
Compositionality through Projection

Master Thesis

Dimitrios Leventeas

October 26, 2013

Advisors: Prof. Dr. T. Hofmann, Dr. M. Ciaramita

Department of Computer Science, ETH Zürich

Abstract

We investigate ways of representing textual content in sparse vecto-
rial representations to improve semantic similarity modelling for tasks
such as word and phrase similarity prediction. In particular, we are
interested in investigating compositional approaches to semantic sim-
ilarity via randomization and hashing techniques. We also offer an
experimental evaluation of the techniques that we used. The project is
programming intensive (mostly C++) and it uses computational infras-
tructure and data from Google.

We focus on the following parts:

1. Carry out a thorough survey of randomization and hashing tech-
niques for semantic similarity.

2. Implement baseline approaches to string (with focus on query)
similarity, build an appropriate evaluation framework.

3. Design, implement and evaluate two variants of compositional
models (vector addition, pointwise multiplication).

4. Implement/investigate use of randomization and hashing tech-
niques.

5. Investigate features of varying linguistic complexity (term fre-
quency, Positive Pointwise Mutual Information).

The described system achieves state of the art performance in the eval-
uation task of query similarity.

i

Contents

Contents iii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Statement . 1
1.3 Outline . 2

2 Background and Related Work 3
2.1 Distributional Semantics . 3

2.1.1 Computational model 4
2.1.2 Limitations . 4
2.1.3 Parameter estimation 5
2.1.4 Quality of vector representation 5
2.1.5 Distance (between semantic vectors) 6
2.1.6 Alternative component weighting 7
2.1.7 Distributional Similarity 8

2.2 Vector representation . 9
2.2.1 Latent Semantic Analysis (LSA) 10
2.2.2 Hyperspace Analogue to Language 11
2.2.3 Problems and solutions 12
2.2.4 Random Indexing . 12
2.2.5 Theory behind Random Projections 13
2.2.6 Hashing kernels . 17
2.2.7 Sketch algorithms . 18

2.3 Compositional Process . 22
2.3.1 Models of Compositionality 22
2.3.2 Compositionality in queries 24

3 System Description 25
3.1 Basic concepts . 25

iii

Contents

3.2 Input parameters . 26
3.3 Constructing the Co-occurrence statistics vectors 26
3.4 From word representations to queries and their similarities . 28
3.5 Differences with previous systems 29
3.6 Challenges of the distributed environment 30
3.7 Challenges of the reduced space 31
3.8 Overview of the system . 31

4 Evaluation 33
4.1 Description of evaluation datasets 33
4.2 Parsing Parameters . 34

4.2.1 Window sides . 34
4.2.2 Weight distribution . 35
4.2.3 Window size . 36
4.2.4 Do simple groups of words matter? 37
4.2.5 Stop words . 37
4.2.6 Stemming . 38
4.2.7 Positive Pointwise Mutual Information vs Frequencies 39
4.2.8 Comparison with other methods 40

4.3 Compression Parameters . 41
4.3.1 Hash kernels . 43
4.3.2 Count-min sketch . 44

5 Conclusions and Further Work 49

Bibliography 51

iv

Chapter 1

Introduction

In this chapter, we explain briefly what distributional semantics are, we state
their application in the domain of query similarity and, finally, we provide
an overview of the rest of the thesis.

1.1 Background and Motivation

When we learn a new language, the advice that we can understand the mean-
ing of a word by its context is often repeated. This notion was popularized
in scientific literature, and especially in the field of linguistics by Harris and
his work with title Distributional Structure [27]. Nevertheless, we can trace
the idea further back to Wittgenstein “the meaning of a word is its use in lan-
guage” [55] or even Frege “never ask for the meaning of a word in isolation
but only in the context of a statement” [22].

Joos [30] stated more formally the principle of distributional semantics by
defining the linguistic meaning of a morpheme as “the set of conditional
probabilities of its occurrences in context with all other morphemes” which
Harris later investigated in [27]. An important milestone has been [37] by
Osgood, Suci & Tannenbaum who were the first to use a Euclidean vector
space for semantic representation.

The most important use case for vector-based represetnation has been in
the context of information retrieval, namely the vector space model first
developed by Salton [46]. Other applications include modeling of word
synonymy [40] and semantic relations [36, 52].

1.2 Problem Statement

We will apply the ideas of distributional semantics to the problem of extract-
ing query similarities. Given pairs of queries, we want to assess how similar

1

1. Introduction

they are. To evaluate our system, we use predefined sets of pairs of queries
that are rated manually according to their degree of similarity.

Before being able to argue about query similarities, we have to define and
specify some notions. First of all, in order to arrive query similarities, we
need a representation for the queries and a notion of similarity. Because the
distributional hypothesis is about words and not queries, we need a way
to induce similarity from words to queries. Even before that, we need to
specify what context is and how we can represent the meaning of a word
depending on its context.

1.3 Outline

We start by reviewing some of the related literature in chapter 2 and by in-
troducing the necessary notions that we use in our system. In some cases,
we also discuss briefly some alternatives that could be used in some compo-
nents of the system. The implemented system is described in chapter 3. The
high level description of our system in chapter 3 explains the main design
decisions and how we adjusted the system to work in a distributed envi-
ronment. In the chapter 4, we evaluate the implemented system according
to two datasets of golden standards and we compare it with other related
systems in the literature. Finally, in chapter 5, we provide a brief summary
of our work and suggest some possible next steps.

2

Chapter 2

Background and Related Work

In the context of the thesis, we focus on three main areas.

1. Distributional semantics: what is the context of a word and how it de-
fines the meaning of a word.

2. Vector representation: reducing the dimensionality of the space that rep-
resents the meaning of a word according to the distributional hypoth-
esis.

3. Compositional process: how we can combine the obtained word represen-
tations to infer the meaning of phrases and word sequences (queries,
sentences).

We review some of the related literature in the corresponding sections in the
rest of the current chapter and we also provide the fundamental ideas of our
system.

2.1 Distributional Semantics

You shall know a word by the company it keeps. (Firth 1957)

The main idea is that words with similar meanings occur in similar context.
Therefore, word co-occurrence statistics can provide a natural basis for se-
mantic representation. The notion was introduced several years ago [20, 27].
More recently, the idea underlies computational models such as Latent Se-
mantic Analysis (LSA) or Hyperspace Analogue to Language (HAL) that we
will define later. The distributional hypothesis is discussed in more detail in
[44].

3

2. Background and Related Work

2.1.1 Computational model

We create a vector representation for each word in our corpus according
to co-occurring words (context). In order to do so, we have to define the
following:

• context:

– size: number of neighbouring words.

