
Fast Robustness Estimation in Large Social Graphs:
Communities and Anomaly Detection

Fragkiskos D. Malliaros∗ Vasileios Megalooikonomou† Christos Faloutsos‡

Abstract

Given a large social graph, like a scientific collaboration
network, what can we say about its robustness? Can we
estimate a robustness index for a graph quickly? If the
graph evolves over time, how these properties change?
In this work, we are trying to answer the above questions
studying the expansion properties of large social graphs.
First, we present a measure which characterizes the
robustness properties of a graph, and serves as global
measure of the community structure (or lack thereof).
We study how these properties change over time and
we show how to spot outliers and anomalies over time.
We apply our method on several diverse real networks
with millions of nodes. We also show how to compute
our measure efficiently by exploiting the special spectral
properties of real-world networks.
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1 Introduction

Over the last few years, social networks and graphs in
general, have received a considerable interest from the
research community. Several kind of data arising from
many diverse disciplines can be naturally represented
as graphs (or networks). Characteristic examples are
technological and information networks (e.g., the Web,
the Internet, e-mail exchange networks), collaboration
and citation networks (e.g., the DBLP co-authorship
network), as well as social networks from online social
networking and social media applications, like Facebook
and Youtube [34]. A large amount of research work
has been devoted on understanding the structure, the
organization and the evolution of these networks, with
many interesting results [9].
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One important aspect which is related to the struc-
ture of such graphs, is the notion of robustness. Gener-
ally, a graph is characterized as robust, if it is capable
to retain its structure and its connectivity properties
after the loss of a portion of its nodes and edges. The
property of robustness in real-world graphs is closely re-
lated to the notion of community structure. For exam-
ple, consider a network with good community structure
[37]. This means that the network is organized based
on a modular architecture, presenting well-defined clus-
ters with large inter-cluster and small intra-cluster edge
density. We expect that the robustness of this network
will be poor, since it can be easily become disconnected
with the removal of the edges which connect the dif-
ferent clusters. How can we do this estimation quickly
without removing edges and nodes and measuring the
connectivity? In other words, is there a robustness
and community structure index, which can be computed
fast enough, even for graphs with millions of nodes and
edges? Moreover, if the network evolves over time, what
can we say about its robustness, and as an extension,
about its community structure? Is there a common pat-
tern in social graphs that govern the time evolution of
these properties?

In this work, we tackle the problem of estimating
the robustness properties of a graph quickly, providing
simultaneously information about its community struc-
ture. In order to do this, we borrow concepts from the
theory of expander graphs [20], and we study the ex-
pansion properties of several real-world time-evolving
social graphs. The main contributions of this work are
the following:

• Novel robustness measure: We propose to use the
natural measure of expansion, in order to capture
the robustness and the community structure of
social graphs into a single number. We present how
to efficiently and effectively compute this measure,
exploiting the special spectral properties of real-
worlds graphs.

• Patterns of real graphs: Applying this method to
several large static social graphs, we observe that
almost all these networks tend to be extremely



Table 1: Symbols and definitions.

Symbol Definition

G Graph representation of datasets
V, E Set of nodes and edges for graph G
|V |, |E| Number of nodes and edges
A Adjacency matrix of a graph
aij Entry in matrix A
λi i-th largest eigenvalue
uij i-th component of j-th eigenvector
SC(i) Subgraph centrality of node i
NSCk(i) Normalized subgraph centrality of node i
rk Generalized robustness index

robust, showing good expansion properties; these
findings are in accordance with previous studies
about the quality of communities in large networks
[27].

• Patterns of time-evolving graphs: We study how
these properties change over time, examining the
fragility evolution of real, time-evolving graphs. We
observe a common pattern in the studied social
graphs, as well as interesting connections with the
so-called gelling-point [31].

• Anomaly detection: We show how to spot outliers
and detect anomalies in graphs that evolve over
time, examining the change of the robustness prop-
erties of the graph.

The rest of the paper is organized as follows:
Section 2 gives the background. Section 3 presents
the proposed method. Sections 4 and 5 present the
experimental results and our observations for static and
time-evolving graphs respectively. Section 6 surveys the
related work and Section 7 presents the conclusions.
Finally, the Appendix gives some theoretical details.

