
Connectivity Preserving Network Transformers∗

Othon Michail and Paul G. Spirakis

Abstract The Population Protocol model is a distributed model that concerns sys-
tems of very weak computational entities that cannot control the way they interact.
The model of Network Constructors is a variant of Population Protocols capable
of (algorithmically) constructing abstract networks. Both models are characterized
by a fundamental inability to terminate. In this work, we investigate the minimal
strengthenings of the latter model that could overcome this inability. Our main con-
clusion is that initial connectivity of the communication topology combined with the
ability of the protocol to transform the communication topology and the ability of
a node to detect when its degree is equal to a small constant, plus either a unique
leader or the ability of detecting common neighbors, are sufficient to guarantee not
only termination but also the maximum computational power that one can hope for
in this family of models. In particular, the model, under these minimal assumptions,
computes with termination any symmetric predicate computable by a Turing Ma-
chine of space Θ(n2).

Othon Michail
Department of Computer Science, University of Liverpool, Liverpool, UK &
Computer Technology Institute and Press “Diophantus” (CTI), Patras, Greece
e-mail: Othon.Michail@liverpool.ac.uk

Paul G. Spirakis
Department of Computer Science, University of Liverpool, Liverpool, UK &
Computer Technology Institute and Press “Diophantus” (CTI), Patras, Greece
e-mail: P.Spirakis@liverpool.ac.uk

∗ Supported in part by (i) the project “Foundations of Dynamic Distributed Computing Sys-
tems” (FOCUS) which is implemented under the “ARISTEIA” Action of the Operational Pro-
gramme “Education and Lifelong Learning” and is co-funded by the European Union (Euro-
pean Social Fund) and Greek National Resources and (ii) the FET EU IP project MULTIPLEX
under contract no 317532. The full paper on which this chapter is based, can be found at
http://arxiv.org/abs/1512.02832.

1

Othon.Michail@liverpool.ac.uk
P.Spirakis@liverpool.ac.uk
http://arxiv.org/abs/1512.02832

2 Othon Michail and Paul G. Spirakis

1 Introduction

A dynamic distributed computing system is a system composed of distributed com-
putational processes in which the structure of the communication network between
the processes changes over time. In one extreme, the processes cannot control and
cannot accurately predict the modifications of the communication topology. Typical
such examples are mobile distributed systems in which the mobility is external to
the processes and is usually provided by the environment in which the system op-
erates. For example, it could be a system of cell phones following the movement
of the individuals carrying them or a system of nanosensors flowing in the human
circulatory system. This type of mobility is known as passive (see e.g. [AAD+06]).
On the other extreme, dynamicity may be a sole outcome of the algorithm executed
by the processes. Typical examples are systems in which the processes are equipped
with some internal mobility mechanism, like mobile robotic systems and, in general,
any system with the ability to algorithmically modify the communication topology.
This type of mobility is known as active mobility (see e.g. [WCG+13] for active
self-assembly, [SY99, DFSY15, CKLWL09] for mobile robots, and [ACD+11] for
reconfigurable (nano)robotics under physical constraints). Recently, there is an in-
terest in intermediate (or hybrid) systems. One such type, consists of systems in
which the processes are passively mobile but still they are equipped with an inter-
nal active mechanism that allows them to have a partial (algorithmic) control of the
system’s dynamicity.

The intermediate model that guides our study here, is the network constructors
model introduced in [MS14]. In this model, there are n extremely weak processes,
computationally equivalent to anonymous finite automata, that usually have very
limited knowledge of the system (e.g. they do not know its size). The processes
move passively and interact in pairs whenever two of them come sufficiently close
to each other. This part of the system’s dynamicity is not controlled and cannot be
(completely) predicted by the processes and is modeled by assuming an adversary
scheduler that in every step selects a pair of processes to interact. The adversary is
typically restricted to be fair so that it cannot forever block the system’s progress
(e.g. by keeping two parts of the system forever disconnected). Fairness is sufficient
for analyzing the correctness of protocols for specific tasks. If additionally an es-
timate of the running time is desired, a typical assumption is that the scheduler is
a uniform random one (which is fair with probability 1 [CDF+09] and also corre-
sponds to the dynamicity patterns of well-mixed solutions). But in this model, there
is also an internal source of dynamicity. In particular, the processes can algorithmi-
cally connect and disconnect to each other during their pairwise interactions. This
can be viewed either as a physical bonding mechanism, as e.g. in reconfigurable
robotics and molecular (e.g. DNA) self-assembly, or as a virtual record of local
connectivity, as e.g. in a social network where a participant keeps track of and can
regularly update the set of his/her associates. This allows the processes to control
the construction and maintenance of a network or a shape in an uncontrolled and
unpredictable dynamic environment.

Connectivity Preserving Network Transformers 3

The network from which the scheduler picks interactions between processes and
develops the uncontrolled interaction pattern is called the interaction network. At the
same time, the processes, by connecting and disconnecting to each other, develop
another network, the (algorithmically) constructed network, which is a subnetwork
of the interaction network. In the most abstract setting, the interaction network is the
clique Kn throughout the execution, no matter what the protocol does (e.g. no matter
how the protocol modifies the constructed network). In this case, the scheduler can
in every step (throughout the course of the protocol) pick any possible pair of pro-
cesses to interact, independently of the constructed network. 2 This is precisely the
setting of [MS14] and also the one that we will consider in the present work. 3 But
even if the interaction network is always a clique independently of the constructed
network, the ability of the processes to construct a network may still allow them to
counterbalance the adversary’s power. For example, if the processes manage some-
how to self-organize into a spanning network G, then it might be possible for them
to ignore all interactions that occur over the non-links of G and thus force the actual
communication pattern to be consistent with the constructed network.

The existing literature on distributed network construction [MS14, Mic15] has
almost absolutely focused on the setting in which all processes are initially discon-
nected and the goal is for them to algorithmically self-organize into a desired (usu-
ally spanning or of size at least some required function of n) stable network or shape.
In [MS14], the authors presented simple and efficient direct constructors and lower
bounds for several basic network construction problems such as spanning line, span-
ning ring, and spanning star and also generic constructors capable of constructing a
large class of networks by simulating a Turing Machine (abbreviated “TM” through-
out). One of the main results was that for every graph language L that is decidable
by a O(

√
l)-space (l+O(

√
l), resp.) TM, where l =Θ(n2) is the binary length of the

input of the simulated TM, there is a protocol that constructs L equiprobably with
useful space bn/2c (bn/3c, resp.), where the useful space is defined as a lower bound
on the order of the output network (the rest of the nodes being used as auxiliary and
thrown away eventually as waste). In [Mic15], a geometrically constrained variant
was studied, where the formed network and the allowable interactions must respect
the structure of the 2-dimensional (or 3-dimensional) grid network. The main result
was a terminating protocol counting the size n of the system with high probability
(abbreviated “w.h.p.” throughout). This protocol was then used as a subroutine of
universal constructors, establishing that the nodes can self-assemble w.h.p. into ar-
bitrarily complex shapes while still being capable to terminate after completing the
construction.

2 A convenient way to think of this setting is to imagine a clique graph with its edges labeled from
{0,1}. Then, in this case, the clique is the interaction network while its subgraph induced by the
edges labeled 1 is the constructed network.
3 On the other hand, it is possible, and plausible w.r.t. several application scenarios, that the set of
available interactions at a given step actually depends on the constructed network. Such a case was
considered in [Mic15], where the constructed network is always a subnetwork of the grid network
and two processes can only interact if a connection between them would preserve this requirement.
So, in that case, the set of available interactions is, in every step, constrained by the network that
has been constructed by the protocol so far.