– shape: weight specification and distribution of the neighbouring
words.

• token: We mentioned words before, which is an oversimplification. We
are looking for the atomic units of meaning. Should we consider white
house as one or two terms? What about United States of America?

• corpus: The collection of documents that we use for training.

• vector representation: How to arrive from co-occurrence statistics at a
vector representation is related to the meaning of a word.

Examples of context window definitions

Examples of interesting variations of the shape of a window are:

• Restrict to one side only (left or right from the target word).

• Flat windows (all words within the context window count equally).

• Closest words have greater importance (for instance a triangular or
Gaussian window).

• Offset window (exclude close words because they may be required
only due to syntactic reasons).

Another variation of the context window could be captured based on the
grammatical relations in which a target word occurs in a parsed corpus (syn-
tactic parsing).

2.1.2 Limitations

In the context of the thesis, we built upon the distributional hypothesis.
Nevertheless, we should at least mention briefly some limitations of the
distributional semantics:

1. Homographs. It is not obvious how to disambiguate them.

2. Quality of word representation. The way we usually measure the quality
of a word representation depends on the evaluation task.

3. The Symbol Grounding Problem. It is about how words obtain their mean-
ing. See [26] for a description.

4

2.1. Distributional Semantics

Simple variations of the model

We can slightly vary our model by apply as a preprocessing step to our
corpus:

• stemming or lemmatisation

• stop words removal

• truncate very low frequency words (statistically unreliable)

Throughout our discussion, the streaming model for the input data is used.
That is, we don’t store the whole corpus in memory, but we can process it
as it arrives. Moreover, we limit ourselves to a single pass over the data.

In the following sections, we will define models using different values of the
above parameters. First, we will see how we can compute the co-occurrence
statistics matrix that is common to all the approaches once the above param-
eters are fixed.

2.1.3 Parameter estimation

Each word t is represented by a vector. Each component wi,t of the vector
corresponds to another word in our collection. For each component wi,t,
we increase the corresponding counter each time we find the word t in the
context that includes word i and according to the weight distribution.

When we finish the process, we normalize the vectors so the sum of all com-
ponents for a specific vector is 1. These are co-occurrence statistics vectors
and they contain the frequencies of other words that we encounter according
to our context definition.

2.1.4 Quality of vector representation

We need a way to evaluate how well the vector representations of a model
represent the meaning of a word. To do so, there are some internal and
external criteria. Usually, though, the choice of a metric depends heavily on
the application.

Internal

• Statistical reliability.

• Dimensionality. Smaller/sparser vector allow for faster operations.

• Compositional similarity. Given a compositional function ⊕ (see section
2.3), how close are the representations of a phrase and the composition
of the constituents of the phrase (for instance: # ‰v, u compared to # ‰v⊕ u
where u, v are words and v, u is a phrase of v followed by u.)

5

2. Background and Related Work

External

• Synonyms: A word should be closer to the representation of its syn-
onyms than to other words. In previous studies, the TOEFL test has
been used as a benchmark.

• Semantic Categorization: Words should be closer to their semantic cate-
gory (e.g. vegetables, building. . .) than others.

• Phrasal Similarity: Given a compositional function, similar phrases should
be closer than non-similar phrases.

• Dictionary definitions involving relative clauses should be matched to the
corresponding noun.

• Word close to its definition: A word should be closer to its definition
than to the definition of alternative words or to its definition with
some words replaced by irrelevant ones.

2.1.5 Distance (between semantic vectors)

We have to define a distance metric when we try to quantify how close some
words are. In this respect, the distances on this section have been considered
in related literature. See [10] for a related study that surveys the following
metrics in a specific context.

We define two vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn), where n is
their dimension. Correspondingly, we have:

Minkowski distances

• City Block (Manhattan)

d(a, b) =
n

∑
i=1
|ai − bi| (2.1)

• Euclidean

d(a, b) =

√
n

∑
i=1

(ai − bi)
2 (2.2)

Definition 2.1 The Minkowski distance of order p ≥ 1 between two points on
Euclidean space is a metric defined as:

d(a, b) =

(
n

∑
i=1
|ai − bi|p

) 1
p

(2.3)

6

2.1. Distributional Semantics

Cosine

d(a, b) =
a · b

||a|| · ||b|| (2.4)

=

n

∑
i=1

ai · bi√
n

∑
i=1

a2
i ·
√

n

∑
i=1

b2
i

(2.5)

Values close to 1 mean that a, b are related while values close to 0 mean
that they are unrelated. Usually, and throughout this text, we assume that a
vector can only have non-negative values on its components. Therefore, the
cosine of two vectors in this case can take values only in the interval [0, 1].

Information theoretic measures

On this subsection, we use the fact that the vectors are probabilities. That
allows for information theoretic measures such as:

• Hellinger distance

d(a, b) =
1√
2

√
a−
√

b (2.6)

=
1√
2

√
n

∑
i=1

(
√

ai −
√

bi)
2 (2.7)

• Bhattacharya

d(a, b) = − ln

(
n

∑
i=1

√
ai · bi

)
(2.8)

• Kullback – Leibler

d(a, b) =
n

∑
i=1

ai ln
ai

bi
(2.9)

2.1.6 Alternative component weighting

It is not necessary to store probabilities in the vectors. In study [10], some
alternatives are also explored.

7

2. Background and Related Work

• Positive Pointwise Mutual Information (Positive PMI)

pmi(a; b) = log
p(a, b)

p(a) · p(b) (2.10)

= log
p(a|b)
p(a)

(2.11)

where negative values are replaced by 0. It can compare the condi-
tional probabilities for each word in a specific context to the marginal
probability of occurrence of the word.

• Odds ratio.

a
1−a

b
1−b

=
a(1− b)
b(1− a)

(2.12)

Again, with similar semantics as the pointwise mutual information,
that is, compare the actual conditional probabilities for each word in a
specific context to the expected probability of occurrence of the word.

In study [10] conducted with using Positive PMI and window size of one,
the authors got the best reported results. The same study concluded that
removing very low frequency words or very high frequency words (stop-
words) leads to worse performance in their experiments.

2.1.7 Distributional Similarity

We briefly mention some systems that utilize the ideas that we discuss in
this chapter. These systems consist of essentially two steps:

1. Compute vector representation of a query.

2. Similarity of two queries is their cosine.

We focus on how to compute the vector representation of a query. After the
description of the two systems, we compare them. In the next chapter, we
explain our approach and the differences with these two systems.

A Web-based Kernel Function for Measuring the Similarity of Short Text
Snippets (Sahami and Heilman)

We describe the algorithm used in [41].

