
Instruction Based Management of Faulty

Data Caches

Georgios Keramidas, Michail Mavropoulos, Anna Karvouniari,
Dimitris Nikolos

Department of Computer Engineering & Informatics, University of Patras, Greece

ABSTRACT

We propose a new approach to mitigate the impact of faulty bits in data caches. Our

technique assumes that faulty caches are enhanced with the ability of disabling their

defective parts at cache subblock granularity. Our experiments reveal that while the

occurrence of hard-errors in faulty caches may have a significant impact in performance,

a lot of room for improvement exists, if someone is able to take into account the spatial

reuse patterns of the to-be-referenced blocks (not all the data fetched into the cache is

accessed). We propose frugal PC-indexed spatial predictors to orchestrate the

(re)placement decisions among the fully and partially faulty blocks. Using cycle-

accurate simulations, we show that our approach is able to offer significant benefits.

KEYWORDS: Faulty caches, Spatial characteristics, Fault tolerance, Prediction.

1 Introduction

Over the last two decades, scaling of CMOS devises has provided remarkable

improvements in performance of ICs. However, as silicon industry is moving toward the

“end of Moore's Law,” increases in static and dynamic variations, wear-out failures, and

manufacturing defects are affecting the yield and reliability of ICs. As a result, the toolbox

of the system designers must be always enhanced with new fault-tolerance techniques.

This is particularly true in on-chip caches. According to [4], the predicted probability of

failure (pfail) for SRAM cells is equal to 2.6e-04 in 12nm technology.

As a result, many researchers turn their attention into the area providing various fault-

tolerance cache schemes that operate either at the circuit or at the architectural level. A

class of architectural level methods for masking out the memory faults relies on inserting

spare elements (blocks or columns) in the cache array. Clearly, due to the limited

redundancy that can be afforded, those solutions cannot scale to high failure rate

situations [2]. The usage of error correcting codes (ECC) has also been proposed.

However, the use of ECC is not practical for hard errors due to their large storage

overheads and ECC repair time penalty rendering them not suitable for the latency-

sensitive L1 caches. Finally, several fault tolerant schemes are based on the concept of

disabling faulty cache portions, such as block or words, and reconfiguring operational

ones (e.g., physical or logical neighborhood blocks) to act as a substitute of the disabled

cache parts [5]. Obviously, those techniques require significant circuit modifications which

may also pose a great burden to the designers of time-sensitive L1 caches.

Fig. 1. Cache utilization breakdowns for various 2-way cache sizes (from left to right: 16KB, 32KB, and 64KB).

Motivation. In contrast to these approaches, our proposal targets to better utilize the cache

fault-free area by exploiting the low cache block utilization. In particular, we show that

striving to substitute every faulty subblock or word with a sound one is not always

necessary, if the executing applications exhibit specific access patterns. Partially faulty

cache frames can host cache blocks with limited spatial footprints with minimal or no

impact in performance. Thus, if someone is able to predict the to-be-referenced words of a

cache block and accordingly place those data in the functional portions of a faulty cache

frame (physical cache position), this will eliminate the need for extra redundant elements

and/or the need for complex remapping mechanisms. To the best of our knowledge, this is the

first approach that proposes dedicated fault tolerant aware cache (re)placement policies.

To quantify the potential of our approach, we analyzed the spatial footprints of several

applications. Fig. 1 plots our results as stacked bars. We assume that the cache blocks are

divided into two equally sized parts. The blue bars correspond to blocks that only 50% of

the cached data is touched by the core, whereas the green bars corresponds to blocks with

100% utilization. Finally, there are three bars in each benchmark; one for each studied

cache size. As Fig. 1 indicates, different benchmarks exhibit different characteristics. On

average, for the 32KB organizations, in 18 benchmarks (out of 27) at least 35% of the

requested blocks fall into the 50% usage category proving that it is ample room for

optimizations. The question is how it is possible to identify the blocks with low spatial

footprints at run-time and accordingly drive the (re)placement policy of the faulty caches.

2 Coarse Grain Spatial Footprint Predictor

Our target is to enhance faulty caches with a spatial pattern prediction mechanism that

will provide the necessary information (unused portions of the blocks) to the underlying

cache (re)placement logic. While many sophisticated spatial footprint predictors (SFP) are

available [3], the proposed mechanisms are too fine grain and storage demanding for our

purposes. The range of the required predictions in our case is very narrow (each cache

frame is split into two equal divisions). As a result, we propose practical, instruction (PC)

based, coarse grain SFP (CG-SFP) with a very limited range of prediction options. CG-SFP

is designed to predict if a whole cache block or only the left/right portion of a block will be

requested by the core (3 decisions in total). The latter characteristic leads to frugal and

scalable prediction structures requiring 128 bytes total storage overheads (less than 0.3% in a 32KB

cache). A detailed analysis of the storage overheads of our proposal can be found in [1].