4 Othon Michail and Paul G. Spirakis

1.1 Our Approach and Contribution

The main goal of this work is to investigate minimal strengthenings of the popu-
lation protocol and network constructors models that can maximize their computa-
tional power, also rendering them capable to terminate. To this end, we consider (for
the first time in network constructors) the case in which the initial configuration of
the edges is not the one in which all edges are inactive (i.e. those that are in state
0). In particular, we assume that the initial configuration of the edges can be any
configuration in which the active (i.e. those that are in state 1) edges form a con-
nected graph spanning the set of processes. 4 The initial configuration of the nodes
is either, as in [MS14], the one in which all nodes are initially in the same state, e.g.
in an initial state q0, or (whenever needed) the one in which all nodes begin from q0
apart from a pre-elected unique leader that begins from a distinct initial leader-state
l0. This choice is motivated by the fact that without some sort of bounded initial dis-
connectivity we can only hope for global computations and constructions that are
eventually stabilizing (and not terminating), because a component can guess nei-
ther the number of components not encountered yet nor an upper bound on the time
needed to interact with another one of them ([MS15] overcomes this by assuming
that the nodes know some upper bound on this time, while [Mic15] overcomes this
by assuming a uniform random scheduler and a unique leader and by restricting
correctness to be w.h.p.).

Next, observe that if the protocol is not allowed to modify the state of the edges,
then the assumption of initial connectivity alone does not add any computational
power to the model (in the worst case). For if we ignore for a while the ability
of the model to modify the state of the edges, what we have is a model equiva-
lent to classical population protocols [AAD+06] on a restricted interaction graph
[AAC+05] (observe that the model can ignore the interactions that occur over inac-
tive edges). Though there are some restricted interaction graphs, like the spanning
line, that dramatically increase the computational power of the model (in this case
making it equivalent to a TM of linear space), still there others, like the spanning
star, on which the power of the model is as low as the power of classical popula-
tion protocols on a clique interaction graph [CMNS13], which, in turn, is equal to
the rather small class of semilinear predicates [AAER07]. As we have allowed any
possible connected initial set of active edges, the spanning star inclusive, the initial
configuration of the edges alone (without any edge modifications) is not sufficient
for strengthening the model.

Our discussion so far, suggests to consider at the same time initial connectivity
(or, more generally, bounded initial disconnectivity) and the ability of the protocol
to modify the state of the edges, with the hope of increasing the computational
power. Unfortunately, even with this additional assumption, non-trivial terminating
computation is still impossible (this is proved in Proposition 3, in Section 3.3). An
immediate way to appreciate this, is to notice that a clique does not provide more

4 Active and inactive edges are not to be confused with active and passive mobility. An edge is said
to be active if its state is 1 and it is said to be inactive if its state is 0.

Connectivity Preserving Network Transformers 5

information than an empty network about the size of the system. Even worse, if
a node’s initial active degree is unbounded (as e.g. is the case for the center of a
spanning star), then it is not clear even whether the stabilizing constructors that
assume initial disconnectivity (as in [MS14]) can be adapted to work. Actually, it
could be the case, that without additional assumptions initial connectivity may even
decrease the power of the model (we leave this as an interesting open problem). For
example, it could be simpler to construct a spanning line if the initial active network
is empty (i.e. all edges are inactive) than if it is a clique (i.e. all edges are active).
Even if it would turn out that the model does not become any weaker, we still cannot
avoid the aforementioned impossibility of termination and the maximum that we can
hope for is an eventually stabilizing universal constructor, as the one of [MS14].

We now add to the picture a very minimal and natural, but extremely powerful,
additional assumption that, combined with our assumptions so far, will lead us to
a stronger model. In particular, we equip the nodes with the ability to detect some
small local degrees. For a concrete example, assume that a node can detect when
its active degree is equal to 0 (otherwise it only knows that its degree is at least 1).
A first immediate gain, is that we can now directly simulate any constructor that
assumes an empty initial network (e.g. the constructors of [MS14]): every node ini-
tially deactivates the active edges incident to it until its local active degree becomes
for the first time 0, and only when this occurs the node starts participating in the
simulation. So, even though a node does not know its initial degree (which is due
to the fact that a node in this model is a finite automaton with a state whose size is
independent of the size of the system), it can still detect when it becomes equal to
0. At that point, the node does not have any active edges incident to it, therefore it
can start executing the constructor that assumes an empty initial network.

Our main finding in this work, is that the initial connectivity guarantee together
with the ability to modify the network and to detect small local degrees (combined
with either a pre-elected leader or a natural mechanism that allows two nodes to
tell whether they have a neighbor in common), are sufficient to obtain the maximum
computational power that one can hope for in this family of models. In particular,
the resulting model can compute with termination any symmetric predicate 5 com-
putable by a TM of space Θ(n2), and no more than this, i.e. it is an exact character-
ization. The symmetricity restriction can only be dropped by UIDs or by any other
means of knowing and maintaining an ordering of the nodes’ inputs. This power is
maximal because the distributed space of the system is Θ(n2), so we cannot hope
for computations exploiting more space. The substantial improvement compared to
[MS14, MCS11a] is that the universal computations are now terminating and not
just eventually stabilizing. It is interesting to point out that the additional assump-
tions and mechanisms are minimal, in the sense that the removal of each one of
them leads to either an impossibility of termination or to a substantial decrease in
the computational power.

In Section 2, we discuss further related literature. Section 3 brings together all
definitions and basic facts that are used throughout the chapter. In particular, in Sec-

5 Essentially, a predicate in this type of models is called symmetric (or commutative) if permuting
the input symbols does not affect the predicate’s outcome.

6 Othon Michail and Paul G. Spirakis

tion 3.1 we formally define the model of network constructors under consideration,
Section 3.2 formally defines the transformation problems that are considered in this
work, and Section 3.3 provides some basic impossibility results and a lower bound
on the time needed to transform any network to a spanning line. In Section 4, we
study the case in which there is a pre-elected unique leader and give two protocols
for the problem, the Online-Cycle-Elimination protocol and the time-optimal Line-
Around-a-Star protocol. Then, in Section 5, we try to drop the unique leader assump-
tion. First, in Section 5.1 we show that, without additional assumptions, dropping
the unique leader leads to a strong impossibility result. In face of this negative re-
sult, in Section 5.2 we minimally strengthen the model with a common neighbor
detection mechanism and give a correct terminating protocol. Finally, in Section 6
we conclude and give further research directions that are opened by our work.

2 Further Related Work

The model considered in this chapter belongs to the family of population protocol
models. The population protocol model [AAD+06] was originally developed as a
model of highly dynamic networks of simple sensor nodes that cannot control their
mobility. The first papers focused on the computational capabilities of the model
which have now been almost completely characterized. In particular, if the interac-
tion network is complete, i.e. one in which every pair of processes may interact, then
the computational power of the model is equal to the class of the semilinear predi-
cates (and the same holds for several variations) [AAER07]. Semilinearity persists
up to o(log logn) local space but not more than this [CMN+11]. If additionally the
connections between processes can hold a state from a finite domain (note that this
is a stronger requirement than the active/inactive that the present work assumes)
then the computational power dramatically increases to the commutative subclass
of NSPACE(n2) [MCS11a]. The latter constitutes the mediated population proto-
col (MPP) model, which was the first variant of population protocols to allow for
states on the edges. For introductory texts to these models, the interested reader is
encouraged to consult [AR09] and [MCS11b].