Large-scale Computation of Distributional Similarities for Queries (Alfon-
seca, Hall and Hartmann)

We describe the algorithm used in [4].

8

2.2. Vector representation

Algorithm 1 Distributional Similarities for Queries

Require: Query x. Parameters n, m.
Ensure: Vector representation of x.

1: Submit x and let R(x) be the set of n retrieved snippets d1, d2, . . . , dn.
2: Compute tf-idf term vector ui for each snippet di ∈ R(x).
3: Truncate each vector ui to include its m highest weighted terms.
4: Let C(x) be the centroid of the L2 normalized vectors ui:

C(x) =
1
n

n

∑
i=1

ui

||ui||2

5: Let QE(x) be the L2 normalization of the centroid C(x):

QE(x) =
C(x)
||C(x)||2

Algorithm 2 Large-scale Computation of Distributional Similarities for
Queries

Require: Query x = [w1, w2, . . . , wn]. Parameter m.
Ensure: Vector representation of x.

1: For each wi collect all words that appear close to wi in the web corpus
(not snippets).

2: Compute frequencies of context words. (not tf-idf).
3: Truncate to its m highest weighted terms.
4: Compose using the geometric mean (instead of arithmetic mean).
5: Apply the χ2 test as a weighting function to measure whether the query

and the contextual feature are conditionally independent. (new step).

In parentheses, we have put the differences with the algorithm described
in the previous part of 2.1.7 section (Distributional Similarities for Queries).
We should note here that both approaches use vectors with m = 50 non-zero
components.

2.2 Vector representation

The general idea behind word space models is that words are represented
by context vectors as motivated by the distributional hypothesis.

The use of vector space model is a standard approach today. Some of the
reasons that motivated towards this model are:

• There is extensive mathematical theory (linear algebra) on how the

9

2. Background and Related Work

vector spaces work.

• They make semantics computable.

• Vectors can be created automatically from a corpus.

• They allow the representation of gradations of meanings.

• The usefulness of the model has been validated experimentally.

• Their geometric metaphor seems plausible, even though they are a
purely descriptive approach.

Two examples of these models are Latent Semantic Analysis (LSA) and Hy-
perspace Analogue to Language (HAL).

2.2.1 Latent Semantic Analysis (LSA)

LSA creates a term-by-document matrix. It is based on the distributional hy-
pothesis that terms with similar meanings tend to occur in the same context.
In the following paragraph, we describe LSA and how we can apply it to
find how similar two words are.

We construct a matrix where each row represents a word and each column
represents a document. Given the definition of a document (a specific se-
quence of words in our corpus), we construct a matrix containing the num-
ber of occurrences of each word in each document. We expect that the result-
ing matrix will be sparse (not every word is contained to every document).
Then, we use Singular Value Decomposition (SVD) (see below) in order to
reduce the dimensionality of the matrix (only number of columns, the num-
ber of rows remains the same). This step of dimensionality reduction is
important because after the compression of the matrix using SVD, we get a
better semantic matrix where words that are close in meaning are mapped
together. Finally, words are compared by using the cosine similarity (see
section 2.1.5). For details on LSA and some philosophical implications, see
[33].

We note that the terms Latent Semantic Analysis (LSA) and Latent Semantic
Indexing (LSI) are synonyms. LSI was the original term due to the applica-
tion of the technique in document indexing and information retrieval. Then,
LSA as term became popular at it was in a broader scope, for instance in
recognizing synonyms.

Singular Value Decomposition

The Singular Value Decomposition (SVD) for a matrix A is defined as:

A = UΣV∗ (2.13)

10

2.2. Vector representation

where U is a mxm (real or) complex unitary matrix (left-singular vectors), Σ
is an mxn rectangular diagonal matrix with non-negative real numbers on
the diagonal (singular values), and V∗ is an nxn (real or) complex unitary
matrix (right-singular vectors).

A practical application of SVD (for example in LSA and in HAL) is the
low-rank matrix approximation, where we truncate the matrix Σ. It can be
shown (Eckart - Young theorem) that the approximation is based on mini-
mizing the Frobenius norm of the difference between the initial matrix A
and the approximation Â. SVD can be thought as a technique for statistical
dimensional reduction where the eigenvalues indicate the importance of the
corresponding left and right singular vectors.

Definition 2.2 (Frobenius norm) The Frobenius (or Hilbert-Schmidt) norm for
a matrix Am,n can be defined as:

||A||F =

√√√√ m

∑
i=1

n

∑
j=1
|ai,j|

=
√

trace(A∗A)

=

√√√√min{m,n}

∑
i=1

σ2
i

where A∗ denotes the conjugate transpose of A, σi are the singular values of A, and
the trace function is used.

The computational complexity of performing SVD of a dense matrix is O(mn2)
floating-point operations. The SVD is an expensive operation and it does not
scale very well to large matrices. There is a version for sparse matrices [7],
as the ones that we usually encounter in natural language processing, but it
is still costly. Moreover, if we update our corpus, we have to follow incre-
mental approximations [47]. Finally, it fails to avoid the initial co-occurrence
matrix which may be very big for practical applications.

2.2.2 Hyperspace Analogue to Language

HAL creates a term-by-term matrix. The model is similar to LSA. We focus
on their differences. In Hyperspace Analogue to Language (HAL) we define
as document only words in the context of a target word. Moreover, the in-
crease in a component in the matrix is inversely proportional to the distance
between two words. We compute the similarities between two words using
cosine, similarly to LSA.

11

2. Background and Related Work

2.2.3 Problems and solutions

There are some issues with the vector representation of words in the context
of Natural Language Processing.

• Scalability: High dimensionality of the vectors.

• Sparse data: Only few of the components in a vector are non-zero.

In order to resolve these issue, LSA and HAL use SVD. Unfortunately, as we
already mentioned in section 2.2.1, it is a costly operation.

2.2.4 Random Indexing

The basic idea of Random Indexing (RI) is to accumulate context vectors. It
is backed up by the intuition of the Johnson-Lindenstrauss lemma [29] that
we can project points of a vector space into a randomly selected subspace
of sufficiently high dimensionality and approximately preserve the pairwise
distances of the vectors in the initial space. To make the idea more concise,
we can think of the initial matrix Aw,d projected to a subspace Bw,k by a ran-
dom projection Rd,k, where d, k, w are dimensions and k < d. According to
the Johnson-Lindenstrauss lemma, k = O(log w), independent of the initial
d. In other words, the size of the vectors that we call index vectors depends
only on the number of different words in our corpus.