2 Preliminaries and Background

In this section we present the background and some pre-
liminaries related to our approach for robustness estima-
tion. We briefly discuss the notion of expander graphs
and expansion properties and we describe their relations
with the robustness and the community structure of a
graph. Table 1 gives a list of used symbols with their
definition.

Expansion. Informally, a graph is a good expander if
it is simultaneously sparse and highly connected [20].
More precisely, given a graph G = (V,E), the expansion

of any subset of nodes S ⊂ V , with size at most |V |2 , is

defined as the number of its neighborhood nodes (i.e.,
those nodes who have one endpoint inside S and the
other outside) over the size of the subset S. That is, if
N(S) are the neighborhood nodes of S, the expansion

factor of the set S is |N(S)|
|S| . A graph is considered to

have good expansion properties if every subset of nodes
has good expansion (i.e., many neighbors).

Expansion, Robustness and Community Struc-
ture. The study of the expansion properties of a graph
can offer crucial insights about its structure; in particu-
lar they can act as a natural measure of the graph’s ro-
bustness since they can inform us about the presence or
not of edges which can operate as bottlenecks inside the
network. Good expansion properties imply high robust-
ness, since any subset of nodes in the graph will have a
relatively large neighborhood. On the other hand, poor
expansibility reflects exactly the opposite behavior. For
any subset of nodes it is impossible to satisfy the con-
straint for a large neighborhood and hence, such kind of
graphs are not robust enough, since they can be easily
separated into disconnected subgraphs with the elimi-
nation of a small number of edges which connect the
different subsets. If we think these subsets as cuts in a
graph, good expansibility requires cuts with large size
(i.e., large number of edges crossing the cut), and thus
poor modularity and community structure. From the
above discussion it is clear that the notion of expansion
is closely related with both the robustness properties
and the community structure of a graph (moreover, the
expansion has been used in previous works as a quality
measure for community detection and graph partition-
ing algorithms).

Thanks to a very well known result from the field
of spectral graph theory, the expansion properties of a
graph can be approximated using the spectrum of the
adjacency matrix A of the graph [11]. More precisely,
through the Alon-Milman (or Cheeger) inequality, the
expansion of a graph is closely related to the spectral
gap λ1 − λ2, i.e., the difference between the largest and
the second largest eigenvalues of A. In fact, this is a
simple way for estimating the robustness of a graph:
compute the spectral gap and if this is large, the graph
will show good robustness, while in the opposite case
the robustness will be poor. However, it is not clear
how large the spectral gap should be for a graph, in
order to characterize it as robust enough.

In [16] the author suggested a method for es-
timating the robustness of a graph, combining the
spectral gap with the notion of subgraph centrality
[14]. Generally, the subgraph centrality of a node
is determined based on the number of closed walks
(with odd length in order to avoid cycles in an acyclic



graph) that this node participates and it can be
obtained from the spectrum of the adjacency matrix

A as SC(i) =
∑|V |

j=1 u
2
ij sinh(λj). If a graph shows

good expansion properties (and thus high robustness),
then λ1 � λ2 and for SC(i), ∀i ∈ V only the first
term of the summation (u2i1 sinh(λ1)) will account
(the contribution of the terms for j = 2, . . . , |V | will
be negligible compared with that of j = 1). Hence,
measuring the deviation from this behavior, we will
be able to detect the existence (or lack thereof) of
high robustness properties in a graph. This devi-
ation can be summarized in the measure ξ(G) =√

1
|V |
∑|V |

i=1

{
log(ui1)−

(
logA+ 1

2 log(SC(i))
)}2

,

where A = sinh−1/2(λ1) [16] (See Appendix for full
justification).

However, the shortcoming of the above measure
is that it is not scalable to large graphs, since it
requires the computation of all the eigenvalues and their
corresponding eigenvectors of the adjacency matrix A.
Moreover, it cannot be applied directly to bipartite
graphs since these graphs do not contain odd length
closed walks (See Appendix for more details).