Based on the MPP model, [MS14] restricted attention to binary edge states and
regarded them as a physical (or virtual, depending on the application) bonding
mechanism. This gave rise to a “hybrid” self-assembly model, the network con-
structors model, in which the actual dynamicity is passive and due to the envi-
ronment but still the protocol can construct a desired network by activating and
deactivating appropriately the connections between the nodes. The present chapter
essentially investigates the computational power of the network constructors model
under the assumption that a connected spanning active topology is provided initially
and also initiates the study of the distributed network reconfiguration problem. Re-
cently, [Mic15] studied a geometrically constrained variant of network constructors
in which the interaction network is not complete but rather it is constrained by the
existing shapes (every shape that can be formed being a sub-network of the 2D or 3D

Connectivity Preserving Network Transformers 7

grid network). Interestingly, apart from being a model of computation, population
protocols are also closely related to chemical systems. In particular, Doty [Dot14]
has recently demonstrated their formal equivalence to chemical reaction networks
(CRNs), which model chemistry in a well-mixed solution.

3 Preliminaries

3.1 The Model

The model under consideration is the network constructors model of [MS14] with
the only essential difference being that in [MS14] the initial configuration was al-
ways (apart from the network replication problem) the one in which all edges are
inactive, while in this work the initial configuration can be any configuration in
which the active edges form a spanning connected network. Still, we give a detailed
presentation of the model for self-containment.

Definition 1. A Network Constructor (NET) is a distributed protocol defined by a
4-tuple (Q,q0,Qout ,δ), where Q is a finite set of node-states, q0 ∈ Q is the initial
node-state, Qout ⊆ Q is the set of output node-states, and δ : Q×Q×{0,1} →
Q×Q×{0,1} is the transition function. When required, also a special initial leader-
state l0 ∈ Q may be defined.

If δ (a,b,c)= (a′,b′,c′), we call (a,b,c)→ (a′,b′,c′) a transition (or rule) and we
define δ1(a,b,c) = a′, δ2(a,b,c) = b′, and δ3(a,b,c) = c′. A transition (a,b,c)→
(a′,b′,c′) is called effective if x 6= x′ for at least one x ∈ {a,b,c} and ineffective
otherwise. When we present the transition function of a protocol we only present
the effective transitions. Additionally, we agree that the size of a protocol is the
number of its states, i.e. |Q|.

The system consists of a population VI of n distributed processes (also called
nodes when clear from context). In the generic case, there is an underlying interac-
tion graph GI = (VI ,EI) specifying the permissible interactions between the nodes.
Interactions in this model are always pairwise. In this work, unless otherwise stated,
GI is a complete undirected interaction graph, i.e. EI = {uv : u,v ∈ VI and u 6= v},
where uv = {u,v}. When we say that all nodes in VI are initially identical, we mean
that all nodes begin from the initial node-state q0. In case we assume the existence
of a unique leader, then there is a u ∈ VI beginning from the initial leader-state l0
and all other v ∈VI\{u} begin from the initial node-state q0 (which in this case may
also be called the initial nonleader-state).

A central assumption of the model is that edges have binary states. An edge in
state 0 is said to be inactive while an edge in state 1 is said to be active. In almost
all problems studied in [MS14] (apart from the replication problem), all edges were
initially inactive. Though we shall also consider this case in the present chapter, our
main focus is on a different setting in which the protocol begins its execution on a

8 Othon Michail and Paul G. Spirakis

precomputed set of active edges provided by some adversary. Formally, there is an
input set of edges E ⊆ EI , such that all e ∈ E are initially active and all e′ ∈ EI\E
are initially inactive. The set E defines the input graph G = (VI ,E), also called the
initial active topology/graph. Throughout this work, unless otherwise stated, we
assume that the initial active topology is connected, which means that the active
edges form a connected graph spanning VI . This is a restriction imposed on the
adversary selecting the input. In particular, the adversary is allowed to choose any
initial set of active edges E (in a worst-case manner), subject to the constraint that
E defines a connected graph on the whole population.

Execution of the protocol proceeds in discrete steps. In every step, a pair of nodes
uv from EI is selected by an adversary scheduler and these nodes interact and update
their states and the state of the edge joining them according to the transition function
δ . In particular, we assume that, for all distinct node-states a,b∈Q and for all edge-
states c∈ {0,1}, δ specifies either (a,b,c) or (b,a,c). So, if a, b, and c are the states
of nodes u, v, and edge uv, respectively, then the unique rule corresponding to these
states, let it be (a,b,c)→ (a′,b′,c′), is applied, the edge that was in state c updates
its state to c′ and if a 6= b, then u updates its state to a′ and v updates its state to b′, if
a = b and a′ = b′, then both nodes update their states to a′, and if a = b and a′ 6= b′,
then the node that gets a′ is drawn equiprobably from the two interacting nodes and
the other node gets b′.

A configuration is a mapping C : VI∪EI→Q∪{0,1} specifying the state of each
node and each edge of the interaction graph. Let C and C′ be configurations, and let
u, υ be distinct nodes. We say that C goes to C′ via encounter e = uυ , denoted
C e→ C′, if (C′(u),C′(v),C′(e)) = δ (C(u),C(v),C(e)) or (C′(v),C′(u),C′(e)) =
δ (C(v),C(u),C(e)) and C′(z)=C(z), for all z∈ (VI\{u,v})∪(EI\{e}). We say that
C′ is reachable in one step from C, denoted C→C′, if C e→C′ for some encounter
e ∈ EI . We say that C′ is reachable from C and write C C′, if there is a sequence
of configurations C =C0,C1, . . . ,Ct =C′, such that Ci→Ci+1 for all i, 0≤ i < t.

An execution is a finite or infinite sequence of configurations C0,C1, C2, . . .,
where C0 is an initial configuration and Ci →Ci+1, for all i ≥ 0. A fairness condi-
tion is imposed on the adversary to ensure the protocol makes progress. An infinite
execution is fair if for every pair of configurations C and C′ such that C→ C′, if
C occurs infinitely often in the execution then so does C′. In what follows, every
execution of a NET will by definition considered to be fair.

We define the output of a configuration C as the graph G(C) = (V,E) where
V = {u ∈VI : C(u) ∈Qout} and E = {uv : u,v ∈V, u 6= v, and C(uv) = 1}. In words,
the output-graph of a configuration consists of those nodes that are in output states
and those edges between them that are active, i.e. the active subgraph induced by
the nodes that are in output states. The output of an execution C0,C1, . . . is said to
stabilize (or converge) to a graph G if there exists some step t ≥ 0 s.t. G(Ci) = G for
all i ≥ t, i.e. from step t and onwards the output-graph remains unchanged. Every
such configuration Ci, for i≥ t, is called output-stable. The running time (or time to
convergence) of an execution is defined as the minimum such t (or ∞ if no such t
exists). Throughout the chapter, whenever we study the running time of a NET, we
assume that interactions are chosen by a uniform random scheduler which, in every

Connectivity Preserving Network Transformers 9

step, selects independently and uniformly at random one of the |EI | = n(n− 1)/2
possible interactions. In this case, the running time on a particular n and an initial set
of active edges E becomes a random variable (abbreviated “r.v.”) Xn,E and our goal
is to obtain bounds on maxn,E{e[Xn,E]}, where e[X] is the expectation of the r.v. X .
That is, the running time of a protocol is defined here as the maximum (also called
worst-case) expected running time over all possible initial configurations. Note that
the uniform random scheduler is fair with probability 1.