A sketch of the Random Indexing algorithm is:

1. Each context word is assigned a vector called index.

2. We scan through the corpus and each time a word occurs in a context,
we add its index to the target word’s representation.

The index is generated randomly according to some distribution (see the
analysis in [1]). It is sparse, high dimensional, nearly orthogonal and ternary
(possible values for a component are (+1, 0− 1)). It is nearly orthogonal
because as it was proved in [39], there are many more nearly orthogonal
vectors than truly orthogonal ones in a high dimensional space.

As we can notice, using Random Indexing we can avoid creating the big
matrix that exists initially in methods like LSA or HAL since we accumulate
the index vectors from the beginning.

Random Indexing hash the following nice properties:

• It is an incremental method.

• The exact dimensionality d is a design parameter.

• It is not required to construct the initial large co-occurrence matrix.

• It is independent of the definition of the context.

12

2.2. Vector representation

Random Indexing has been successfully used in practice in several studies.
Examples of these studies are [31, 32, 43, 45].

2.2.5 Theory behind Random Projections

We are discussing the theory behind random projections. We split the sec-
tion in three parts, the first two based on two publications and the last sec-
tion about some recent work. All of them are based on the main idea behind
Johnson-Lindenstraus (JL) lemma. We will skip the description of how the
original idea of Johnson - Lindenstrauss works for the sake of brevity.

Lemma 2.3 (Johnson–Lindenstauss lemma) Given 0 < ε < 1, an arbitrary
set P of n points in Rd, and a number k > 8 ln(n)/ε2, there is a linear map
f : Rd → Rk such that

(1− ε)||u− v||2 ≤ || f (u)− f (v)||2 ≤ (1 + ε)||u− v||2 (2.14)

for all u, v ∈ P.

Database-friendly random projections: Johnson - Lindenstrauss with binary
coins

We already mentioned in section 2.2.4 that the main idea behind Random
projections comes from the insight of the Johnson-Lindenstraus (JL) lemma.
In 2003, Achlioptas in [1] formulated an improved version of the same idea.

The question is how we could embed a high dimensional set of points in a
Euclidean space of a lower dimensionality without causing too much distor-
tion in the pairwise distances of the vectors in the resulting space.

We know (see section: 2.2.1) that SVD guarantees:

||A− Ak||F ≤ ||A− D|| (2.15)

where A is the initial matrix, Ak is the rank k approximation of A and D
is any matrix of rank k. Unfortunately, this optimality (global property)
does not guarantee a bound on the pairwise distances of the vectors (local
property).

Before going to the theorem that Achlioptas proved, let us try a very simple
embedding in a lower dimensional space. We can pick only the first k of
the original components of the vectors. Unfortunately, if two vectors differ
only in some of the dimensions that we discarded, then they could be very
far apart in the original space while their distance is decreased significantly
in the embedding space. That would not be an issue if we knew that all of
the components in the vectors are roughly of the same importance. There-
fore, we can simply resolve this issue by applying a random rotation to the
original vectors.

13

2. Background and Related Work

Theorem 2.4 Let P be an arbitrary set of n points in Rd, represented as an nxd
matrix A. Given ε, β > 0 let

k0 =
4 + 2β

ε2/2− ε3/3
log n.

For integer k ≥ k0, let R be a dxk random matrix with R(i, j) = rij, where {rij}
are independent random variables from the following probability distribution:

rij =
√

3×


+1 with probability 1/6
0 with probability 2/3
-1 with probability 1/6

Let

E =
1√
k

AR

and let f : Rd → Rk map the ith row of A to the ith row of E. With probability at
least 1− nβ, for all u, v ∈ P

(1− ε)||u− v||2 ≤ || f (u)− f (v)||2 ≤ (1 + ε)||u− v||2.

Each column of the projection matrix R provides an estimation of the orig-
inal vector length. We maximize the (mutual) information that we get by
making these vectors (columns) independent with equal weight (orthonor-
mal). Because having orthonormal vectors is expensive in terms of dimen-
sionality, we use nearly orthogonal ones, as defined above.

As an open problem from this study was left the case where the initial vec-
tors are guaranteed to live in some low-dimensional space.

The fast Johnson - Lindenstrauss transform and approximate nearest neigh-
bors

The key idea is that we want to embed matrix A using a sparse random pro-
jection R. We may have a problem when A is also sparse. To solve it, we use
Fourier transformation and randomization by exploiting the “Heisenberg
principle”. We see more precisely the intuition in the following paragraphs.

The Johnson-Lindenstrauss Lemma shows that for n points in Euclidean
space, we need a subspace of O(log n) = c(ε) log n dimensions with dis-
tortion ε. Alon [6] showed that c(ε) can not be reduced by much. More

precisely, Alon proved that c(ε) = Ω
(

1
ε2 log(1/ε)

)
even for a simplex.1

1A k-simplex has k + 1 affinely independent points, that is, and the differences of each
one (apart from the first) minus the first one are linearly independent. In other words, it is a
generalization of triangle in more than 2 dimensions.

14

2.2. Vector representation

Because of this lower bound, the research was focused on making the pro-
jection matrix more sparse. Already, as we saw in the previous section,
Achlioptas provides a sparse matrix where the density has been reduced by
a constant factor. Increasing the sparsity of the projection matrix even more
could increase the distortion of a sparse matrix.

The study in [2] tried to overcome the problem that arises when we use
sparse matrices by employing the Heisenberg principle from harmonic analy-
sis: A signal and its spectrum cannot both be concentrated. With this idea
in mind, the next step looks very intuitive. We apply (precondition) Fast
Fourier Transformation (FFT) to the random projection matrix. If we had
sparse vectors, according to Heisenberg’s principle, we will enlarge their
support. Because the reverse may happen (dense vectors with small sup-
port), we can randomize the Fast Fourier Transform.

We can now formalize the intuition in the previous paragraph by describing2

how we can obtain a random embedding Φ such that:

Theorem 2.5 For a fixed set A of n vectors in Rd, ε < 1, and p ∈ {1, 2} with
probability at least 2/3, the following are true:

1. For all x ∈ A,

(1− ε)αp||x||2 ≤ ||Φx||p ≤ (1 + ε)αp||x||2 (2.16)

where α1 = k
√

2π−1 and α2 = k where k = cε−2 log n for some global c.

2. The mapping Φ : Rd → Rk requires

O(d log d + min{dε−2 log n, εp−4 logp+1 n}) (2.17)

operations.

In order to obtain the matrix Φ that the theorem 2.5 requires, we multiply
three matrices Φ = PHD.

