair of agents is selected for inter-
action and they are all reachable from one another. Since
at least one of them appears infinitely often then, due to
the fairness of I’s execution, all of them must also appear
infinitely often and this completes the proof.

By combining the above lemmas we can prove the follow-
ing:

Theorem 1. PMSPACE(logn) = SIPMSPACE(logn).

Proof. As PMSPACE(logn) ⊆ SIPMSPACE(logn)
hodsl trivially, it suffices to show that SIPMSPACE(logn)
⊆ PMSPACE(logn). We have already presented a pro-
tocol in PMSPACE(logn) (Protocol 1) that assigns the
agents unique consecutive ids after a finite number of inter-
actions and informs them of the population size (Lemma 1).
It follows directly from the protocol that after that point,
further fair execution of I will result in execution of protocol
A which can take into account the existence of unique ids.
Moreover, execution of A is guaranteed to be fair (Lemma
2).

We now show that for space functions f(n) = Ω(logn),
the PM model can simulate a NTM of space O(nf(n)) using
O(f(n)) space in each agent. We first prove that this holds
for Deterministic TMs, and then generalize to NTMs.

Lemma 3. SSPACE(nf(n)) ⊆ PMSPACE(f(n)), for
any f(n) = Ω(logn).

Proof. Let p : X∗ → {0, 1} be any predicate computable
in SSPACE(nf(n)) and M be the deterministic TM that
decides p by using O(nf(n)) space. We can construct a PM
protocol A that uses f(n) = Ω(logn) space on each agent
and that stably computes p by exploiting its knowledge of
unique ids and the population size. Such knowledge can be
obtained by the protocol I of Theorem 1 (see Subsection

5.1). Note that protocol I can be executed by any PM pro-
tocol whose agents use Ω(logn) space. Let x be any input
assignment in X∗. Each agent receives its input symbol ac-
cording to x (e.g. u receives symbol x(u)). We assume for
the sake of simplicity that the agents are equipped with an
extra tape, the simulation tape that is used during the sim-
ulation. The agent that has obtained the unique id 0 starts
simulating M.

In the general case, assume that currently the simulation
is carried out by an agent u having the id iu. Agent u
uses its simulation tape to write symbols according to the
transition function of M. Any time the head of M moves
to the right, u moves the head of the simulation tape to the
right, pauses the simulation, writes the current state ofM to
its outgoing message tape, and passes the simulation to the
agent v having id iv = (iu + 1) mod n. Any time the head
of M moves to the left, u pauses the simulation, writes the
current state ofM to its outgoing message tape, and passes
the simulation to the agent v having id iv = (iu−1) mod n.
From agent v’s perspective, in the first case it just receives
the state of M, copies it to its working tape and starts the
simulation, while in the second case it additionally moves
the head of the simulation tape one cell to the left before it
starts the simulation.

It remains to cover the boundary case in which the head of
the simulation tape is over the special symbol that indicates
the beginning of the tape. In that case, the agent moves
the head to the right and continues the simulation himself
(notice that this can only happen to the agent that begins
the simulation, that is, the one having the id 0).

Whenever, during the simulation,M accepts, then A also
accepts; that is, the agent that detects M’s acceptance,
writes 1 to its output tape and informs all agents to ac-
cept. If M rejects, it also rejects. Finally, note that A
simulatesM not necessarily on input x = (σ0, σ1, . . . , σn−1)
but on some x′ which is a permutation of x. The reason is
that agent with id i does not necessarily obtain σi as its in-
put. The crucial remark that completes the proof is thatM
accepts x if and only if it accepts x′, because p is symmetric.

Because of the above process, it is easy to verify that the
k−th cell of the simulation tape of any agent u having the
id iu corresponds to the (n(k − 1) + iu + 1)−th cell of M.
Thus, wheneverM alters l = O(nf(n)) tape cells, any agent
u will alter l′ = l−iu−1

n
+ 1 = O(f(n)) cells of its simulation

tape.