Definition 2. We say that an execution of a NET on n processes constructs a graph
(or network) G, if its output stabilizes to a graph isomorphic to G.

Definition 3. We say that a NET A constructs a graph language L with useful space
g(n) ≤ n, if g(n) is the greatest function for which: (i) for all n, every execution of
A on n processes constructs a G ∈ L of order at least g(n) (provided that such a G
exists) and, additionally, (ii) for all G∈ L there is an execution of A on n processes,
for some n satisfying |V (G)| ≥ g(n), that constructs G. Equivalently, we say that A
constructs L with waste n−g(n).

In this work, we shall also be interested in NETs that construct a graph language
and additionally always terminate.

Definition 4. We call a NET A terminating (or say that A always terminates) if
every execution of A reaches a halting configuration, that is one in which every
node is in a state qh from a set of halting states Qhalt , where (qh,q,s)→ (qh,q,s)
(i.e. is ineffective) for every qh ∈ Qhalt , q ∈ Q, and s ∈ {0,1}.

Finally, in order to consider TM simulations, we denote by SSPACE(f (n)) the
symmetric subclass of the complexity class SPACE(f (n)).

3.2 Problem Definitions

Acyclicity. Let G = (V,A) be the subgraph of GI consisting of V and the active
edges between nodes in V , that is A = {e ∈ EI : C(e) = 1}. The initial G is
connected. The goal is for the processes to stably transform G to an acyclic graph
spanning V without ever breaking the connectivity of G.

Line Transformation. Let G = (V,A) be the subgraph of GI consisting of V and
the active edges between nodes in V , that is A = {e ∈ EI : C(e) = 1}. The initial
G is connected. The goal is for the processes to stably transform G to a spanning line.

Terminating Line Transformation. The same as Line Transformation with the
additional requirement that all processes must terminate.

10 Othon Michail and Paul G. Spirakis

3.3 Fundamental Inabilities

We now give a few basic impossibility results that justify the necessity of minimally
strengthening the network constructors model in order to be able to solve the above
main problems.

The following proposition (which is a well-known fact in the relevant literature
but we include here a proof for self-containment) states that if the system does not
involve edge states (i.e. the original population protocol model with transition func-
tion δ : Q×Q→ Q×Q), then a protocol cannot decide with termination whether
there is a single a in the population (mainly because a node does not know how
much time it has to wait to meet every other node). Though the result is not directly
applicable to our model, still we believe that it might help the reader’s intuition w.r.t.
to the computational difficulties in this family of models.

Proposition 1 (PPs Impossibility of Termination). There is no population proto-
col that can compute with termination the predicate (Na ≥ 1) (i.e. whether there
exists an a in the input assignment).

Proof. Consider a population of size n and let the nodes be u1,u2, . . . ,un. It suffices
to prove the impossibility for the variation in which there is a unique leader, initially
in state l, and all other nodes are non-leaders, initially in state qa if their input is a
and qb if their input is not a, and all interactions are between the leader and the non-
leaders. This is w.l.o.g. because this model is not weaker than the original population
protocol model, which means that an impossibility for this model also transfers to
the original population protocol model. Indeed, this model can easily simulate the
original model as follows. Interactions between two non-leaders can be simulated
via the leader: the leader first collects the state q1 of a node u, which it marks, and
then waits to interact with another node v. When this occurs, if the state of v is q2,
rule (q1,q2)→ (q′1,q

′
2) is applied to the state stored by the leader and to the state

of v. Then the leader waits to meet u again (which can be detected since it has been
marked) in order to update its state to q′1. When this occurs, the leader drops the
stored information and starts a new simulation round.

So, let u1 be the initial leader. Let A be a protocol that computes (Na ≥ 1) and
terminates on every n and every input assignment. Consider now the input assign-
ment in which all inputs are b, that is there is no a and thus all non-leaders begin
with initial state qb. Clearly, it must hold that in every fair execution the leader
terminates in a finite number of steps and says “no”. These steps are interactions
between the leader and the non-leaders so any such execution can be represented
by a sequence of u js from {u2, . . . ,un}. Let now s = v1,v2, . . . ,vk be any such finite
execution in which the leader says “no”. vi ∈ {u2, . . . ,un} is simply the node with
which the leader interacted at step i.

Consider now a population of size n+1. The only difference to the previous set-
ting is that now we have added a node un+1 with input a. Since now the predicate
evaluates to 1, in every fair execution, A should terminate in a finite number of steps
and say “yes”. Take any fair execution s′ = s,vk+1, . . . ,vh, that is s′ has s as an “un-
fair” prefix. As s contains the same nodes as before with the same input assignment,

Connectivity Preserving Network Transformers 11

the leader in s′ terminates in precisely k steps saying “no” without knowing that
an additional node with input a exists in this case. This contradicts the existence
of protocol A. We should mention that the leader has no means of guessing the ex-
istence of node un+1 because its termination only depends on the protocol stored
in its memory which is by definition finite and independent of n (suffices to con-
sider the longest chain of rules that leads to termination with output “no” and which
corresponds to at least one feasible execution). ut

Moreover, even if the system is initially connected, there are some very sym-
metric topologies that do not allow for strong computations. For example, if the
topology is a star with the leader at the center, then the system is equivalent to pop-
ulation protocols on a complete interaction graph and can compute only semilinear
predicates on input assignments, again only in an eventually-stabilizing way (i.e. no
termination). This is captured by the following proposition.

Proposition 2 (Structure vs Computational Power). There are initial topologies
in which the computational power of population protocols is as limited as in the
case of no structure at all.

The above expose the necessity of additional assumptions, such as topology mod-
ifications, in order to hope for terminating computations and surpass the computa-
tional power of classical population protocols. So, we turn our attention again to our
model, i.e. where the edges have binary states and the protocol can modify them,
and consider the case in which the initial topology is always connected.

Proposition 3 (NETs Impossibility of Termination). There is no protocol that can
compute with termination the predicate (Na ≥ 1), even if the initial topology is con-
nected and even if there is a pre-elected unique leader.

So, connectivity of the initial topology alone, even if the protocol is allowed to
transform the topology, is not sufficient for non-trivial terminating computations.
In the rest of the chapter we shall naturally try to overcome this by adding to the
model minimal and realistic extra assumptions. Interestingly, it will turn out that
there are some very plausible such assumptions that allow for: (i) termination and
(ii) computation of all predicates on input assignments that can be computed by a
TM in quadratic space (O(n2), where n is the number of nodes).

One of the assumptions that we will keep throughout is that the nodes are capable
of detecting some small local degrees. For example, in Section 4 we will assume that
a node can detect that it has local degree 1 or 2, otherwise it knows that it has degree
in {0,3,4, ...,n−1} without being able to tell its precise value. We will complement
this local degree detection mechanism with either a unique leader or a common
neighbor detection mechanism in order to arrive at the above strong characterization.