3 Proposed Metric and Fast Estimation

While the measure presented in the previous section
naturally captures the notion of robustness in a graph, it
requires the computation of all eigenvalue - eigenvector
pairs (λi,ui), ∀i ∈ V , of the adjacency matrix A. This
becomes a computational bottleneck for large graphs
with millions of nodes and edges, making the measure
inefficient and practically not feasible for large scale
graphs.

To overcome this problem, in what follows we
present our approach for the efficient and simulta-
neously accurate computation of a robustness index,
proposing a normalized version of the subgraph cen-
trality together with the generalized robustness index
rk. The basic idea of our approach is to compute a
low-rank eigendecomposition of the adjacency matrix
A, and combine it with the special spectral properties
of real-world graphs.

3.1 Generalized Robustness Index rk. Here we
present the proposed generalized robustness measure
rk, which can be used as a fast and scalable graph’s
robustness index. The motivating question behind this
measure is how we can efficiently approximate the sub-
graph centrality of every node in the graph (Sec. 2),
providing a scalable, expansion-based robustness esti-
mation technique for large graphs, while simultaneously
keeping the accuracy high.

0 1000 2000 3000 4000 5000 6000 7000
−100

−50

0

50

100

150

Rank

E
ig

e
n
v
a
lu

e

Figure 1: Skewed spectrum of a real-world network
(Wiki-Vote).

The basic idea behind our approach comes from two
important observations related to the spectrum of the
adjacency matrix of real-world graphs:

(i) The absolute values of the first eigenvalues follow
a power-law distribution ([17]).

(ii) Except from the first few eigenvalues, the remain-
ing eigenvalues are almost symmetric around zero,
meaning that their signs tend to alternate (e.g.,
[41]).

Figure 1 presents the spectrum of a real-world graph
(Wiki-Vote). It plots the eigenvalues of the adjacency
matrix for this graph versus their rank. We can easily
observe that the first few eigenvalues are much larger
than the rest and moreover the bulk of the eigenvalues
are almost symmetric around zero.

Based on these points together with the fact that
the sinh(·) function is an odd function (i.e., sinh(−x) =
− sinh(x))1, we can approximate the subgraph central-
ity (Sec. 2) using only the first top eigenvalues and
their corresponding eigenvectors. In other words, the
contribution of most of the eigenvalues to the subgraph
centrality is negligible compared with that of the first
few eigenvalues. We can now define the normalized sub-
graph centrality of each node in the graph as

(3.1) NSCk(i) =

k∑
j=1

u2ij sinh(λj), ∀i ∈ V

where k is the number of the eigenvalues that will con-
tribute to the approximation of the subgraph centrality,

1This simply means that the sinh(·) function keeps the signs
of the eigenvalues.



and generally k � |V | for real-world graphs. In other
words, k can be considered as the desired low-rank ap-
proximation of the adjacency matrix A, and as we will
present in the following section, for large graphs k can
be extremely small to achieve almost excellent accuracy.

Based on the normalized subgraph centrality NSCk

for each node i ∈ N , we can now define the proposed
robustness index of a graph as

rk =

(
1

|V |

|V |∑
i=1

{
log(ui1)−

(
log(sinh−1/2(λ1))

+
1

2
log(NSCk(i))

)}2
)1/2

.(3.2)

Smaller rk implies better robustness, since as we
described in the previous section, for a robust enough
graph only the first eigenpair will account for the
subgraph centrality. This behavior can be visualized
using the discrepancy plot (e.g., Fig. 4).

Definition 3.1. (Discrepancy Plot) The log-log
plot of the principal eigenvector vs. the normalized
subgraph centrality will show a linear correlation for
graphs with high robustness.

Large deviation from the linear correlation in the dis-
crepancy plot, implies absence of robustness. However,
as we will see in the following section, most of the real-
world social graphs we studied present this linear corre-
lation in their discrepancy plots (as well as they exhibit
a very small rk index), and therefore they tend to be
extremely robust.