The next Theorem shows how the above approach can be
generalized to include NTMs.

Theorem 2. SNSPACE(nf(n)) ⊆ PMSPACE(f(n)),
for any f(n) = Ω(logn).

Proof. We have already shown that the PM model can
simulate a deterministic TM M of O(nf(n)) space, where
f(n) = Ω(logn), by using O(f(n)) space (Lemma 3). We
now present some modifications that will allow us to simu-
late a NTM N of the same memory size. Keep in mind that
N is a decider for some predicate in SNSPACE(nf(n)),
that is, it halts for every input. Upon initialization, each
agent enters a reject state (writes 0 to its output tape) and
the simulation is carried out as in the case of M.

Whenever a nondeterministic choice has to be made, the
corresponding agent gets ready and waits for participating in
an interaction. The id of the other participant will provide

the nondeterministic choice to be made. One possible imple-
mentation of this idea is the following. Since there is a fixed
upper bound on the number of nondeterministic choices (in-
dependent of the population size), the agents can store them
in their memories. Any time a nondeterministic choice has
to be made between k candidates the agent assigns the num-
bers 0, 1, . . . , k − 1 to those candidates and becomes ready
for interaction. Assume that the next interaction is with
an agent whose id is i. Then the nondeterministic choice
selected by the agent is the one that has been assigned the
number i mod k. It follows directly from the fairness con-
straint that if the computation reaches any state S infinitely
many times, all the possible ”nondeterministic” choices from
S will be followed. In what follows, we will see that this is
sufficient for the population to simulate the behaviour of N .

Any time the simulation reaches an accept state, all agents
change their output to 1 and the simulation halts. More-
over, any time the simulation reaches a reject state, it is
being reinitialized. The correctness of the above procedure
is captured by the following two cases.

1. If N rejects then every agent’s output stabilizes to 0.
Upon initialization, each agent’s output is 0 and can
only change if N reaches an accept state. But all
branches of N ’s computation reject, thus, no accept
state is ever reached, and every agent’s output forever
remains to 0.

2. If N accepts then every agent’s output stabilizes to 1.
Since N accepts, there is a sequence of configurations
S, starting from the initial configuration C that leads
to a configuration C′ in which each agent’s output is
set to 1 (by simulating directly the branch of N that
accepts). Notice that when an agent sets its output to
1 it never alters its output tape again, so it suffices to
show that the simulation will eventually reach C′. As-
sume on the contrary that it does not. Since N always
halts the simulation will be at the initial configuration
C infinitely many times. Due to fairness, by an easy in-
duction on the configurations of S, C′ will also appear
infinitely many times, which leads to a contradiction.
Thus the simulation will eventually reach C′ and the
output will stabilize to 1.

5.2 Exact Characterizations
We first prove that PMSPACE(f(n)) ⊆ SNSPACE(nf(n)).

Theorem 3. For any function f(n) it holds that PM-
SPACE(f(n)) ⊆ SNSPACE(nf(n)).

Proof. The proof is similar to the one of Theorem 8 in
[9]. We construct a TM that, starting from every initial
configuration, it nondeterministically guesses all reachable
ones storing at most one configuration.

Using a different representation of population configura-
tions, in the cases that f(n) = o(logn) the above upper

bound can be improved to SNSPACE(2f(n)(f(n)+logn)).

Theorem 4. For any function f : N → N, any predicate
in PMSPACE(f(n)) is also in SNSPACE(2f(n) (f(n) +
logn)).

Proof. The TM works like the machine of Theorem 3 but
uses a different representation of population configurations:
it stores for each agent configuration the number of agents
that have it instead of storing an agent configuration per
agent of the population.

We have now arrived at the following exact characteriza-
tions of PMSPACE(f(n)), when f(n) = Ω(logn):

Theorem 5. For f(n) = Ω(logn), PMSPACE(f(n)) =
SNSPACE(nf(n)).