Keep in mind that we want to give protocols for Acyclicity and Terminating Line
Transformation. In Acyclicity, the protocol begins from any connected active topol-
ogy and has to transform it to an acyclic network without ever breaking the connec-
tivity, while in Terminating Line Transformation the protocol does not necessarily
have to preserve connectivity but it has to satisfy the additional requirements its

12 Othon Michail and Paul G. Spirakis

constructed network to be a spanning line and to always terminate. Still, even for
the Terminating Line Transformation problem we shall mostly focus on protocols
that perform the transformation without ever breaking connectivity. A justification
of this choice, is that arbitrary connectivity breaking could render the protocol un-
able to terminate even if the protocol is equipped with all the additional mechanisms
mentioned above. This is made formal in Lemma 2 of Section 5.1. One way to ap-
preciate this is to consider a protocol in which a leader breaks in some execution the
network into an unbounded number of components. Then the leader can no longer
distinguish an execution in which one of these components is being concealed from
an execution that it is not. For example, if the leader is trying to construct a span-
ning line, then it has no means of distinguishing a spanning line on all nodes but
the concealed ones from one on all nodes. Of course, this does not exclude proto-
cols that perform some controlled connectivity breakings, e.g. a leader breaking a
spanning line at one point and then waiting to reconnect the two parts. So, in princi-
ple, our problems could have been defined independently of whether connectivity is
preserved or not, as they can also be solved in some cases by protocols that do not
always preserve connectivity. However, in this work, for simplicity and clarity of
presentation, we have chosen to focus only on those protocols that always preserve
connectivity.

Before starting to present our protocols for above problems and the upper bounds
on time provided by them, we give a lower bound on the time that any protocol needs
in order to solve the Line Transformation problem.

Lemma 1 (Line Transformation Lower Bound). The running time of any protocol
that solves the Line Transformation problem is Ω(n2 logn).

4 Transformers with a Unique Leader

We begin from the simplest case in which there is initially a pre-elected unique
leader that handles the transformation. Recall that the initial active topology is con-
nected. The goal is for the protocol to transform the active topology to a spanning
line and when this occurs to detect it and terminate (i.e. solve the Terminating Line
Transformation problem). Ideally, the transformation should preserve connectivity
of the active topology during its course (or break connectivity in a controlled way,
because, as we already discussed in the previous section, uncontrolled/arbitrary con-
nectivity breaking may render termination impossible). Moreover, as a minimal ad-
ditional assumption to make the problem solvable (in order to circumvent the im-
possibility of Proposition 3), we assume that a node can detect whether it has local
degree 1 or 2 (otherwise it knows that it has degree in {0,3,4, ...,n− 1} without
being able to tell its precise value). We first give a straightforward solution, with a
complete presentation of its transitions and an illustration showing them in action.
Though that protocol is correct, it is rather slow and it mainly serves as a demonstra-
tion of the model and the problem under consideration. Then we follow a different
approach and arrive at a time-optimal protocol for the problem.

Connectivity Preserving Network Transformers 13

The idea of the first protocol is simple. The leader begins from its initial node
and starts forming an arbitrary line by expanding one endpoint of the line towards
unvisited nodes. Every such expansion either occurs over an edge that was already
active from the very beginning or over an inactive edge which the protocol activates.
Apart from expanding its active line with the goal of making it spanning after
n−1 expansions, the leader must also guarantee that eventually no cycles will have
remained. One idea would be to first form a spanning line and then start eliminating
all unnecessary cycles, however there is, in general, no way for the protocol to
detect that the line is indeed spanning, due to the possible presence of non-line
active edges joining nodes of the line. This is resolved by eliminating line-internal
cycles “online” after every expansion of the line. This guarantees that when the last
expansion occurs and the protocol deactivates the last cycles, the active topology
will be a spanning line. Now the protocol can easily detect this by traversing the
line from left to right and comparing the observed active degree sequence to the
target degree sequence 1,2,2, . . . ,2,1 (i.e. the degree sequence of a spanning line).
We next give the detailed description of the protocol.

Protocol Online-Cycle-Elimination. The leader marks its initial node as “left end-
point” el and picks an arbitrary next node for the line (for the first step it could
be from its active neighbors, because there is at least one such node due to initial
connectivity) and marks that node as “right endpoint” er. Then the leader moves to
er, finds an arbitrary next node which is not part of the current line, if the edge is
inactive it activates it and marks that node as er and the previous er is converted to
i (for “internal node” of the line). Observe that the active line is always in special
states, which makes its nodes detectable.

After every such expansion, the leader starts a cycle elimination phase. In partic-
ular, the leader deactivates all edges that introduce a cycle inside its active line. To
do this, it suffices after every expansion to deactivate the cycles introduced by the
new right endpoint er. First, the leader moves to el (e.g. by direct communication or
by traversing the active line to the left). Every time, the leader waits to meet er, in
order to check the status of the edge; if it is active, it deactivates it and then moves
on step to the right on the line. When the leader arrives at the left neighbor of er,
all line-internal cycles have been eliminated and the leader just moves to er. If the
degree sequence observed during the traversal to the right (the degree of a node is
checked after checking and possibly modifying the status of its edge to er) was of
the form 1,2,2, . . . ,2,1 then the line is spanning and the leader terminates. Other-
wise, the line is not spanning yet and the leader proceeds to the next expansion.

The code of the protocol is presented in Protocol 1. For readability, we only
present the code for the expansion and cycle elimination phases and we have ex-
cluded the termination detection subroutine (it is straightforward to extend the code
to also take this into account). An illustration showing what are the roles of the
various states and transitions during the expansion and cycle elimination phases, is
given in Figure 1.

14 Othon Michail and Paul G. Spirakis

e i i i i i l q0

e i i i i i i′ l′c

te i i i i i i′ lc

e t i i i i i′ lc

e tr i i i i i′ lc

e p′ t′ i i i i′ lc

e p′′ t′ i i i i′ lc

e p t i i i i′ lc

e p tr i i i i′ lc

e p p′ t′ i i i′ lc

e i p′′ t′ i i i′ lc

e i p t i i i′ lc

e i i i p t i′ lc

e i i i p tr i′ lc

e i i i p p′ t′f lc

e i i i i p′′ t′f lc

e i i i i i tf lc

e i i i i i i l

acyclic

Fig. 1 An illustration of all transitions involved in Protocol Online-Cycle-Elimination during ex-
pansion of the line and elimination of the newly introduced internal cycles. The line at the top
shows an expansion of the current acyclic line, the intermediate steps show the the process of elim-
inating cycles, and the line at the bottom is the new acyclic line. In every step, the two interacting
nodes are colored black and joined by a bold edge. Dashed edges could be either active or inac-
tive. The dashed edge of an expansion (top line) is activated no matter what its previous state was,
while all other dashed edges in the figure, that correspond to (potential) cycle eliminations, are
deactivated no matter what their state was.

Connectivity Preserving Network Transformers 15

Protocol 1 Online-Cycle-Elimination

Q = {l0, l1, lc, l′c, l,q0,e, i, i′, t, te, t f , t ′f , tr, t
′, p, p′, p′′}, initially the unique leader is in state l0 and

all other nodes are in state q0
δ :

(l0,q0,1)→ (e, l1,1) (te, i,1)→ (e, t,1) (p′′, t ′,1)→ (p, t,1)

(l1,q0, ·)→ (i′, l′c,1) (t, lc, ·)→ (tr, lc,0) (tr, i′,1)→ (p′, t ′f ,1)

(e, l′c, ·)→ (te, lc,0) (tr, i,1)→ (p′, t ′,1) (p′′, t ′f ,1)→ (i, t f ,1)

(te, i′,1)→ (e, t f ,1) (e, p′,1)→ (e, p′′,1) (l,q0, ·)→ (i′, l′c,1)

(t f , lc,1)→ (i, l,1) (p, p′,1)→ (i, p′′,1)

// All transitions that do not appear have no effect
// The logical structure is better followed if the transitions are read from top to bottom

Theorem 1. By assuming a pre-elected unique leader and the ability to detect local
degrees 1 and 2, Protocol Online-Cycle-Elimination solves the Terminating Line
Transformation problem in Θ(n4) time.