• The elements of Pk×d are independently distributed:

Pij =

{
0, with probability 1− q
N(0, q−1) otherwise

where N(0, q−1) is the normal distribution with mean value 0 and

variance q−1. The sparsity constant is q = min
{

Θ
(

ep−2 logp n
d

, 1
)}

.

2The theorem 2.5 and its proof can be found in [2].

15

2. Background and Related Work

• The elements of H are given by:

Hij =
(−1)<i−1,j−1>

√
d

where < i, j > is the dot product (modulo 2) of the m-bit vectors i, j
expressed in binary. The matrix H can be characterized as normalized
Walsh-Hadamard matrix. It is known for H the following holds on
Euclidean space:

||Hx|| = ||x||2

In other words, H is an isometry on ld
2 .

Moreover, we can show that the following recurrence relation with
H1 = (1) holds for H = Hd.

Hd =
1√
2
·
(

Hd/2 Hd/2
Hd/2 −Hd/2

)
Thus, applying H takes O(d log d) time by divide-and-conquer.

• The matrix Dd×d is a diagonal matrix where:

Dii =

{
−1, with probability 1/2
1, with probability 1/2

Applying D to some vector x takes time O(d).

Using Φ, the mapping Φx of any vector x ∈ Rd can be computed in time
O(d log d + qdε−2 log n).

Recent improvements

Recently, Matousek [34] showed that we can combine this idea with Achliop-
tas approach using ±1 matrices. More precisely, he showed that we can
have a sparse matrix Φ such that the non-zero elements are ±1 instead of
normally distributed. In study [3], an improvement of the running time to
O(d log k) for k = O(d1/2−δ) was shown.

Another important study is [17] where using hashing and local densification,

they construct a sparse projection matrix with about O(
1
ε
) non-zero entries

per column, or more precisely O
(

1
ε

log2(k
δ) log(1

δ)

)
non-zero entrie per col-

umn with k = O(1
ε2 log(1

δ)). One important insight from their paper is that
having each dimension mapped to exactly one hash bucket and the lack of
self-collisions leads to a reduction in the variance of the cross-product error.

16

2.2. Vector representation

We summarize their main result omitting the definition of the constants k, c
that depend on δ, ε. The main result can be found on section 2 of [17].

Let r = {rj}j∈[cd] be a set of independent and identically distributed (i.i.d)
random variables such that for each j ∈ [cd], Pr[rj = 1] = Pr[rj = −1] = 1/2.
Let δα,β = 1 if and only if α = β and zero otherwise. Let nnz(x) denote the
number of non-zero entries in vector x.

Let h′ : [cd] → [k] be a hash function chosen uniformly at random and let
H′ ∈ {0,±1}k×cd be defined as H′ij = δih′(j)rj

. We define P ∈ {0,±1}cd×d as

Pij =


1√
c

for (j− 1)c + 1 ≤ i ≤ jc,

0, otherwise

Now, we let Φ = H′P.

Theorem 2.6 For any given vector x ∈ Rd, with probability 1− 4δ, Φ satisfies
the following property:

(1− ε)||x||22 ≤ ||Φx||22 ≤ (1 + ε)||x||22 (2.18)

The time required to compute Φx is O(1
ε log2(k

δ) log(1
δ · nnz(x)).

The (very technical) proof of the above theorem is omitted.

2.2.6 Hashing kernels

Hashing can be used as a dimensionality reduction technique. Hashing ker-
nels employ the hashing-trick.

Definition 2.7 (Hashing-trick) Project (hash) a high dimensional (input) vector
x ∈ Rn into a lower dimensional feature space Rm.

There are two main variants of the hash kernels: biased (example in [48])
and unbiased ones (see [53]). We start with the biased ones.

Definition 2.8 (Biased hash kernels) We denote a hash function h : N →
{1, . . . , m}. Using that function, we define:

ϕi(x) = ∑
∀j:h(j)=i

xi (2.19)

Then, we can compute the (approximate) inner product for vectors x1, x2 as:

< x1, x2 >≈< ϕ(x1), ϕ(x2) > (2.20)

In order to obtain unbiased hash kernels, sometimes instead of performing
an addition, we do a subtraction. Somewhat more formally:

17

2. Background and Related Work

Definition 2.9 (Unbiased hash kernels) We denote a hash function h : N →
{1, . . . , m}. We also need a hash function ξ : N→ {−1, 1} for the sign.

ϕi(x) = ∑
∀j:h(j)=i

ξ(i)xi (2.21)

Then, we can compute the (approximate) inner product for vectors x1, x2 as:

< x1, x2 >≈< ϕ(x1), ϕ(x2) > (2.22)

In contrast to random projections, the hashing trick does not require to store
the projection matrices (we only need to know the hash functions that we
use) and it preserves sparsity in the initial matrix.

For proofs on the approximation bounds of the inner products, see [48] and
[53]. It is also interesting how these ideas recur in Count-min sketch that we
see in section 2.2.7.

A heuristic but very fast method for feature extraction using hashing on
words is presented in [21].

2.2.7 Sketch algorithms

Creating a sketch of the input is popular in streaming models. A sketch can
be thought as a “rough” description of the input data in limited space. A
seminal paper [5] on the space complexity of the frequency moments by
Alon, Matias and Szegedy won the Gödel prize in 2005. On the current
section we will focus on count-min sketch [16], which can be thought of as
a generalization of bloom filters. We begin with the idea of bloom filters
as an introduction, proceed with the description of Count-Min sketch and
at the end of the section, we explain what the pairwise independent hash
functions are, which we need to implement the aforementioned probabilistic
data structures.

Bloom filter

A bloom filter [8] is a bit array that has m bits initialized to 0. It supports
only insertion (increase) of an element and query, that is, whether the element
has been seen so far. It uses m universal hash functions to set/query the bits
of the array according to the input element in the following way. Each of the
m hash functions returns one position which should be set to 1. If we add
an element to the Bloom filter, we set the corresponding positions to 1. If we
query for an element, we require that all the corresponding positions were
already set to 1.

That is all about the description of how a bloom filter works. Now, we
can focus on why they work by making some important observations and

18

2.2. Vector representation

skipping many of the details. First of all, it is impossible to have a false
negative, that is, to query for an element and get an answer of non existence
in the set, even though the query exists. The reason is that if we set some
bits because we read an element x, we are sure that all these bits are set in
every subsequent query. On the other hand, if some bits were set, maybe
that happened from a a combination of input elements and therefore we
may get a false positive for an element that was not observed in the input
stream but all of its corresponding bits in the array are set. That is the main
drive behind the requirement of independent hash functions.

Because of the way bloom filters work, they are only suitable for representa-
tions of sets and not multisets because the number of times we observe an
element makes no difference to the internal representation on the array.