The rk index can be considered a generalization of
ξ(G) (Sec. 2) where rk = ξ(G) if k = |V |. However,
the main advantage of the rk measure is that it is
scalable and it can be computed efficiently for large
graphs. Moreover, the parameter k (i.e., the desirable
low rank approximation) allows us to adjust the “trade-
off” between the accuracy in the computation of the
robustness and the required time. However, as we will
present in the following section, for large graphs with
millions of nodes it is enough to compute only very few
of the eigenvalues and their corresponding eigenvectors
to achieve almost excellent accuracy (in some cases only
the first eigenvalue is adequate). The most important
thing is that the rk operates perfectly as a robustness
index and it can be used to summarize both the
robustness and the community structure properties of
a graph in a single number. Furthermore, it can be
computed very easily in any programming environment
that provides routines for the eigenvalue decomposition
(e.g., Lanczos method [19]).

Finally we show how we can efficiently compute
the rk index for bipartite graphs. Several real-
world datasets can be represented as bipartite graphs.
For example, consider the IMDB2 movie-actor graph.
This graph can be represented using the biadjacency
matrix B, where the rows correspond to movies while
the columns to actors. A natural way to compute
the robustness of this graph is to consider the actor-
actor graph or the movie-movie graph (actually these
graphs represent the similarity matrices between actors
and movies respectively). In other words, the bipartite
graph is converted into an one mode graph, projecting
the nodes of one partition to the nodes of the other.

Lemma 3.1. (NSCk for bipartite graphs) Let
Bm×n be the biadjacency matrix of a bipartite graph
with |V | = m + n nodes. Then, the normalized sub-
graph centrality NSCB

k for each node i ∈ V , can be

computed as NSCB
k (i) =

∑k
j=1 u

2
ij sinh(λ2j ), where λ, u

correspond to singular values and singular vectors of B
respectively.

Proof. Applying the Singular Value Decomposition
to the biadjacency matrix B, we have Bm×n =
Um×rΣr×rV

T
r×n. Let’s consider that we represent the

bipartite graph using the matrix A = BTB (e.g., the
actor-actor similarity matrix). Then, A is symmetric
and A = V Σ2V T , where the matrix V corresponds to
the right singular vector of B, and the eigenvalues of A
are equal with the squares of the singular values of B.
Therefore, NSCB

k (i) =
∑k

j=1 u
2
ij sinh(λ2j ), ∀i ∈ V .

Thus, replacing theNSCk withNSCB
k in Eq. (3.2),

we can estimate efficiently the rk index of a bipartite
graph. In this paper we mainly focus on unipartite
graphs, therefore we apply Eq. (3.2) as is.

3.2 Illustration. In order to better understand how
the rk robustness index operates, we apply it to two
graphs with expected robustness properties. The first
one is a random graph generated by the Erdös-Rényi
(ER) model [13] with 50 nodes and probability p = 0.3
(Fig. 2 (a)). The second is Newman’s collaboration
network between 379 researchers in the area of network
science (Fig. 2 (c)) [36].

Random graphs are known to have good expansion
properties [20], and thus high robustness. Then, due to
the large spectral gap, only the largest eigenvalue and
the corresponding eigenvector will mostly contribute to
the normalized subgraph centrality (Eq. (3.1)), and the
principal eigenvector will follow a power-law relation-
ship (linear correlation in logarithmic scales) with the
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(a) ER random graph (b) Discrepancy plot
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Figure 2: Random vs. real graphs: Two graphs with known robustness properties and their discrepancy plots.

normalized subgraph centrality (See Appendix). Thus,
from Eq. (3.2), the generalized robustness index rk will
be extremely small. Figure 2 (b) depicts this result
where it is easy to observe the linear correlation when
plotting the principal eigenvector vs. the normalized
subgraph centrality (discrepancy plot).

On the other hand, Newman’s collaboration net-
work presents very strong community structure, where
the nodes form dense modules with sparse connections
between different modules. Hence, this graph in not ro-
bust since it can be easily become disconnected if we
simply remove the edges which connect different mod-
ules. So, we expect an opposite behavior compared with
the ER graph. Figure 2 (e) depicts this result where
the absence of the above linear correlation is clear in
the discrepancy plot and the rk is far away from zero.
Informally, the subgraph centrality measure informs us
about how well clustered is a node in its neighborhood,
while the principal eigenvector contains information re-
lated to the position of a node globally in the graph.
So, the absence of correlation between them suggests
low robustness.