Proof. We prove the following invariant: “For all 1≤ i≤ n−1, after the ith expan-
sion and cycle elimination phases, the leader lies on the er endpoint of an active line
of (edge-)length i without line-internal cycles (still any node of the line may have
active edges to the rest of the graph) and the active topology is connected”. This
implies that for i < n−1 there is at least one node of the line that has an edge to a
node not belonging to the line and that for i = n−1 the active topology is a spanning
line (without any other active edges).

First observe that connectivity never breaks, because whenever the protocol de-
activates an edge e = uv, both u and v are nodes belonging to the active line formed
so far (in particular, at least one of them is the er endpoint of the line). As e is an
edge forming a cycle on the active line after its deactivation connectivity between u
and v still exists by traversing the line.

We prove by induction the rest of the invariant. It holds trivially for i = 1. Given
that it holds for any 1 ≤ i ≤ n− 2 we prove that it holds for i+ 1. By hypothesis,
when expansion i+1 occurs, the only possible line-internal cycles are between the
new er and the rest of the line. During the cycle elimination phase the protocol
eliminates all these cycles, and as a result by the end of phase i+ 1 the active line
has now length i+1, it has no internal cycles and is still connected to the rest of the
graph.

It remains to show that the leader terminates just after phase n−1 and never at a
phase i < n−1. For the first part, after phase n−1 the active topology is a spanning
line, thus the observed degree sequence when the leader traverses it from left to
right is of the form 1,2,2, . . . ,2,1 which triggers termination. For the second part,
after any phase i < n−1 there is at least one node of the line having an active edge
leading outside the line. In case that node is an endpoint, its active degree is at least
2 and in case it is an internal node its active degree is at least 3 (after eliminating a

16 Othon Michail and Paul G. Spirakis

possible cycle of that node with er). So, in this case the observed degree sequence
is not of the form 1,2,2, . . . ,2,1 and, as required, the leader does not terminate.

For the running time, the worst case is when the initial active topology is a clique.
In this case, the protocol must deactivate Θ(n2) edges to transform the clique to a
line. Every edge deactivation is performed by placing a mark on each endpoint of
the edge and waiting for the scheduler to pick that edge for interaction. This takes
time Θ(n2), so the total time for deactivating Θ(n2) edges is Θ(n4). ut

We should mention that due to the unique-leader guarantee, it suffices to only
have detection of whether the degree is equal to 1 (i.e. the detection of degree equal
to 2 can be dropped). The reason is that the leader can every time break the line at
some point while marking the two endpoints of the edge and then check whether
one of these nodes has degree 1. If yes, then its previous degree was 2 and the leader
waits for the two marked nodes to interact again in order to reconnect them, now
knowing their degree.

A drawback of the above protocol is that it is rather slow. In the paper on which
this chapter is based, we have developed another protocol, based on a different trans-
formation technique, which is time-optimal. That protocol is called Line-Around-a-
Star.

Theorem 2. By assuming a pre-elected unique leader and the ability to detect local
degree 1, Protocol Line-Around-a-Star solves the Terminating Line Transformation
problem. Its running time is Θ(n2 logn), which is optimal.

5 Transformers with Initially Identical Nodes

An immediate question, given the optimal Line-Around-a-Star protocol, is whether
the unique leader assumption can be dropped and still have a correct and possibly
also optimal protocol for Terminating Line Transformation. At a first sight it might
seem plausible to expect that the problem is solvable. The reason is that the nodes
can execute a leader election protocol (e.g. the standard pairwise elimination pro-
tocol; see e.g. [AR09]) guaranteeing that eventually a single leader will remain in
the system which can from that point on handle the execution of one of the leader-
based protocols of the previous section. The only additional guarantee is to ensure
that nothing can go wrong as long as there are more than one leaders in the popula-
tion. Typically, this is achieved in the population protocol literature by the reinitial-
ization technique in which the configuration of the system is reinitialized/restored
every time another leader is eliminated so that when the last leader remains a final
reinitialization gives a correct system configuration for the leader to work on. In
fact, this technique and others have been used in the population protocol literature
to show that most population protocol models do not benefit in terms of computa-
tional power from the existence of a unique leader (still they are known to benefit in
terms of efficiency).

Connectivity Preserving Network Transformers 17

In contrast to this intuition, we shall see in this section (see Corollary 2) that if all
nodes are initially identical, Terminating Line Transformation becomes impossible
to solve (with the modeling assumptions we have made so far). In particular, we
will show that any protocol that makes the active topology acyclic, may disconnect
it in some executions in Θ(n) components (see Corollary 1). As already discussed
in Section 3.3, such a worst-case disconnection is severe for any terminating pro-
tocol, because, in this case, a component has no means of determining when it has
interacted with (or heard from) all other components in the network.

Observation 1 For a protocol to transform any topology to a line (or in general
to an acyclic graph) without breaking connectivity, it must hold that the protocol
deactivates an edge only if the edge is part of a cycle. Because deleting an edge e of
an undirected graph does not disconnect the graph iff e is part of a cycle.

There are several ways to achieve this when there is a unique leader. However, it
will turn out that this is not the case when all nodes are initially identical.

5.1 Impossibility Results

An immediate question is whether there is a protocol with initially identical nodes
that decides the existence of small cycles and additionally always terminates. We
shall now show that this is not the case.

Theorem 3 (Strong Impossibility). For every connected graph G with at least one
cycle, there is an infinite family of graphs G such that for every G′ ∈ G every proto-
col (beginning from identical states on all nodes) that makes G acyclic may discon-
nect G′ in some executions.

The above strong result states that every connected graph G has a corresponding
infinite family of graphs (in most cases disjoint to the families of other graphs)
such that Acyclicity cannot be solved at the same time on G and on a G′ from the
family. This means that it does not just happen for Acyclicity to be unsolvable in
a few specific inconvenient graphs. All graphs are in some sense inconvenient for
Acyclicity when studied together with the families that we have defined.

Corollary 1 (Acyclicity Impossibility). If all nodes are initially identical, then any
protocol that always makes the active topology acyclic may disconnect it in some
executions in Θ(n) active components (i.e. in a worst-case manner).

Lemma 2. If a protocol breaks in some executions the active topology into Θ(n)
components, then such a protocol cannot solve the Terminating Line Transformation
problem.

Corollary 2 (Terminating Line Transformation Impossibility). If all nodes are
initially identical, there is no protocol for Terminating Line Transformation.