Proof. Follows from Theorems 2 and 3.

5.3 A Space Hierarchy
In this section, we prove a Space Hierarchy Theorem of

the PM model. We begin with a space hierarchy of NTMs
computing symmetric languages, which we then use for es-
tablishing a similar hierarchy of PM protocols.

Theorem 6 (Symmetric Space Hierarchy).
For each h(n) and each recursive l(n), separated by a nonde-
terministically fully space constructible function g(n), with
h(n) ∈ Ω(g(n)) but l(n) /∈ Ω(g(n)), ∃ a language L in
SNSPACE(h(n))− SNSPACE(l(n)).

Proof. Follows immediately from the unary (tally) sepa-
ration language presented in [11] and the fact that any unary
language is symmetric.

Theorem 7 (PM Space Hierarchy). For each
h(n) ∈ Ω(logn) and each recursive l(n), separated by a
nondeterministically fully space constructible function g(n),
with h(n) ∈ Ω(g(n)) but l(n) /∈ Ω(g(n)), ∃ a language in
PMSPACE(h(n))−PMSPACE(l(n)).

Proof. Since l(n) is recursive so is nl(n) and since g(n)
is nondeterministically fully space constructible so is ng(n).
Moreover, h(n) ∈ Ω(g(n)) and l(n) /∈ Ω(g(n)) imply nh(n) ∈
Ω(ng(n)) and nl(n) /∈ Ω(ng(n)), respectively. Now we apply
Theorem 6 to the functions nh(n), nl(n), and ng(n) to get
a language L ∈ SNSPACE(nh(n)) − SNSPACE(nl(n)).
Note that because of Theorem 5, h(n) ∈ Ω(logn) implies
SNSPACE(nh(n)) = PMSPACE(h(n)). Thus, L ∈
PMSPACE(h(n)). Moreover, L /∈ SNSPACE(nl(n)) im-
plies L /∈ PMSPACE(l(n)), otherwise we could apply The-
orem 3 to obtain a contradiction. Thus, we can conclude
that L is in PMSPACE(h(n)) −PMSPACE(l(n)).

In simple words, Theorem 7 says that for the space bounds
discussed in this section, protocols using more memory can
compute more things.

6. A COMPUTATIONAL THRESHOLD
In this section, we explore the computability of the PM

model when the protocols use o(log logn) space. We show
that log log n acts as a threshold under which PM proto-
cols become computationally equivalent to PPs. In par-
ticular, we prove that PMSPACE(f(n)) = SEM when
f(n) = o(log log n) but SEM (PMSPACE(f(n)) when
f(n) = Ω(log logn). The latter is established by show-
ing that O(log logn) space suffices for computing a non-
semilinear predicate.

6.1 log logn Threshold
Here, we prove an interesting limitation on the computabil-

ity of the PM model when the memory bounds are too re-
strictive.

Theorem 8. PM protocols using f(n) = o(log logn) space
can only compute semilinear predicates.

Proof Idea. The result lies on the fact that populations of
different size share common executions at the beginning of
their computation. Indeed, the set of initial states is identical
for any two populations A, B, |A| = n < |B|. In the first
step of the execution, any non-initial state can occur by an
interaction of agents being in the initial states. Thus, the
sets of states that occur by such interactions are also the
same in the two populations (for non-trivial values of n).
Proceeding inductively this way, we can see that in order
for a new state w to occur in B, but not in A, there has
to be an interaction between two states u, v, which can be
present in both populations. But since w appears only in
B, u and v cannot exist in A at the same time, otherwise
w would occur in A too. Based on this observation, one
can establish that protocols that use o(log log n) memory
restrict the state space so much, that any two states u, v
can occur concurrently in any population A, so that any
state that appears in such a B has to be present in A too.
The following formalize these arguments.