Based on this, in Fig. 2 (e) the node with the largest
NSCk and principal eigenvector component (green +)
corresponds to A.-L. Barabasi. This is somewhat
expected since A.-L. Barabasi is a well known researcher
in the area of network science. Next him follow other

well known researchers (e.g., H. Jeong, R. Albert) which
actually belong to the egonet (Fig. 2 (d)) of A.-L.
Barabasi (in Fig. 2 (d) the green node corresponds to
A.-L. Barabasi). On the other hand, the node with one
of the smallest NSCk and principal eigenvector (yellow
∗ in Fig. 2 (e)) corresponds to G. Gregoire, which
actually has only one co-author in the dataset (and this
co-author has very small neighborhood).

4 Robustness of Large Static Graphs

In this section we present detailed experimental results,
applying the method proposed in Sec. 3 to several real-
world large social graphs (Table 2). All the experiments
were designed to answer the following questions:

Q1 (Effectiveness and Scalability) How effective and
scalable (efficient) is the proposed rk index?

Q2 (Patterns) What can we say about the robustness
of large social graphs? Is there any common
pattern that appears in most of them?

Table 2 presents the real datasets used in this work.
In all cases, we consider the graphs as unweighted and
undirected. Furthermore, we extract the largest con-
nected component and use it as a good representative
of the whole graph.



Table 2: Summary of real-world networks used in this study.

Network Name Nodes Edges Description

Epinions [38] 75, 877 405, 739 Who trusts whom network

Email-EuAll [26] 224, 832 340, 795 Email network

Slashdot [27] 77, 360 546, 487 Slashdot social network (Nov. ’08)

Wiki-Vote [24] 7, 066 100, 736 Wikipedia who-votes-on-whom network

Facebook [43] 63, 392 816, 886 Facebook New Orleans social network

Youtube [32] 1, 134, 890 2, 987, 624 Social network from Youtube site

CA-astro-ph [26] 17, 903 197, 031 Co-authorship network in Astro Physics

CA-gr-qc [26] 4, 158 13, 428 Co-authorship network in General Relativity

CA-hep-th [26] 8, 638 24, 827 Co-authorship network in High Energy Physics

Dblp [1] 404, 892 1, 422, 263 Co-authorship network from DBLP

Cit-hep-th [2] 26, 084 334, 091 Citation network in High Energy Physics
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Figure 3: Scalability and Effectiveness of rk index: (a) The computation time is linear with the number of edges.
(b) Absolute error using k = 1, . . . , 30 for two different graphs. Observe that a few eigenvalues are enough to
achieve an almost excellent approximation.

4.1 Effectiveness and Scalability of rk index.
Here we measure the performance of rk index both
in terms of scalability and effectiveness. All the experi-
ments were conducted on a DELL server with two quad
core processors and 32 GB RAM, running Linux.

Figure 3 (a) presents the computation time of
rk index in the Dblp dataset. In the experiment
we used k = 30 (i.e., the 30 largest eigenpairs) and
measured the running time for different scale graphs
(up to 400K nodes and 1, 4M edges). We can observe
that the rk index scales linearly with respect to the
number of edges. Moreover, we can see that for the
largest graph, the computation time is less than one
minute. This makes the rk index applicable to million
node graphs.

Figure 3 (b) plots the rank k of approximation (i.e.,
the number of computed eigenpairs) vs. the absolute
error |r−rk|, where r is the value of the robustness index
using the whole spectrum of the adjacency matrix, for
two graphs. For the CA-gr-qc graph, we can observe
that after k = 4 we achieve a very good approximation
of the robustness index, with absolute error less than
0.06. For the Wiki-Vote graph, for k = 1 and only
the first eigenvalue and the corresponding eigenvector,
we attain absolute error which tend to zero (10−15).
However, CA-gr-qc is a much smaller graph from
Wiki-Vote. As we will see next in this section,
almost all the examined large social graphs tend to be
extremely robust showing a large spectral gap, and in
Eq. (3.1) the first term dominates.



4.2 Observations and Possible Explanations.
Figure 4 presents the discrepancy plots for the graphs
we examined, together with the rk index (for all the
experiments we used k = 30). From a first look, it
is clear that almost all of these graphs exhibit high
robustness, showing linear correlation (in log-log scales)
between the principal eigenvector and the normalized
subgraph centrality. The rk index for most of
them is very close to zero, implying that the spectral
gap of these networks is large and they show good
expansibility.