In order for Bloom filters to support the delete operation, the counting filters
were introduced [19]. Instead of storing just one bit (presence or absence),
the counting filters store a counter of how many times we have observed an
element. In case we want to delete one element, we decrease the number
stored in the appropriate position. This idea, with some modifications lead
us naturally to the idea of count-min sketch that we describe on the next
section.

A survey on Bloom Filters can be found on [9].

Count-min sketch

We will use ideas from the previous section. Firstly, though, we define the
problem that Count-min sketch tries to solve.

We assume that we have a large set U of identifiers (for instance words in
a corpus). We are interested in the counts of the identifiers u ∈ U. We
want to support operations such as: increase(u, c), decrease(u, c) and query(u)
assuming always that the counts never become negative.

The main idea is that we use m universal hash functions hi, 0 ≤ i < m
and m vectors Ai, 0 ≤ i < m of equal length. The function increase(u, c)
is implemented for every 0 ≤ i < m by Ai[hi(u)] = Ai[hi(u)] + c and de-
crease correspondingly by Ai[hi(u)] = Ai[hi(u)]− c. We answer query(u) by
mink

i Ai[hi(u)]. The initial value of Ai[j] = 0, ∀i, j < m.

The name Count-min sketch comes from the way we answer a query. The
rationale is simple. A hash function may map some elements to the same
key, causing what we call a collision. Therefore, looking at a the value cor-
responding to a key from a table of a specific hash function, we can only
overestimate the number of elements that we have observed so far. To alle-
viate this problem, from all the estimations that the hash functions provide,
we take the minimum. We still have the guarantee that the estimation we

19

2. Background and Related Work

get is not less that the true value but we try to keep the value that is closer
to the actual one. In our case, this value corresponds to the smallest one.3

An interesting application of Count-min sketch is to compute the inner prod-
uct between two vectors. We can do that by multiplying the corresponding
Ai of the two vectors together and then getting the minimum. For details,
see the Theorem 3 in [16].

Count-min sketch with Conservative Update

We have already discussed that a count-min sketch only overestimates the
counters of the elements. That gives the following idea. Whenever we use
the increase(u, c) function, submit a query(u) and get the current estimation
for u, which we call ĉ(u). Then, we modify the procedure of the increase(u, c)
function to be Ai[hi(u)] = max{Ai[hi(u)], ĉ(u)+ c}. The idea is that since we
always overestimate the counts, we don’t have to increase them more than
necessarily; more than their current estimation and the number that should
be increased on current step.

We should note that if we use conservative update, the operation of de-
crease(u, c) is no longer possible since we do not know if we should subtract
or not c for a specific component. Moreover, the bias now depends on the
order of the insertions, as it can be seen with a simple example.

Example 2.10 (The bias of Conservative Update depends on the order) We
consider as input data:

wordA 3
wordB 5
wordC 4

Figure 2.1: Input data.

We use two hash functions with two values each one (codomains: [1,2], [a, b]). We
assume that the word mapping is:

wordA {1, a}
wordB {2, a}
wordC {1, b}

Table 2.1: The mapping of a word according to the hash value of the first
and the second hash function, correspondingly.

3Recall our assumption that the counts never become negative, that is, we can not remove
an element that we have not observed yet.

20

2.2. Vector representation

Assuming that the order of the insertion is: wordA, wordB, wordC, the results are
depicted in table 2.2.

1 4
2 5
a 5
b 4

Table 2.2: Result if the insertion order is wordA, wordB, wordC.

Assuming that the order of the insertion is: wordB, wordC, wordA the results are
depicted in table 2.3.

1 7
2 5
a 7
b 4

Table 2.3: Result if the insertion order is wordB, wordC, wordA.

The conservative update was introduced in [23].

Universal hash functions

For bloom filter and especially count-min sketch, we are interested in univer-
sal hash functions. We describe one simple idea of how we can obtain hash
functions that fulfil the requirements for these probabilistic data structures.

We are specifically interested in 2-universal (also called pairwise indepen-
dent) hash functions.

We define as U the universe with |U| = m ≥ n, and V = {0, 1, . . . , n− 1}.
We call a family of hash functions H that h ∈ H : U → V, 2-universal if for
a uniformly selected function h ∈H we have:

Pr(h(u1) = h(u2)) ≤
1
n

In other words, if the collisions are as rare as possible.

We define a simple universal family. Let p ≥ m be a prime and ha,b(u) =
((ax + b) mod p) mod n). Then, the following family H is 2-universal:

H = {ha,b|1 ≤ a ≤ p− 1, 0 ≤ b ≤ p}

See study [12] where Universal Hashing was introduced in practice.

21

2. Background and Related Work

2.3 Compositional Process

The meaning of a complex expression is determined by its struc-
ture and the meanings of its constituents. (the Principle of Com-
positionality)

The Principle of Compositionality (sometimes also called Frege’s Principle)
is the main idea that underlies this section. If we accept this principle in the
context of our study, we are allowed to focus on smaller parts of a sentence
(words) and then seek a compositional process that allows to derive the
meaning of a sentence using as ingredients the words and their structure.
More details on the Principle of Compositionality can be found in Stanford
Encyclopedia of Philosophy [51].

2.3.1 Models of Compositionality

We mention in brief some methods used to model compositionality in the
context of distributional semantics. All of them operate in the vector space
model. We assume that we have already derived two vector u and v which
correspond to two words and we want to extract their combined meaning c.
We denote as i the i-th component of a vector.

• Addition: c = u + v. See an example in [42]. Usually, we take the
centroid vector and not just the addition, that is, we also divide by the
number of words in the composition the result.

• Pointwise multiplication: ci = ui · vi. Example in [4]. This method shares
the simplicity of addition but better results are reported in literature.
For instance [4] compared to [42] and the study in [35] which con-
cludes that multiplicative models are superior. In both models the
word order does not matter (bag of words model).

• Tensor product: c = u⊗ v. Example in [54]. Tensor product is the most
general bilinear operation. Applied on the vectors u and v produces a
matrix containing all the possible products ui · vi. The main issue with
tensor products is that the increase of dimensionality of the resulting
space compared to the original vectors space, since we get a matrix
instead of a vector.

• Circular convolution: ci = ∑
j

uj · vi−j. Effectively it compresses the ten-

sor product of two vectors back to the original space. See [38] for
details.

• Linear regression: c = Au + Bv, where A, B are matrices estimated by
a supervised learning algorithm (partial least squares regression). See
[25] for details.