Definition 5. Let A be a PM protocol executed in a pop-
ulation V of size n. An agent configuration graph, RA,V =
{U,W,F}, is a graph such that:

• U is the set of the agent configurations that can occur
in any execution of A such that the working flag is set
to 0.

• W is the set of edges (u, v), u, v ∈ U so that there
exists an edge (u, v) when there exists an agent con-
figuration w so that an interaction between two agents
with configurations u, w will lead the first one to con-
figuration v.

• F : W → {u1, u2, . . . }, ui ∈ U ×{i, r} is an edge label-
ing function so that when an agent k being in configu-
ration u enters configuration v via a single interaction
with an agent being in configuration w, and k acts as
x ∈ {i, r} (initiator-responder) in the interaction, then
{w, x} ∈ F ((u, v)).

In other words, U contains the configurations that an
agent may enter in any possible execution, when we do not
take into consideration the ones that correspond to internal
computation, while W defines the transitions between those
configurations through interactions defined by F . We call
a u ∈ U initial node iff it corresponds to an initial agent
configuration.

Because of the uniformity property, we can deduce the
following theorem:

Lemma 4. Let RA,V , RA,V ′ be two agent configuration
graphs corresponding to a protocol A for any two different
populations V , V ′ of size n and n′ respectively, where n <
n′. Then, there exists a subgraph R∗ of RA,V ′ such that
R∗ = RA,V , and whose initial nodes contains all the initial
nodes of RA,V ′ .

Proof. Indeed, let V ′1 , V ′2 be a partitioning of V ′ such
that V ′1 = V , and observe the agent configuration graph
that is yielded by the execution of A in V ′1 . Since both
populations execute the same protocol A the transitions are
the same, thus all edges in RA,V will be present in RA,V ′

1

between the common pairs of nodes and their F labels will
be equal as well since V ′1 = V . Therefore RA,V = RA,V ′

1
.

Moreover, since the initial nodes are the same for both popu-
lations, they must be in RA,V ′

1
. Finally, RA,V ′

1
is a subgraph

of RA,V ′ , as V ′1 ⊂ V ′, and the proof is complete.

The above theorem states that while we explore popula-
tions of greater size, the corresponding agent configuration
graphs are only enhanced with new nodes and edges, while
the old ones are preserved.

Given an agent configuration graph, we associate each
node a with a value r(a) inductively, as follows:

Base Case For any initial node a, r(a) = rinit = 1.

Inductive Step For any other node a, r(a) = min(r(b)
+r(c)) such that a is reachable from b through an edge
that contains c in its label, and b, c have already been
assigned an r value.

Lemma 5. Let RA,V = {U,W,F} be an agent configura-
tion graph. Every node in RA,V get associated with an r
value.

Proof. Assume for the sake of the contradiction that
there is a maximum, non-empty set of nodes U ′ ⊂ U such
that ∀v ∈ U ′, v does not get associated with an r value.
Then B = U−U ′, and C = (B,U ′) defines a cut, with all the
initial nodes being in B. We examine any edge (u, v) with
label L that crosses the cut, having an arbitrary (w, x) ∈ L.
Obviously u ∈ B and v ∈ U ′, and u is associated with a value
r(u). Since v is not associated with any r value, the same
must hold for node w (otherwise r(v) = r(u) + r(w)). We
now examine the first agent c that enters in some execution
a configuration corresponding to some v ∈ U ′. Because of
the above observation, this could only happen through an
interaction with an agent being in a configuration that is
also in U ′ which creates the contradiction.

Note that for any given protocol and population size, the
r values are unique since the agent configuration graph is
unique. The following lemma captures a bound in the r val-
ues when the corresponding protocol uses f(n) = o(log log n)
space.

Lemma 6. Let rmax−i be the i−th greatest r value asso-
ciated with any node in an agent configuration graph. For
any protocol A that uses f(n) = o(log log n), there exists a
n0 such that for any population of size n > n0, rmax <

n
2

.