Observation 1. (High Robustness) Large real-
world social graphs exhibit good expansion properties
and thus high robustness.

This observation suggests that these networks ex-
pand very well allowing the selection of arbitrary sub-

sets of nodes with size at most |V |2 , such that for every
set there is a relatively large number of edges with one
endpoint inside the set and the other outside. Therefore,
a first outcome is that these social graphs lack of edges
that can act as bottlenecks and thus they present high
robustness. From a community structure related point
of view, this observation implies that the nodes inside
the networks we examined are not organized based on
a clear modular architecture. It seems that these net-
works lack of well defined clusters which can be easily
separated from the whole graph.

One interesting question is if these observations for
large social graphs are expected. It is well known that
the organization of social networks is based on commu-
nities (i.e., subgraphs with high intra-community and
low inter-community edge density) [35]. Additionally,
previous studies on the expansion properties of small
social graphs showed that almost all of them exhibit
poor expansibility and thus very low robustness [15].

On the other hand, our observations suggest an al-
most opposite behavior. We consider that this difference
is mainly due to the scale of the networks. It seems that
in large scale social graphs it is difficult to find subsets
of nodes which can be easily isolated, leading to high ro-
bustness. For example, consider the co-authorship net-
works Dblp-1980 and Dblp-2006, in Fig. 4 (j) and
(k). Both of these networks are coming from the same
dataset (Dblp), but they represent different time snap-
shots of the graph. The Dblp-1980 graph has about 5K
nodes and 9K edges, while the Dblp-2006 graph has
405K nodes and 1, 5M edges. Moreover, the first graph
is contained into the second. Comparing their robust-
ness indices, it is clear that the larger network is much
more robust than the smaller one. A similar argument
can be used to justify the difference in robustness prop-
erties of the graphs Ca-Gr-qc and Ca-hep-th (Fig. 4

(h) and (i)). As we will present in Section 5, the ro-
bustness of a graph changes over time while the graph
evolves, showing interesting patterns.

Finally, our findings for static graphs are in ac-
cordance with previous works related to the quality of
the community structure in large networks. In [27],
Leskovec et al. observed that the best communities in
large networks correspond to small subgraphs up to 100
nodes, and the quality of a community (obtained by a
measure such as modularity or conductance) decreases
while the size of the community increases.

5 Time Evolving Graphs and Anomaly
Detection

In the previous section we observed that most of the
studied social graphs tend to be extremely robust,
presenting very low rk value. In this section we focus
on time-evolving social graphs and trying to answer the
following questions:

Q3 (Time Evolution) How the robustness index rk of
a graph changes over time?

Q4 (Anomaly Detection) Can we spot anomalies over
time using the rk index?

5.1 Fragility Evolution. As we mentioned earlier,
large real-world graphs present high robustness (good
expansion properties) and thus poor community struc-
ture. However, a crucial question which naturally arises
for time-evolving graphs, is how these properties change
over time. In order to answer these questions, we study
the fragility evolution of a graph. In other words, for
every time point in the datasets (e.g., month, year), we
form the graph up to the specific time point, and then
for each time snapshot we examine the rk index. We
conduct experiments with the last two datasets of Table
2. Dblp covers the time period 1960 − 2006 (cumula-
tive graph snapshots per year) and Cit-hep-th expands
from Feb. 1993 till April 2003 (cumulative graph snap-
shots per month).

Figures 5 (a) and (b) present the fragility evolution
for the Dblp and the Cit-hep-th graph respectively.
Our general observation which can be confirmed from
both of these graphs is that, at the first time points,
while the graphs are generally in an establishment
period, rk increases gradually. This means that
the graphs are not robust enough, but it seems that
they exhibit good community structure. However, after
a specific time point, rk starts decreasing gradually,
meaning that the graphs tend to be more robust,
increasing their expansion properties but loosing their
community structure.