18 Othon Michail and Paul G. Spirakis

5.2 The Common Neighbor Detection Assumption

In light of the impossibility results of the previous section, we naturally ask whether
some minimal strengthening of the model could make the problems solvable. To
this end, we give to the nodes the ability to detect whether they have a neighbor
in common. In particular, we assume that whenever two nodes interact, they can
tell whether they have at that time a common neighbor (over active edges). Clearly,
this mechanism can be used to safely deactivate an edge in case it happens that the
two nodes are indeed part of a 3-cycle. If the two nodes are part only of longer
cycles they still cannot deactivate the edge with certainty. Observe that the common
neighbor detection mechanism is very local and easily implementable by almost
any plausible system. For example, it only requires local names and at least 2-round
local communication before neighborhood changes. Moreover, it is also an inherent
capability of the variation of population protocols in which the nodes interact in
triples instead of pairs (see e.g. [AAD+06, BBRR12]). Interestingly, we shall see in
this section that this minimal extra assumption overcomes the impossibility results
both of Corollary 1 and Corollary 2. In particular, both Acyclicity and Terminating
Line Transformation become now solvable.

Proposition 4. By assuming that nodes are equipped with the common neighbor de-
tection mechanism, there is a protocol, called Star-Transformer, that solves Acyclic-
ity in the setting in which all nodes are initially identical. In particular, the final
acyclic active topology is always a spanning star.

We now exploit the common neighbor detection assumption and the Star-
Transformer protocol to give a correct and efficient protocol for the Terminating
Line Transformation problem. The protocol, called Line-Transformer, assumes (as
did the protocols of Section 4) the ability to detect whether the local active degree
of a node is equal to 1 or 2.

Protocol Line-Transformer. We give here a high-level description. All nodes are
initially leaders in state l. When two leaders interact, one of them becomes a pe-
ripheral in state p and the edge is activated. Every leader is connected to all ps that
it encounters. Two ps deactivate an active edge joining them only if at the time of
interaction they have a neighbor in common. When a peripheral has active local de-
gree equal to 1, its local state is p1, otherwise it is p or one of some other states that
we will describe in the sequel.

When a leader first sees one of its own p1s (i.e. via an active edge), it initiates
the formation of a line over its p1 peripherals (observe that the set of p1 peripherals
of a leader does not remain static, as e.g. a p1 becomes p when some other leader
connects to it). In particular, as in Protocol Line-Around-a-Star, the line will have
as its “left” endpoint the center of the local star, which will be in a new state el , and
it will start expanding over the available local p1 peripherals over its right endpoint
in state l′.

The new center el keeps connecting to new peripherals but it cannot become elim-
inated any more by other leaders. Pairwise eliminations only occur via any combi-

Connectivity Preserving Network Transformers 19

nation of l and l′. A local line expands over the local p1s as follows. When the right
endpoint l′ encounters a p1, which can occur only via an inactive edge, it expands
on it only if the two nodes have a common neighbor (which can only be the center
of the local star). If this is satisfied, the l′ takes the place of the p1, leaving behind
an i (for “internal node” of the line) and the edge becomes activated. Moreover, the
center el deactivates every active edge it has with an i but not with the first peripheral
of the line (so the first peripheral that the line uses must always be in a distinguished
state i1) and not with the l′ right endpoint (because that edge is always needed for
common neighbor detection during the next expansion).

Now, if the l′ endpoint ever meets either another l′ endpoint or an l center then
one of them becomes deactivated. When it meets an l center we can always prefer
to deactivate the l center because no line backtracking is required in this case. When
an l center is deactivated, l simply becomes p and the edge becomes activated (it
can never be a p1 immediately but this is minor).

The most interesting case is when an l′ loses from another l′. In this case, the
eliminated l′ becomes f . The role of f is to backtrack the whole local line con-
struction by simply converting one after the other every i on its left to p and finally
converting el again to p (again it cannot be a p1 at the time of conversion). This
backtracking process cannot fail because f has always a single i (or i1) active neigh-
bor, always the one on its left, while its right neighbor is no one initially and a p in
all subsequent steps, so it knows which direction to follow. When the backtracking
process ends, all the nodes of the local star are either p or p1 so they can be attracted
by the stars that are still alive.

The protocol terminates, when for the first time it holds that an el has local de-
gree equal to 2 after its line has for the first time length at least 3 (nodes). When this
occurs, a spanning ring has been formed and el can deactivate the edge (el , l′) be-
tween the two endpoints to make it a spanning line. This completes the description
of the protocol.

Theorem 4. By assuming that nodes are equipped with a common neighbor detec-
tion mechanism and have the ability to detect local degrees 1 and 2, Protocol Line-
Transformer solves the Terminating Line Transformation problem in the setting in
which all nodes are initially identical. Its running time is O(n3).

Table 1 summarizes all protocols that we developed for the Terminating Line
Transformation problem, both for the case of a pre-elected unique leader (Protocols
Online-Cycle-Elimination and Line-Around-a-Star in Section 4) and for the case of
identical nodes (Protocol Line-Transformer in the present section).

Finally, in the paper on which this chapter is based, we have shown how the
spanning line formed with termination by Line-Transformer can be used to establish
that the class of computable predicates is the maximum that one can hope for in this
family of models.

Theorem 5 (Full Computational Power). Let the initial active topology be con-
nected, all nodes be initially identical, and let the nodes be equipped with de-
gree in {1,2} detection and common neighbor detection. Then for every predicate
p ∈ SSPACE(n2) there is a terminating NET that computes p.

20 Othon Michail and Paul G. Spirakis

l

l

l

l

l

l
l

l

l

l

l

l l

l

(a)

l

p

p

l

p

p
p

l

p

p
p

p1
l

p1

(b)

l

p

p

el

i1

l′ i

p
p

p i

i1
el

l′

(c)

l

p

p

el

i1

l′ i

p
p

p p

p
p

p

(d)

p

p1

p1

el

i1

l′

ii

p1

p

p1

i

i

i

(e)

i

p1

i

el

i1

i

iil′

i

i

i

i

i

(f)

Fig. 2 An example execution of Protocol Line-Transformer. In all subfigures, black and gray edges
are active and missing edges are inactive. Black and gray are used together whenever we want
to highlight some subnetwork of the active network. (a) Initially, all nodes are leaders and the
topology is connected. (b) Most leaders have been converted to peripherals, some leaders have
attracted new peripherals, and some peripherals have disconnected from each other. (c) Two of the
survived leaders have started to form lines over their p1 peripherals. The centers of these stars are
now in state el (black nodes), the other enpoint of their lines is in state l′ (gray nodes), and the lines
are drawn by black edges. (d) The l′ endpoints of the two previous lines interacted and one of them
was backtracked. (e) A single line has remained. (f) The line is almost spanning.

Connectivity Preserving Network Transformers 21

Protocol Leader DD CND Expected Time Lower Bound
OCE Yes 1 No Θ(n4) Ω(n2 logn)
LAS Yes 1 No Θ(n2 logn) (opt) Ω(n2 logn)
LT No 1,2 Yes O(n3) Ω(n2 logn)

Table 1 All protocols developed in this work for the Terminating Line Transformation problem.
For each of these protocols (OCE: Online-Cycle-Elimination, LAS: Line-Around-a-Star, and LT:
Line-Transformer), the table shows whether it makes use of a pre-elected unique leader, what
local degree detection it uses (DD), whether it uses common neighbor detection (CND), and also
its expected running time under the uniform random scheduler. The last column shows the best
known lower bound for the problem.