Proof. Since f(n) = o(log log n), limn→∞
f(n)

log logn
= 0,

so limn→∞
log logn
f(n)

= ∞ and limn→∞
logn

2f(n) = ∞. It follows

from the last equation that there exists a fixed n0 such that
logn

2f(n) > 2 for any n > n0.

Fix any such n and let k = |U | ≤ 2f(n) in the correspond-
ing agent configuration graph. Since any node is associated
with an r value, there can be at most k different such val-
ues. Now observe that rmax ≤ 2 · rmax−1 ≤ · · · ≤ 2k · rinit ≤
22f(n)

< 2
log n

2 ≤ 2
√
n ≤ n

2
for n > max(n0, 2).

Lemma 7. Let a be a node in the agent configuration graph
RAV . Then for every subpopulation of V of size r(a) there
is an input and an execution of the protocol A that leads to
the configuration a.

Proof. We prove the above lemma by generalized induc-
tion in the r values.

Base Case The lemma holds for any initial node u, since
rinit = 1.

Inductive Step We examine any non-initial node u that
has been associated with a value r(u) = r(a)+r(b), for
some a, b. The inductive hypothesis guarantees that a
and b can be reached in two separate subpopulations of
size r(a) and r(b). Then an interaction between those
agents will take one of them to the configuration u, so
the lemma holds for u too.

Lemmas 6 and 7 lead to the following:

Lemma 8. For any protocol A that uses f(n) = o(log
logn) there exists a fixed n0 such that for any population
of size n > n0 and any pair of agent configurations u, v,
there exists an execution in which the interaction (u, v) takes
place.

Proof. Indeed, because of the Lemma 6, there exists a
n0 such that for any n > n0, r(a) < n

2
for any a. With that

in mind, Lemma 7 guarantees that in any such population,
any interaction (u, v) can occur since any of the agent con-
figurations u, v can occur independently, by partitioning the
population in two subpopulations of size n

2
each.

We can now complete our proof of Theorem 8:

Proof. Because of the uniformity constraint, A can be
executed in any population of arbitrary size. We choose a
fixed n0 as defined in Lemma 6 and examine the population
L of size n = n0. Let RA,L be the corresponding agent con-
figuration graph. Let L′ be any population of size n′ > n
and RA,L′ the corresponding agent configuration graph. Be-
cause of Theorem 4, RA,L′ contains a subgraph K, such that
K = RA,L, and the initial nodes of RA,L′ are in K. Let
U∗ = U ′ − U , and k the first agent configuration that ap-
pears in L′ such that k ∈ U∗ through an interaction (u, v)(k
can’t be an initial configuration, thus it occurs through some
interaction). Then u, v ∈ U , and the interaction (u, v) can
occur in the population L too (Lemma 8), so that k ∈ U ,
which refutes our choice of k creating a contradiction. So,
U∗ = ∅, and the set of agent configurations does not change
as we examine populations of greater size. Since the set of
agent configurations remains the same as described by the
fixed RA,L, the corresponding predicate can be computed
by the PP model, thus it is semilinear.

Theorem 8 practically states that when the memories avail-
able are strictly smaller than log logn (asymptotically) then
these PM protocols are nothing more than PPs, and al-
though their memory is still dependent on the population
size, they cannot exploit it as such; instead they have to use
it as a constant memory much like PPs do.

6.2 The Power of 2 Predicate
We will now present the non-semilinear power of 2 pred-

icate, and devise a PM protocol that computes it using
O(log logn) space in each agent.

The predicate’s definition is slightly different to the one
described in the example of Section 4. We here define the
power of 2 as follows: During the initialization, each agent
receives an input symbol from X = {a, 0}, and let Na de-
note the number of agents that have received the symbol
a. We want to compute whether logNa = t for some arbi-
trary t. We give a high level protocol that computes this
predicate, and prove that it can be correctly executed using
O(log logn) space.