(a) Epinions (b) Email-EuAll (c) Slashdot

(d) Wiki-Vote (e) Facebook (f) Youtube

(g) CA-astro-ph (h) CA-gr-qc (i) CA-hep-th

(j) Dblp-1980 (k) Dblp-2006 (l) Cit-hep-th

Figure 4: Discrepancy plots for several large social graphs: All plots depict the principal eigenvector vs. the
normalized subgraph centrality in log-log scales, together with the rk index for each graph. Observe that almost
all of them tend to be extremely robust (linearity). The red line represent the ideal behavior in case of graphs
with “perfect” robustness and rk= 0.
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Figure 5: Fragility evolution pattern: We can observe that the spike of the rk index aligns with the diameter’s
spike.

Furthermore, an important thing which is related
to the change of the rk index, is the time point that it
occurs. We observed that this time point corresponds
to the so-called gelling point [31]. In other words, at the
time point that the graph’s robustness starts improving,
the effective diameter of the graph spikes (Fig. 5 (c) and
(d)) and generally the graph starts obeying some of the
expected rules (such as the densification law). This may
be explained by the fact that there is close connection
between the diameter and the robustness (expansibility)
of a graph in scale-free networks [8].

Observation 2. (Fragility Evolution Pattern)
Real graphs obey the fragility evolution pattern. The
spike of the robustness is aligned with the gelling point.

The fragility evolution pattern can be considered as
a natural explanation for the structural differences (re-
garding robustness and community structure) between
different scale graphs. Moreover, it seems that the
rk index is an alternative way for finding the gelling
point of a graph but more importantly it can be es-

timated more efficiently than computing the effective
diameter.

5.2 Anomaly Detection. Here we present how the
fragility evolution of a graph can be utilized for spotting
outliers and detecting anomalies in graphs over time.
The idea is to examine the rk index over time, trying
to identify and track abrupt changes and deviations.
Since for all the examined graphs presented previously
the evolution of the rk index is similar, presenting
a specific pattern (the fragility evolution pattern, i.e.,
the rk increases at the first time points and after
the gelling point it starts decreasing gradually), sudden
deviations from this behavior can possibly correspond
to anomalies, and thus the specific time snapshots can
be tagged as outliers.

Figure 6 presents the fragility evolution of the Dblp
co-authorship graph (it is the same with Fig. 5 (a) but
in lin-log scales).
We can observe that at two specific time points which
correspond to 2002 and 2003, the rk index presents
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Figure 6: Fragility evolution of the Dblp graph (lin-log
scales). Observe the abrupt behavior during 2002-2003.
These time snapshots correspond to anomalies in the
Dblp graph.

a strange behavior. More precisely, after 2001 the
rk index decreases sharply and this behavior continues
until 2003. After 2003 the robustness of the graph
returns back to its normal behavior (it still continues
to decrease but this happens gradually). These two
time points present large deviation from the “normal”
behavior of the graph and thus they can be classified as
anomalies. In other words, it seems that for these two
specific years the graph becomes extremely robust (very
low rk index), but after that the robustness decreases
abruptly and the graph acquires better community
structure. However, are these two time graphs (2002
and 2003) really outliers, as the rk index suggests?

Explanation. After 2001 a large number of new pub-
lications were introduced to Dblp, which explains the
downward slope of the rk index. These new publica-
tions make the co-authorship graph very robust. Until
then the focus of Dblp was mostly on databases and
logic programming. However, after 2002 − 2003 new
research fields became important, and many old con-
ferences and journals from these fields were added to
Dblp, with focus on current publications (not in the
past papers of these fields). These new fields formed
new communities in the graph, decreasing the robust-
ness, which explains the reason why rk increases after
2003. Thus, the rk index is capable to capture struc-
tural differences in the graphs and it can be used for

anomaly detection in time-evolving graphs3.

6 Related Work

In this section we review the related work, which can
be placed into four main categories: graph structure,
spectral graph analysis, applications and graph mining.