22

2.3. Compositional Process

• Recursive neural networks: See [49, 50]. It uses the recursive structure
that is commonly found in natural language. This model can learn
the meaning of operators in natural language and outperforms many
other models.

• Through category theory: Meanings of words with functional types, such
as verbs and adjectives, should be represented with tensors. Because
this idea differs significantly from the previous ones, we develop it in
section 2.3.1. See [15, 24] for details.

A presentation and evaluation of most of the above models has been done
also in the studies [25, 35].

So far, we have seen examples where the model of compositionality f is:

c = f (u, v) (2.23)

A more general model is sometimes used (see [35] for a more detailed expla-
nation) where f is defined as:

c = f (u, v, R, K) (2.24)

where R is the syntactic relation of the words and K is any additional knowl-
edge.

Use of functional semantics to model compositionality of distributional
meaning.

The philosophy of formal compositional semantic models has its roots in [22]
and the idea that a sentence is a function of the meaning of its parts. On the
other hand, distributional models (meaning can be derived by its context)
are more recent and can be attributed to Wittgenstein [55]. Even though
Frege and Wittgenstein had different points of view as it is demonstrated
by the correspondence between them [18], the approach of Compositional
Distributional Model of meaning tries to marry the two ideas.

Two studies that focus on this approach [15, 24], with [15] laying out the
mathematical foundations and [24] being an experimental study of a subset
of the theory, argue that the use of pregroups is motivated by their common
structure with vector spaces and tensor products. The main idea is as fol-
lows: The meaning of a word is a vector while the grammatical role is a type
in Pregroup and in order to model the composition of meaning, type pairs the
tensor product of the vector spaces paired with the Pregoup composition is
used.

To provide an example, let us use the following symbols: n: noun s: declar-
ative statement j: infinite of the verb σ: glueing type

23

2. Background and Related Work

We use the exponent xl or xr to denote, respectively, whether an x is required
on the left, or on the right position.

We assume that if the juxtaposition of the types of the words within a sen-
tence reduces to the basic type s, then the sentence is grammatical.

Example: Bob (n) likes (nrsnl) Alice (n).

It is grammatical because: n(nrsnl)n→ 1snln→ 1s1→ s

A second example: Bob (n) does (nrsjlσ) not (σr jjlσ) like (σr jnl) Alice (n).

Again, someone can test that this sentence is also grammatical.

The procedure of assigning meaning to a string of words can be roughly
described as follows:

1. Assign a grammatical type pi to each word wi of the string and then
verify using the process that we described above that the sentence is
grammatical.

2. According to the grammatical type, assign a vector space to each word
of the sentence. Basic types like a noun can be assigned a vector while
compound types like verbs are tensor spaces.

3. Take the tensor product of the words.

2.3.2 Compositionality in queries

Usually, queries do not contain the necessary syntactic information in order
to apply the approaches that require some kind of syntactic information,
either explicitly or implicitly (for instance Recursive Neural Networks in
[49, 50] or [15, 24]. Moreover, if the word order appears arbitrary and which
dictates towards a simple model of compositionality with the commutative
and associative properties. We should note here that usually we find the re-
verse requirement in the majority of current bibliography, because the prob-
lem that is usually studied is composing the meaning of a sentence from the
meaning of its words and not queries.

24

Chapter 3

System Description

We begin our description with some necessary definitions and then, we de-
scribe the architecture of our system. We describe in some more detail how
we built the system in a distributed environment and resolved some scaling
issues. Finally, at the end of this chapter, we give an overview of our system.

3.1 Basic concepts

We do not explain here concepts that were described in chapter 2. Instead,
we provide some definitions and concepts that are necessary for the later
discussion.

Definition 3.1 (Co-occurrence statistics vector of w) The word frequencies of
neighbouring words in relevant snippets.

Definition 3.2 (Snippet) By default, the snippet on standard web search result is
a max of 160 characters.

Definition 3.3 (Neighbouring to w) Words that occur up to distance k (k ≤ 3
so far) from word w in a snippet.

Definition 3.4 (Relevant snippet to w) The snippet is returned (top N queries)
by a search engine when there is a query containing w that returns the snippet.

We have a collection of snippets as input stored in a BigTable [14]. For the
purposes of our system, we consider only snippets that are in the English
language. To find these snippets, we filter out our collection according to
the character set of a snippet by keeping only those in ASCII encoding and,
then, using the output of a language classifier.

Moreover, we are only interested in a specific set of words W that exists also
in our evaluation dataset. We do not build co-occurrence statistics vectors
for the rest of the words. That decreases the scale of our system in terms of

25

3. System Description

how many vectors we produce. That part is parallelisable in a distributed
environment because there are no dependencies between the word vectors
of different words.

3.2 Input parameters

In order to explore different directions, in addition to our input corpus of
snippets and the evaluation datasets, we consider as input to our system the
following:

1. List of stop words (if it is empty, do not remove stopwords).

2. Window size.

3. Sides on which we expand the window (left or right or on both sides
of the target word).

4. Weight distribution. It can be either uniform (each word within the
context window has the same weight) or exponential (the weight of a
word decreases exponentially according to its distance from the target
word within the window).

5. Use of stemming on both keywords and context, only on context words
or no use of stemming at all.

6. The weight of the components of the co-occurrence statistics vectors is
using either frequencies or positive pointwise mutual information between
the target word and the context word.

7. Use of hash kernel and what is the resulting size of the output vector.

8. Use of Count-min sketch and its parameters. The parameters include:

a) Width: How many values each hash function can output.

b) Depth: How many hash functions we use.

c) Use of Conservative Update.

In the implementation of our system, we split the aforementioned parame-
ters into two categories: parsing and compression parameters. In the com-
pression parameters are the hash kernel and the count-min sketch while
everything else is considered as a parsing parameter.

3.3 Constructing the Co-occurrence statistics vectors

The idea is to iterate over all the snippets in our collection, find the words of
interest that are contained within a window of the target word according to

26

3.3. Constructing the Co-occurrence statistics vectors

the previous definitions and using this information, create the correspond-
ing distributional vectors. We skip the description of details in the code like
determining language of the queries, stemming, removal stopwords and
other technical details. We will visit them in a later section.

The first phase of the system is described in Algorithm 3.

Algorithm 3 Find co-occurring pairs.

Require: BigTable bt of queries q and associated snippets s. Set of words W.
Ensure: For each word in W, find neighbouring words according to previ-

ous definitions.