Each agent u maintains a variable xu, and let outu be
the variable that u uses to write its output. Initially, any
agent u that receives a as his input symbol sets xu = 1 and
outu = 1, while any other agent v sets xv = 0 and outv = 1.

The main protocol consists of two subprotocols, A and B,
that are executed concurrently. Protocol A does the follow-
ing: whenever an interaction occurs between two agents, u,
v, with u being the initiator, if xu = xv > 0, then xu = xu+1
and xv = 0. Otherwise, nothing happens. Protocol B runs
in parallel, and computes the semilinear predicate of deter-
mining whether there exist 0, two or more agents having
x > 0. If so, it outputs 0, otherwise it outputs 1. Observe
that B is executed on stabilizing inputs, as the x-variables
fluctuate before they stabilize to their final value. However,
it is well known that the semilinear predicates are also com-
putable under this constraint [4].

Thus, we have presented a non-semilinear predicate that
can be computed by a PM protocol using O(log logn) space.
Combining this result with Theorem 8, and the fact that
SEM ⊆ PMSPACE((f(n)),∀f , we obtain the following
threshold theorem:

Theorem 9. PMSPACE(f(n)) = SEM when f(n) =
o(log log n) and SEM (PMSPACE(f(n)) when f(n) =
Ω(log log n).

Theorem 9 resembles a similar well-known result of Com-
putational Complexity for the class of regular languages
REG, according to which REG = SPACE(o(log logn)) (
SPACE(Ω(log logn)) (see [15, 1] and Theorem 5.1.3, pages
29-30, of [16]). However, the model under consideration here
and, consequently, the proof that we provide are quite dif-
ferent.

7. CONCLUSIONS - OPEN PROBLEMS
We proposed the PM model, an extension of the PP model,

in which the agents are communicating TMs. Throughout
our work, we studied the computational power of the new
model when the space used by each agent is bounded by
a function f(n) of the population size. To do so, we pre-
sented protocols in which the number of states used by any
execution on n agents is bounded by O(cf(n)) (so that each
state can be represented by O(f(n)) tape cells), where c
constant, and the new states of the interacting agents are
computable in f(n) space by a TM. Although the model
preserves uniformity and anonymity, interestingly, we have
been able to prove that the agents can organize themselves
into a NTM that makes full use of the agents’ total memory
(i.e. of O(nf(n)) space) when f(n) = Ω(logn). The agents
are initially identical and have no global knowledge of the

system, but by executing an iterative reinitialization process
they are able to get assigned unique consecutive ids and get
informed of the population size. In this manner, we showed
that PMSPACE(f(n)), the class of predicates stably com-
putable by the PM model using O(f(n)) memory, contains
all symmetric predicates in NSPACE(nf(n)). Moreover,
by proving that PMSPACE(f(n)) ⊆ SNSPACE(nf(n)),
we concluded that for f(n) = Ω(logn), PMSPACE(f(n))
is precisely equal to the class consisting of all symmetric
predicates in NSPACE(nf(n)). We also explored the be-
havior of the PM model for space bounds f(n) = o(logn)
and proved that PMSPACE(f(n)) = SEM when f(n) =
o(log log n). Finally, we showed that this bound acts as a
threshold, that is, SEM (PMSPACE(f(n)) when f(n) =
Ω(log log n).

Many interesting questions remain open. Is the PM model
fault-tolerant? What preconditions are needed in order to
achieve satisfactory fault-tolerance? What is the behavior
of the model when the agents use O(f(n)) memory, where
f(n) = o(logn) and f(n) = Ω(log logn)? Does a space
hierarchy similar to the one presented in Section 5.3, hold
for functions o(logn)?

8. ACKNOWLEDGEMENTS
We wish to thank some anonymous reviewers for their

very useful comments on a previous version of this work.