Graph Structure. There is a vast literature on meth-
ods for studying the structure of several kind of net-
works [35, 22, 32, 27, 34]. The key step for these meth-
ods is finding patterns and laws which the graphs obey.
Studying static snapshots of graphs has led to the dis-
covery of interesting properties such as the power law
degree distribution [17], the small diameter [5] and the
triangle power law [41]. Furthermore, examining time-
evolving graphs they have been observed several pat-
terns such as the shrinking diameter, the densification
power law [25, 26] and the gelling point [31]. For a nice
survey one can consult the recent work of Chakrabarti,
Faloutsos, and McGlohon [9]. As far as robustness prop-
erties, Albert et al. [6] studied how scale-free networks
operate under random and targeted attacks and in [16]
the focus was mainly in small scale networks. In this
work we focused both on fast robustness estimation
without performing nodes/edges deletions, as well as on
finding related patterns in both static and time-evolving
large graphs.

Spectral Graph Analysis. Analyzing graphs using
spectral techniques has a long history [11]. More recent
related works include spectral algorithms for community
detection [37] and spectral counting of triangles in large
graphs [41, 42].

Applications. There are plenty of applications which
involve the study of graphs. Generating realistic graphs
[9] is such an application, where the generators should
satisfy the observed properties. One other application
which has attracted much attention is the detection of
anomalies and outliers [10, 4]. Other problem domains
are searching in networks [28], graph compression and
summarization [29, 40, 23], graph clustering [39] and
information-influence propagation in social networks
[30, 7].

Graph Mining. A somewhat different way for study-
ing graphs is the graph mining approach. There the
main interest is focusing on mining frequent and dis-
criminative subgraphs [44, 12, 21, 3, 18]. However, this
kind of works are not directly related with our focus.

3Personal communication with Michael Ley and Florian Reitz
from DBLP.



7 Conclusions

In this paper we studied the problem of estimating
the robustness of social graphs, using the notion of
expansion properties. The main contributions of this
work are the following:

• Fast Robustness Index : We presented a measure
which captures in a single number both the robust-
ness as well as the community structure of a graph.
We showed how to efficiently and effectively com-
pute this measure, making it scalable for million-
node graphs.

• Patterns: We applied the proposed rk index to
several large real graphs, both static and time-
evolving, and we observed the High Robustness
pattern as well as the Fragility Evolution pattern.

• Abnormality Detection: We showed how the ob-
served patterns related to the rk index can be
used to detect anomalies in time-evolving graphs.

Future work could be the extension of the method to
the MapReduce framework for studying the robustness
of billion-node graphs.
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Appendix

Here we describe how the large spectral gap together
with the subgraph centrality measure, leads to the
measure ξ(G) [16] as presented in Sec. 2. First of all,
the subgraph centrality is defined as

(7.3) SC(i) =

∞∑
`=0

A`
ii

`!
, ∀i ∈ V,

where the diagonal entry αii of the matrix A` contains
the number of walks of length ` that begin and end at
the same node i. Focusing on unipartite graphs and
keeping only the odd length closed walks5 in order to
avoid cycles in acyclic graphs, the SC can be expressed
as

(7.4) SC(i) = u2i1 sinh(λ1) +

|V |∑
j=2

u2ij sinh(λj).

If the graph has good expansion properties (and thus
high robustness), it means that λ1 � λ2, and then

u2i1 sinh(λ1) �
∑|V |

j=2 u
2
ij sinh(λj). Thus, Eq. (7.4)

could be written as

(7.5) SC(i) ≈ u2i1 sinh(λ1), ∀i ∈ V.

This means that for graphs with high robustness, the
principal eigenvector ui1 will be related to SC(i) as

(7.6) ui1 ∝ sinh−1/2(λ1) SC(i)1/2.

This relation suggests that if the graph shows high
robustness, ui1 will be proportional to SC(i) and a log-
log plot of ui1 vs. SC(i), ∀i ∈ V will show a linear fit
with slope 1/2 (the discrepancy plot).

5The bipartite graphs do not have odd length closed walks and
thus the SC is computed based on the even length closed walks.
This happens replacing the sinh(·) function with the cosh(·) [14].
But then the SC for the bipartite graphs cannot be efficiently

approximated using similar ideas with the proposed NSCk (Sec.
3), because of the fact that the cosh(·) is an even function.
However, our approach for bipartite graphs (Sec. 3, Lemma 3.1)

overcomes this bottleneck and can be efficiently computed for
large scale graphs.


