Introduction

- Given a large social graph, like a scientific collaboration network, what can robustness?
- Can we estimate a robustness index for a graph quickly?
- If the graph evolves over time, how these properties change?
- Robust Graph: Capable to retain its structure and its connectivity properti a portion of its nodes and edges
- The property of robustness in real-world graphs is closely related to the not structure
- We tackle the problem of estimating the robustness of a graph quickly, stud expansion properties
- Contributions:
- Fast robustness index
- Patterns of real static and time-evolving social graphs
- Anomaly detection

Preliminaries: Expansion Properties

- Good expander: Simultaneously sparse and highly connected
- Given a graph G = (V, E), the *expansion* of any subset of nodes $S \subset V$, $\frac{|V|}{2}$, is defined as $\frac{|N(S)|}{|S|}$
- A graph is considered to have good expansion properties if every subset of expansion (i.e., many neighbors)

Expansion, Robustness and Community Structure

- Why the expansion properties of a graph are important?
- They offer crucial insights about the structure of a graph
- They can act as a natural measure of the graph's robustness
- Information about the presence or not of edges which can operate as bot network
- Good expansion properties \rightarrow high robustness, while poor expansibility ref opposite behavior
- Connections with the community structure: good expansibility requires cuts (i.e., large number of edges crossing the cut) \rightarrow poor community structure
- The expansion properties of a graph can be approximated by the spectral. of the adjacency matrix A
- Large $\Delta \lambda$ implies high robustness
- **However**, it is not clear how large the spectral gap should be

Spectral Gap + Subgraph Centrality

- Combine the spectral gap with the subgraph centrality [Estrada, Eur. Phys
- Subgraph Centrality: # of closed walks that a node participates

$SC(i) = \sum_{i=1}^{|V|} u_{ii}^2 \sinh(\lambda_i), \ \forall i \in V$

- Good expansion properties \rightarrow High robustness $\rightarrow \lambda_1 \gg \lambda_2 \rightarrow$ $u_{i1}^2 \sinh(\lambda_1) \gg \sum_{j=2}^{|V|} u_{ij}^2 \sinh(\lambda_j)$
- $\forall SC(i) pprox u_{i1}^2 \sinh(\lambda_1), \ orall i \in V \rightsquigarrow u_{i1} \propto \sinh^{-1/2}(\lambda_1) \ SC(i)^{1/2}$
- $_{\Box}$ Deviation from this behavior \rightarrow existence (or lack thereof) of high robustr
- Shortcoming:
- (i) Scalability issues (it requires all the pairs $(\lambda_i, u_i), \forall i \in V$)
- (ii) It cannot be applied directly to bipartite graphs

Fast Robustness Estimation in Large Social Graphs: Communities and Anomaly Detection

Fragkiskos D. Malliaros¹, Vasileios Megalooikonomou^{1,2}, and Christos Faloutsos³

	Proposed Metric: Generalized Robustness Index
n we say about its	Q: Can we efficiently approximate the SC of every not
	The eigenvalues of A follow a power-law distribution
ies after the loss of	 The eigenvalues are almost symmetric around zero (except from the first few) [Tsourakakis, ICDM '08]
	$sinh(\cdot): odd function (i.e., sinh(-x) = - sinh(x))$
otion of community	\rightsquigarrow Approximate the SC using only the first top <i>k</i>
dying the	eigenvalues and their corresponding eigenvectors $NSC_{i}(i) = \sum_{k=1}^{k} u^{2} \operatorname{sinb}(\lambda_{i}), \forall i \in V$
	$\Box \text{ Generally, } \mathbf{k} \ll \mathbf{V} \text{ for real-world graphs}$
	$\begin{pmatrix} 1 \\ \nabla V \end{pmatrix} \left(\log(u) \right) \left(\log(\sinh^{-1/2}(1)) \right)$
	$ r_k = \left(\frac{1}{ V } \sum_{i=1}^{k-1} \left\{ \log(u_{i1}) - \left(\log(\sinh (\lambda_1)) \right) \right\} $
	Summarizes the robustness of a graph in a single nu
	An Illustrative Example: Random vs. Real Graph
	10 ⁰
with size at most	envector
с I I I I	- 10 ⁻¹
of nodes has good	
	(a) ER random graph
ottlenecks inside the	
	(c) Network science graph (d) A -L Barabasi's (
flects exactly the	
s with large size	Datasets
(222) (1) = (1)	Graph# Nodes# EdgesGraph#EPINIONS75,877405,739CA-ASTRO-PHEVINIONS75,000040,705CA-ASTRO-PH
$yap \Delta \lambda - \lambda_1 - \lambda_2$	EMAIL-EUALL 224,832 340,795 CA-GR-QC SLASHDOT 77,360 546,487 CA-HEP-TH WIKI-VOTE 7,066 100,736 DBLP 4
	VIRE VOTE 7,000 100,730 DBEI 4 FACEBOOK 63,392 816,886 CIT-HEP-TH 1,134,890 2,987,624 CIT-HEP-TH 1
	Effectiveness and Scelebility of r index
	\mathbf{O} : How effective and scalable (efficient) is the propose
s. J. B '06]	
	50 Linear Fit
	5 10 15 Number of Edges v 10 ⁵
tness properties	(a) Scalability (DBLP – $k = 30$ eigs) (I
	• The r_k index scales linearly with respect to the num
	 Only a few eigenpairs are enough to achieve a very index

¹University of Patras, Greece ²Temple University, PA, USA ³Carnegie Mellon University, PA, USA

- After a specific time point, r_k starts \searrow gradually
- the gelling poing [McGlohon et al., KDD '08]

The fragility evolution pattern can be considered

Funding: NSF (Grant No. IIS1017415), ARL (No. W911NF-09-2-0053)