Instruction Based Management of Faulty Data Caches

Georgios Keramidas, Michail Mavropoulos, Anna Karvouniari, Dimitris Nikolos

Motivation

Faulty Caches:

Technology and Vcc scaling \rightarrow detriment impact in ICs

reliability & yield management \rightarrow performance degradation

Failure Probability (pfail.) of SRAM Cells vs.

Tack	Caslis	_

2. Block Disabling (a.k.a., graceful degradation)

•Smaller block granularities \rightarrow Larger fault-free memory capacity

•Microarchitectural level \rightarrow 43% reduction in effective cache capacity

•Negligible Overheads: **One extra faulty bit** indicator in every new granularity

Block Utilization Breakdowns 3.

New Cache: fully functional, fully faulty & partially faulty frames

- Our approach: orchestrate cache accesses among various cache frames
- Hint: partially faulty cache frames ideal for block with limited spatial footprints \rightarrow exploit spatial locality

- **Set sampling:** Disregard some sets from predictor update operation

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales "HOLISTIC". Investing in knowledge society through the European Social Fund.

Presented paper:

G. Keramidas, M. Mavropoulos et al. Spatial pattern prediction based management of faulty data caches. DATE, 2014.