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1. Faulty Caches: 

Technology and Vcc scaling → detriment impact in ICs 

reliability & yield management → performance degradation 

2. Block Disabling (a.k.a., graceful degradation)  
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•Technology Scalig •Vdd Scaling 

•Circuit level:       pfail = 1,0*10-3 → 1 out of 1000 memory 
cells is faulty 

•Microarchitectural level → 43% reduction in effective 
cache capacity 
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Level: block Level: Block/2 

•Smaller block 
granularities → Larger 
fault-free memory 
capacity 

•Negligible Overheads: 
One extra faulty bit 
indicator in every new 
granularity 

 

3. Block Utilization Breakdowns 

Motivation 
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 New Cache: fully functional, fully faulty & partially faulty 
frames 

 Our approach: orchestrate cache accesses among various 
cache frames 

 Hint: partially faulty cache frames ideal for block with 
limited spatial footprints → exploit spatial locality 

 

 

 

 

Results 
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Miss savings norm. to Baseline LRU (100 fault maps) 32KB 
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 Geomean  FTA policy clearly surpasses 

Baseline_LRU in all cases 

 Top graph: from 42% (max) to 
7.6% (min) 

 Bottom left graph: well above 
17% in all cache sizes 

Coarse Grain Spatial Footprint Predictor (CG-SFP) 

What about storage overhead? 

 Reduce predictor entries and PC length 

Results for 32KB/2-way cache 

Avg. for SPEC2K/2006 

 

Notation in graph: X/Y  
X=predictor entries, Y=PC length (in 
bits)  

 

 Set sampling: Disregard some sets from predictor update operation 
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coverage accuracy

Cache 
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Usage History + PC 

CG-SFP Basic Operations 
 LookupInput: PC of new miss, Output: spatial footprint prediction 

 UpdateInput: PC & footprint (utilization) field of just evicted blocks 
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00: no prediction, 01: right subblock, 

10: left subblock, 11: both subblocks 
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