9. REFERENCES
[1] M. Alberts. Space complexity of alternating turing

machines. In L. Budach, editor, Fundamentals of
Computation Theory, volume 199 of Lecture Notes in
Computer Science, pages 1–7. Springer Berlin /
Heidelberg, 1985. 10.1007/BFb0028785.

[2] C. Àlvarez, I. Chatzigiannakis, A. Duch, J. Gabarró,
O. Michail, S. Maria, and P. G. Spirakis.
Computational models for networks of tiny artifacts:
A survey. Computer Science Review, 5(1), January
2011.

[3] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and
R. Peralta. Computation in networks of passively
mobile finite-state sensors. Distributed Computing,
pages 235–253, March 2006.

[4] D. Angluin, J. Aspnes, and D. Eisenstat. Stably
computable predicates are semilinear. In 25th annual
ACM Symposium on Principles of Distributed
Computing (PODC), pages 292–299, New York, NY,
USA, 2006. ACM Press.

[5] J. Aspnes and E. Ruppert. An introduction to
population protocols. Bulletin of the European
Association for Theoretical Computer Science,
93:98–117, October 2007.

[6] J. Beauquier, J. Clement, S. Messika, L. Rosaz, and
B. Rozoy. Self-stabilizing counting in mobile sensor
networks. In 26th annual ACM symposium on
Principles of distributed computing (PODC), pages
396–397, New York, NY, USA, 2007. ACM.

[7] I. Chatzigiannakis, O. Michail, S. Nikolaou,
A. Pavlogiannis, and P. Spirakis. Passively mobile
communicating machines that use restricted space.
Technical Report FRONTS-TR-2011-28, Apr. 2011.

[8] I. Chatzigiannakis, O. Michail, S. Nikolaou,
A. Pavlogiannis, and P. G. Spirakis. All symmetric

predicates in NSPACE(n2) are stably computable by
the mediated population protocol model. In 35th
International Symposium on Mathematical
Foundations of Computer Science (MFCS), volume
6281 of Lecture Notes in Computer Science, pages
270–281. Springer-Verlag, August 23–27 2010.

[9] I. Chatzigiannakis, O. Michail, and P. G. Spirakis.
Mediated population protocols. In 36th International
Colloquium on Automata, Languages and
Programming (ICALP), volume 5556 of Lecture Notes
in Computer Science, pages 363–374. Springer-Verlag,
July 2009.

[10] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and
E. Ruppert. When birds die: Making population
protocols fault-tolerant. In IEEE 2nd Intl Conference
on Distributed Computing in Sensor Systems
(DCOSS), volume 4026 of Lecture Notes in Computer
Science, pages 51–66. Springer-Verlag, June 2006.

[11] V. Geffert. Space hierarchy theorem revised. Theor.
Comput. Sci., 295:171–187, 2003.

[12] S. Ginsburg and E. H. Spanier. Semigroups,
presburger formulas, and languages. Pacific Journal of
Mathematics, 16:285–296, 1966.

[13] R. Guerraoui and E. Ruppert. Names trump malice:
Tiny mobile agents can tolerate byzantine failures. In
36th International Colloquium on Automata,
Languages and Programming (ICALP), volume 5556
of Lecture Notes in Computer Science, pages 484–495.
Springer-Verlag, 2009.

[14] O. Michail, I. Chatzigiannakis, and P. G. Spirakis.
New Models for Population Protocols. N. A. Lynch
(Ed), Synthesis Lectures on Distributed Computing
Theory. Morgan & Claypool, 2011.

[15] R. E. Stearns, J. Hartmanis, and P. M. Lewis.
Hierarchies of memory limited computations. In
Proceedings of the 6th Annual Symposium on
Switching Circuit Theory and Logical Design (SWCT
1965), FOCS ’65, pages 179–190, Washington, DC,
USA, 1965.

[16] A. Szepietowski. Turing Machines with Sublogarithmic
Space. Springer-Verlag New York, Inc., 1994.

