
TSP (TRAVELING SALESMAN PROBLEM)

By GrMikeD
GrMikeD@Freemail.gr

March 15, 2003

1 Introduction

The TSP (Traveling Salesman Problem) is considered as one of the most difficult
to solve problems and belongs to the category of the NP Complete problems.
The situation it deals with is as follows: A salesman has to visit n cities, each
one exactly once. He starts from one of them (base city) and after visiting all
the other, he returns back to his base. The transport cost between any pair
of cities is known. Notice that it is not necessary that every two cities are
connected. We want to find the optimal path for his visits. Optimal path,
is the path with the smallest possible cost. This is a famous problem of the
graph theory where the nodes of the graph represent the cities, and the edges
represent the paths between them. When there is no edge connecting two nodes,
it means that there is no way to reach one city from the other. Here, it is
assumed that only one path can connect two cities and no more (the graph is
simple). For this problem they have been implemented two algorithms. One
is the heuristic and the other is the exhaustive. The heuristic algorithm does
not always give the best solution but is very quick and low costing. Contrary
to the heuristic algorithm, the exhaustive always gives the best solution but is
very slow and resource consuming. For example, for more than 20 cities the
exhaustive algorithm run on the most powerful and modern computing system,
will spend some centuries until it gives back the solution! In practice, for input
n more than 15, the algorithm is very slow.

2 Heuristic Algorithm

This algorithm is based on the ‘greedy method’. As it has been mentioned
earlier, this algorithm manages to give a fast solution rather than the optimal
solution. In some cases, it is possible that it will give us a solution that is much
worse than the optimal one. Its basic advantage is that it is very quick. The
basic idea of the algorithm is as follows: it start from the base city and after
calculating its distance with all its neighboring cities, it selects the city with
the smallest distance. It then continues the same way with the next city and
all the other until they have been visited all the cities. It should be emphasized
here that because it has been assumed that a city might not be connected
with another, this algorithm may come across a dead end. In such a case, it
finishes unsuccessfully. Lets suppose that the salesman has to visit n cities. For

1



the first city the algorithm makes (n-1) comparisons (one for each other city).
After selecting the second city, it makes other (n-2) comparisons (as the already
selected city cannot be selected again) and so goes on until it is reached the
(n-1) city and the algorithm finishes. The complexity of the algorithm is:

δn = (n − 1) + (n − 2) + (n − 3) + . . . + 0 + c =
(n2 − n)

2
+ c

The complexity is polynomial O(n2).

3 Exhaustive Algorithm

Here the algorithm starts from the base city and tries all the possible connection
paths that exist. Their costs are calculated and the path with the smallest cost
is the output. It is obvious that the number of the possible paths is the number
of the permutations of the n cities that is (n-1)! Also, for each of the (n-1)!
comparisons 2n arithmetic operations are approximately made. The complexity
of the algorithm is:

δn = (n − 1)! · (2n) + c = 2n! + c

The complexity is factorial O(n!).

4 Practical Results

Here are some practical results1 taken by the TSP Solver program:

Heuristic Exhaustive
N Flop Time (sec) Cost Flop Time (sec) Cost
4 13 0,0003 4993 29 0,0005 4993
5 21 0,0002 9254 143 0,0006 9045
6 31 0,0007 11770 839 0,0014 9693
7 43 0,0002 6253 5759 0,0015 6253
8 57 0,0004 13695 45359 0,0036 9286
9 73 0,0004 12322 403199 0,0206 8520
10 91 0,0005 14456 3991679 0,1852 12969
11 111 0,0003 13899 4354559 1,9580 6960
12 133 0,0004 16307 5189183 22,6500 11008

It is clear that for the heuristic algorithm, the flops and time values remain in
low levels. In contrast, for the exhaustive algorithm they increase very quickly
as the input n value increases. For values of n over 9 the exhaustive algorithm
is extremely slow.

1The calculation times may vary significantly from one computer to another. For this
study, a computer equipped with Intel Celeron 1100 MHz processor and 512 MB SDRAM
installed was used.

2


	1 Introduction
	2 Heuristic Algorithm
	3 Exhaustive Algorithm
	4 Practical Results

