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Introduction

� Given a large social graph, like a scientific collaboration network, what can we say about its
robustness?

� Can we estimate a robustness index for a graph quickly?

� If the graph evolves over time, how these properties change?

� Robust Graph: Capable to retain its structure and its connectivity properties after the loss of
a portion of its nodes and edges

� The property of robustness in real-world graphs is closely related to the notion of community
structure

� We tackle the problem of estimating the robustness of a graph quickly, studying the
expansion properties

� Contributions:

� Fast robustness index
� Patterns of real static and time-evolving social graphs
� Anomaly detection

Preliminaries: Expansion Properties

� Good expander: Simultaneously sparse and highly connected

� Given a graph G = (V ,E), the expansion of any subset of nodes S ⊂ V , with size at most
|V |
2 , is defined as

|N(S)|
|S|

� A graph is considered to have good expansion properties if every subset of nodes has good
expansion (i.e., many neighbors)

Expansion, Robustness and Community Structure

� Why the expansion properties of a graph are important?

� They offer crucial insights about the structure of a graph

� They can act as a natural measure of the graph’s robustness

� Information about the presence or not of edges which can operate as bottlenecks inside the
network

� Good expansion properties→ high robustness, while poor expansibility reflects exactly the
opposite behavior

� Connections with the community structure: good expansibility requires cuts with large size
(i.e., large number of edges crossing the cut)→ poor community structure

� The expansion properties of a graph can be approximated by the spectral gap ∆λ = λ1 − λ2
of the adjacency matrix A

� Large ∆λ implies high robustness

� However, it is not clear how large the spectral gap should be

Spectral Gap + Subgraph Centrality

� Combine the spectral gap with the subgraph centrality [Estrada, Eur. Phys. J. B ’06]

� Subgraph Centrality: # of closed walks that a node participates

SC(i) =
∑|V |

j=1 u2
ij sinh(λj), ∀i ∈ V

� Good expansion properties→ High robustness→ λ1 � λ2→

u2
i1 sinh(λ1)�

∑|V |
j=2 u2

ij sinh(λj)

� SC(i) ≈ u2
i1 sinh(λ1), ∀i ∈ V ui1 ∝ sinh−1/2(λ1) SC(i)1/2

� Deviation from this behavior→ existence (or lack thereof) of high robustness properties

� Shortcoming:

(i) Scalability issues (it requires all the pairs (λi, ui), ∀i ∈ V )
(ii) It cannot be applied directly to bipartite graphs

Proposed Metric: Generalized Robustness Index rk

Q: Can we efficiently approximate the SC of every node in the graph?

1 The eigenvalues of A follow a power-law distribution
[Faloutsos et al., SIGCOMM ’99]

2 The eigenvalues are almost symmetric around zero
(except from the first few) [Tsourakakis, ICDM ’08]

3 sinh(·): odd function (i.e., sinh(−x) = − sinh(x))

 Approximate the SC using only the first top k
eigenvalues and their corresponding eigenvectors

NSCk(i) =
∑k

j=1 u2
ij sinh(λj), ∀i ∈ V

� Generally, k � |V | for real-world graphs
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Figure: Skewed spectrum (WIKI-VOTE)

 rk =

(
1
|V |

∑|V |
i=1

{
log(ui1)−

(
log(sinh−1/2(λ1)) +

1
2

log(NSCk(i))
)}2

)1/2

� Summarizes the robustness of a graph in a single number (smaller rk → better robustness)

An Illustrative Example: Random vs. Real Graphs
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r = 3.5027e−05

(a) ER random graph (b) Discrepancy plot
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(c) Network science graph (d) A.-L. Barabasi’s egonet (e) Discrepancy plot

Datasets

Graph # Nodes # Edges
EPINIONS 75, 877 405, 739
EMAIL-EUALL 224, 832 340, 795
SLASHDOT 77, 360 546, 487
WIKI-VOTE 7, 066 100, 736
FACEBOOK 63, 392 816, 886
YOUTUBE 1, 134, 890 2, 987, 624

Graph # Nodes # Edges
CA-ASTRO-PH 17, 903 197, 031
CA-GR-QC 4, 158 13, 428
CA-HEP-TH 8, 638 24, 827
DBLP 404, 892 1, 422, 263
CIT-HEP-TH 26, 084 334, 091

Effectiveness and Scalability of rk index

Q: How effective and scalable (efficient) is the proposed rk index?
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� The rk index scales linearly with respect to the number of edges
� Only a few eigenpairs are enough to achieve a very good approximation of the robustness

index

Robustness of Large Static Graphs: High Robustness Pattern

Q: What can we say about the robustness of large social graphs?

(a) EPINIONS (b) EMAIL-EUALL (c) SLASHDOT (d) WIKI-VOTE

(e) FACEBOOK (f) YOUTUBE (g) CA-ASTRO-PH (h) CA-GR-QC

(i) CA-HEP-TH (j) DBLP-1980 (k) DBLP-2006 (l) CIT-HEP-TH

Figure: Discrepancy plots: Principal eigenvector vs. NSC in log-log scales. Almost all graphs tend to be extremely
robust (linearity, rk close to zero)

Large Social Graphs: Good expansion properties → High robustness → Not a clear modular structure

Time Evolving Graphs: Fragility Evolution Pattern
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(a) DBLP: rk over time (b) CIT-HEP-TH: rk over time
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(c) DBLP: Diameter over time (d) CIT-HEP-TH: Diameter over time

Figure: Fragility evolution pattern: The spike of
the rk index aligns with the diameter’s spike

Q: How the robustness index rk of a graph
changes over time?

� Study the fragility evolution of a graph

General Observation:
� At the first time points rk ↗ gradually→ Low

robustness→ Good community structure

� After a specific time point, rk starts↘ gradually
→ The graphs tend to become more robust

� The time point that rk changes, corresponds to
the gelling poing [McGlohon et al., KDD ’08]

The fragility evolution pattern can be considered
as a natural explanation for the structural dif-
ferences (regarding robustness and community
structure) between different scale graphs

Anomaly Detection

Q: Can we spot anomalies over time using the rk index?
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Figure: Fragility evolution of the DBLP graph
(lin-log scales)

� Examine the rk index over time, trying to identify
and track abrupt changes and deviations

� Sudden deviations from the fragility evolution
pattern can possibly correspond to anomalies

� DBLP graph: Strange behavior of the rk index for
2002 and 2003

� These two time graphs are outliers
� After 2001 a large number of new publications were

introduced→ Robustness↗→ rk ↘
� After 2002-2003 new research fields are covered from

DBLP→ New fields formed new communities→ rk ↗
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