CG-SFP Structures. The key idea is to relate a cache block to the instruction (PC) that

accesses the relevant block and issues a prediction according to the instruction previous

behavior (Fig. 2). The predictor is composed by a PC History Table (PCHT) array that is

responsible for storing active PCs. A second array, indexed by the PCHT, is the Spatial

Footprint History Table (SFHT) which holds the predicted spatial footprint information

for the corresponding PC. The operation of CG-SFP is described in the rest of this section.

Fig. 2. The anatomy of CG-SFP predictor.

Lookup. Lookup is the operation that predicts the spatial footprints of the blocks touched

by an instruction (PC): the PC of a just missed block is used as input to PCHT. A PCHT hit

means that this PC has already appeared in the program execution while a miss indicates

that this PC is encountered for the first time so no prediction can be made. If a hit occurs,

the PCHT selects the corresponding predicted spatial footprint information and feeds this

information to the FTA module.

Update. Update is the operation to refresh the predictor with new information. The inputs

to this mode of operation are the PC and the usage history of evicted blocks. As shown in

Fig. 2, each cache frame is extended with two fields. The first field (PC field) is responsible

to hold the PC that brought the specific block into the cache and the second field

(utilization field) is designed to keep which subblocks (left, right, or both subblock) are

touched by the core during the lifetime of the block into the cache. As a result, during

block eviction, the two fields are forwarded to predictor. If no entry exists in the predictor

for the given PC, a new entry is added and the gathered utilization history is stored in

SFHT. If the predictor already contains information about the particular PC, then the

corresponding SFHT entry is accordingly updated.

Practical Implementation. Due to spare

considerations, the detailed methodology

to increase the effectiveness of CG-SFP (in

terms of accuracy and coverage of the

issued predictions), while keeping the

storage requirements in a reasonable level

(below 0.3% in a 32KB cache) can be found

in [1].

3 Managing Faulty Caches

The proposed management methodology

is performed in two levels. At the lower

level, each faulty cache frame is

augmented by 1-bit (flip-bit). If flip-bit is

set, the sound cache physical part
Fig. 3. The proposed FTA policy.

(subframe) hosts subblocks that normally would be located at the defective subframe. If

flip-bit is clear, the subblock resides in the correct physical location. flip-bit allows us to

make better utilization of CG-SFP predictions, since our management policy must not be

aware of the exact physical positions of the requested blocks.

At the higher level, the proposed FTA policy is employed. Our FTA policy tries to

orchestrate the (re)placement decisions between the fully and partially faulty cache frames

by appropriately skewing the decisions of the LRU scheme. More specifically, the output

of CG-SFP, the decision made by the baseline LRU, and, of course, the fault map of the

target cache set are exposed to the FTA policy module (Fig. 2). The FTA module is

responsible to select the evicted way and make this decision available to the cache

controller. The cache control logic is then responsible to handle the rest of the

eviction/insertion operation. The pseudocode of the FTA policy is depicted in Fig. 3.

Fig. 4. Reduction of misses achieved in a FTA managed cache normalized to the misses of a conventional cache.

4 Results

To evaluate our FTA policy, we perform cycle accurate simulations using applications

from SPEC2000 and SPEC2006 suites. More details about the simulation infrastructure can

be found in [1]. In addition, we randomly produce 100 fault maps assuming a SRAM cell

pfail equal to 1e-03 [4] and we assume that the cache disabling scheme is applied in a

subblock granularity (a faulty bit is assigned in every 16 bytes). Fig. 4 shows the relative

reduction in the number of misses achieved by our FTA normalized to the misses occurred

in an unmanaged cache (in the latter case partially defective cache frames can also serve as

(re)placement candidates). As indicated by the rightmost group of bars in Fig. 4 (average

statistics for each studied cache size across all benchmarks), our proposal reduces the

number of misses by 17.2%, 19.7%, and 21.2% in the 16KB, 32KB, and 64KB respectively.

5 References

[1] G. Keramidas, M. Mavropoulos et al. Spatial pattern prediction based management of

faulty data caches. DATE, 2014.

[2] H. Lee, A. Cho et al. DEFCAM: A design and evaluation framework for defect-tolerant

cache memories. TACO, 2011.

[3] P. Pujara and A. Aggarwal. Increasing cache capacity through word filtering. ICS, 2007.

[4] D. Sanchez, Y. Sazeides et al. An analytical model for the calculation of the expected

miss ratio in faulty caches. IOLT, 2011.

[5] C. Wilkerson, H. Gao et al. Trading off cache capacity for reliability to enable low

voltage operation. ISCA, 2008.