6 Conclusions and Further Research

There are many open problems related to the findings of the present work. We have
shown that initial connectivity of the active topology combined with the ability of
the protocol to transform the topology yield, under some additional minimal and
local assumptions, an extremely powerful model. We managed to show this by de-
veloping protocols that transform the initial topology to a convenient one (in our
case the spanning line) while always preserving the connectivity of the topology.
Though arbitrary connectivity breaking makes termination impossible, still we have
not excluded the possibility that some protocol performs some “controlled” con-
nectivity breaking during its course, being always able to correctly reassemble the
disconnected parts and terminate.

Another issue has to do with the underlying interaction model. Throughout this
work we have assumed that the underlying interaction graph is the clique Kn and
all of our protocols largely exploit this. Though this model is a convenient starting
point to understand the basic principles of algorithmic transformations of networks,
it is obvious that it is highly non-local. Realistic implementations would probably
require more local or geometrically constrained models (like the one of [Mic15]),
for example, one in which, at any given time, a node can only communicate with
nodes at active distance at most 2. It is also valuable to consider the Terminating
Line Transformation and Acyclicity problems in models of computationally weak
(and probably also anonymous) robots moving in the plane.

There are also some more technical intriguing open questions. The most promi-
nent one is whether protocol Line-Transformer is time-optimal. Recall that its run-
ning time was shown to be O(n3). First of all, it is not clear whether the analysis is
tight. The subroutine that dominates the running time is the one that tries to form
a spanning line over the peripheral nodes, which is restricted by the fact that the
partial lines of “sleeping” stars have to either be backtracked (which is what our so-
lution does) or merged somehow with the lines of “awake” stars. We should mention
that the spanning line subroutine that backtracks many “sleeping” lines in parallel
is an immediate improvement of the best spanning line protocol of [MS14], called
Fast-Global-Line. The improvement is due to the fact that instead of having the

22 Othon Michail and Paul G. Spirakis

awake leader backtrack node-by-node sleeping lines, we now have any sleeping line
backtrack itself, so that many backtrackings occur in parallel. We also have experi-
mental evidence showing a small improvement [ALMS15] but still we do not have
a proof of whether this is also an asymptotic improvement. For example, is it the
case that the running time of this improvement is O(n3/ logn) (or even smaller)?
This question is open. There is also room for lower bounds. Apart from the obvi-
ous lower bound for the Terminating Line Transformation problem with identical
nodes, one could also focus on the spanning line construction problem with ini-
tially disconnected nodes (i.e. the Spanning Line problem of [MS14]). The reason
is that an improvement to this problem would probably imply an improvement for
Terminating Line Transformation by using the protocol as an improved subroutine
of Line-Transformer for forming the lines over the peripherals of the star. The best
lower bound known for Spanning Line is Ω(n2). Some first attempts suggest that it
might be non-trivial to improve this to Ω(n2 logn).

References

AAC+05. D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, H. Jiang, and R. Peralta. Stably
computable properties of network graphs. In 1st IEEE International Conference on
Distributed Computing in Sensor Systems (DCOSS), volume 3560 of LNCS, pages
63–74. Springer-Verlag, June 2005.

AAD+06. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in
networks of passively mobile finite-state sensors. Distributed Computing, 18[4]:235–
253, March 2006.

AAER07. D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power of
population protocols. Distributed Computing, 20[4]:279–304, November 2007.

ACD+11. G. Aloupis, S. Collette, M. Damian, E. D. Demaine, R. Flatland, S. Langerman,
J. O’Rourke, V. Pinciu, S. Ramaswami, V. Sacristán, and S. Wuhrer. Efficient
constant-velocity reconfiguration of crystalline robots. Robotica, 29[01]:59–71,
2011.

ALMS15. D. Amaxilatis, M. Logaras, O. Michail, and P. G. Spirakis. NETCS: A new simulator
of population protocols and network constructors. arXiv preprint arXiv:1508.06731,
2015.

AR09. J. Aspnes and E. Ruppert. An introduction to population protocols. In B. Garbinato,
H. Miranda, and L. Rodrigues, editors, Middleware for Network Eccentric and Mobile
Applications, pages 97–120. Springer-Verlag, 2009.

BBRR12. J. Beauquier, J. Burman, L. Rosaz, and B. Rozoy. Non-deterministic population
protocols. In 16th International Conference on Principles of Distributed Systems
(OPODIS), LNCS, pages 61–75. Springer, 2012.

CDF+09. I. Chatzigiannakis, S. Dolev, S. P. Fekete, O. Michail, and P. G. Spirakis. Not all fair
probabilistic schedulers are equivalent. In 13th International Conference on Princi-
ples of Distributed Systems (OPODIS), volume 5923 of Lecture Notes in Computer
Science, pages 33–47. Springer-Verlag, 2009.

CKLWL09. A. Cornejo, F. Kuhn, R. Ley-Wild, and N. Lynch. Keeping mobile robot swarms
connected. In Proceedings of the 23rd International Symposium on Distributed Com-
puting (DISC), LNCS, pages 496–511. Springer, 2009.

CMN+11. I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, and P. G. Spirakis. Pas-
sively mobile communicating machines that use restricted space. Theoretical Com-
puter Science, 412[46]:6469–6483, October 2011.

Connectivity Preserving Network Transformers 23

CMNS13. I. Chatzigiannakis, O. Michail, S. Nikolaou, and P. G. Spirakis. The computational
power of simple protocols for self-awareness on graphs. Theoretical Computer Sci-
ence, 512:98–118, November 2013.

DFSY15. S. Das, P. Flocchini, N. Santoro, and M. Yamashita. Forming sequences of geometric
patterns with oblivious mobile robots. Distributed Computing, 28[2]:131–145, April
2015.

Dot14. D. Doty. Timing in chemical reaction networks. In Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 772–784, 2014.

MCS11a. O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Mediated population protocols.
Theoretical Computer Science, 412[22]:2434–2450, May 2011.

MCS11b. O. Michail, I. Chatzigiannakis, and P. G. Spirakis. New Models for Population Pro-
tocols. N. A. Lynch (Ed), Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool, 2011.

Mic15. O. Michail. Terminating distributed construction of shapes and patterns in a fair
solution of automata. In Proceedings of the 34th ACM Symposium on Principles of
Distributed Computing (PODC), pages 37–46. ACM, 2015.

MS14. O. Michail and P. G. Spirakis. Simple and efficient local codes for distributed stable
network construction. In Proceedings of the 33rd ACM Symposium on Principles
of Distributed Computing (PODC), pages 76–85. ACM, 2014. Also in Distributed
Computing, doi: 10.1007/s00446-015-0257-4, 2015.

MS15. O. Michail and P. G. Spirakis. Terminating population protocols via some mini-
mal global knowledge assumptions. Journal of Parallel and Distributed Computing
(JPDC), 81:1–10, 2015.

SY99. I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. Comput., 28[4]:1347–1363, March 1999.

WCG+13. D. Woods, H.-L. Chen, S. Goodfriend, N. Dabby, E. Winfree, and P. Yin. Active self-
assembly of algorithmic shapes and patterns in polylogarithmic time. In Proceedings
of the 4th conference on Innovations in Theoretical Computer Science, pages 353–
354. ACM, 2013.

	Connectivity Preserving Network Transformers
	Othon Michail and Paul G. Spirakis
	Introduction
	Our Approach and Contribution

	Further Related Work
	Preliminaries
	The Model
	Problem Definitions
	Fundamental Inabilities

	Transformers with a Unique Leader
	Transformers with Initially Identical Nodes
	Impossibility Results
	The Common Neighbor Detection Assumption

	Conclusions and Further Research
	References