1: for ∀q ∈ bt do
2: for ∀ normalized words t ∈ q do
3: if t ∈W then
4: if t ∈ s where s is an associated to q snippet then
5: emit neighbouring words
6: end if
7: end if
8: end for
9: end for

As we can see, we need a single pass over the collection of snippets in the
BigTable, staying faithful to the streaming model. The algorithm 3 is exe-
cuted in Flume [13], which is built on top of MapReduce. Flume is a set of li-
braries that provide an abstraction layer on top of MapReduce. They provide
classes that represent immutable parallel collections and some operations on
them. Flume instead of executing the described operations as listed, creates
a plan of execution. Then, it examines which results are needed, optimizes
that plan and then executes it.

The second phase of our system consists of collecting the co-occurrence pair
that we found, and creating the vector representations that we need. The
final vectors that we output are either frequencies for each component in
the vector or their corresponding positive pointwise mutual information,
depending on the set of parameters. A high level description of the second
phase is provided in Algorithm 4.

We have omitted the discussion about how these pairs fit in memory and the
necessary data structures in order to process them. Because the environment
is distributed, we rely for that on Flume [13] data structures. We also take
into consideration the (expected) sparsity of the resulting vectors.

The vectors for each word are finally stored in an SSTable. A description
about what an SSTable is, can be found in [14].

27

3. System Description

Algorithm 4 Build Co-occurrences matrix

Require: Pairs of words (target word, context word). (I)
Ensure: Output Co-occurrence statistics vectors.

1: Create a map M of target word: (context word, occurrences)
2: for ∀pairs of words (t, c) ∈ I do
3: M[t][c] = M[t][c] + 1.
4: end for
5: if we need PPMI then
6: Create a map G of context word: occurrences
7: for ∀pairs of words (t, c) ∈ I do
8: G[c] = G[c] + 1.
9: end for

10: end if
11: Using M (and if necessary G) compute frequencies of the words (or

PPMI).

3.4 From word representations to queries and their sim-
ilarities

We outline the plan of how we create the query representations from the
word vectors that we have due to the previous phase in diagram 3.1.

WriteResult

ComputeSimilarities

Join2

QueryPairsCreateQueryRepresentations

Join1

GetEvaluationQueriesLoadWordVectors

Figure 3.1: Outline of creating the query representation and getting the sim-
ilarities between query pairs.

We proceed with the explanation of every function described in the diagram
3.1.

1. GetEvaluationQueries: Given the evaluation queries, we find which words

28

3.5. Differences with previous systems

contained there. We also keep the information about the queries since
we have to build their representation later.

2. LoadWordVectors: We simply load from the SSTable the necessary word
representations.

3. Join1: For each word, we have its representation and a list of all the
queries where it is contained.

4. CreateQueryRepresentations: For each query, we collect all the words
that are necessary in order to create its representation and according
to our compositional function, we create the query representation.

5. QueryPairs: We load the query pairs that indicate which query should
be compared with which one.

6. ComputeSimilarities: We compute the similarities between the vectors
that represent the two queries for each pair. The computation may
vary slightly according to the vector representation (for instance, in
the case of Count-min sketch).

7. WriteResult: We output the result of the query similarities.

We should not that we in our system we view queries as sets of words.
That means, given that our compositionality functions are commutative, the
word order does not matter. Moreover, repetition of words is ignored. For
instance a query q1 = "word1 word2 word1 word3" is reduced to "word1

word2 word3".

A very high level description of the current phase is described in Algorithm
5.

Algorithm 5 Query Representations and Similarities
Require: Query pairs QP, word representations WR
Ensure: Similarity measure for each query pair

1: Read all the queries.
2: For each query, find associated words and collect their vectors.
3: Build query representation from these associated words. (compose =

addition)
4: For each query pair in evaluation dataset, extract similarity measure.

3.5 Differences with previous systems

We describe the main differences of our system with those describe in [41]
and [4]. Someone can find a short description about these systems in the
section 2.1.7.

29

3. System Description

Compared to [41], our main differences are:

1. Instead of truncating the vector representations of the words to m = 50
components, we are able to either use the full vector, a hash kernel or
a count-min.

2. We don’t consider fixed the definition of context. In [41], the window
size has length three on both sides and a uniform weighting in all
terms. Instead, we considered window size and sides as parameters.
As for the weighting schema of each term, it can be either a uniform
distribution or words closer to the target word count exponentially
more.

3. We use either word frequencies or positive pointwise mutual informa-
tion instead of tf-idf.

Compared to [4], our main differences are:

1. Flexibility on the vector representation (not just truncation) as before.

2. Similarly with the context definition.

3. As a compositional function we are able to use either the arithmetic
mean of the geometric one.

4. We don’t employ the χ2 test.

3.6 Challenges of the distributed environment

The input corpus is large enough that needs more than few machines in or-
der to be processed. We use Flume in order to run in a distributed manner
the two phases that we described in section 3.3. During the first phase, ev-
ery machine keeps internally a mapping between a target word t, a context
word c and the number of occurrences t of c in the context of t. Each time
we find a new word, we create the necessary entry, otherwise we increase
the counter by one or the corresponding weight if we follow the exponential
distribution. At the end of the processing on each computer, we emit key/-
value pairs where as key we use the (t, c) and as value t. Then, we group
these key/value pairs by key and we reduce them to a single key/value
pair by adding the corresponding number of occurrences. Now, we regroup
them using as key t. If we use frequencies, we normalize the counts by the
aggregate value that corresponds to each t. If we use positive pointwise mu-
tual information as component for the vectors, we also need a map with the
frequencies of each word in the corpus collection. We can obtain this map
following a similar process.

The parsing parameters are enforced when we read the collection of the
snippets. This step is fully parallelisable since it does not have dependencies
from other parts of the execution pipeline.

30

3.7. Challenges of the reduced space

Similarly, the compression parameters are also enforced during the read
of the corpus, apart from the calculation of the inner product according
to count-min which can take place at the very end only. While we read
the input, we apply the hash functions on the words that we read before
inserting them to the corresponding maps. In order to make sure that the
parsing takes place correctly, the compression can start only after we have
applied on the text all the transformation that are indicated by the parsing
parameters (stemming, removal of stopwords, etc). The rest of the pipeline
remains similar whether we use compression or not.

3.7 Challenges of the reduced space

When we compress the words that we read using hash functions, we do not
know any more what was the initial word. So, how can we compute the
inner products of the co-occurrence statistics vectors or even the positive
pointwise mutual information?

As long as we keep using the same hash functions, we know that a specific
word gets mapped always to the same components. The theory that we
mentioned briefly in the sections 2.2.6 and 2.2.7 provides us some guarantees
about the approximation error of the inner product in case of collisions. We
compute the positive pointwise mutual information under the assumption
that the collisions will not cause to much distortion if we use the same hash
functions.

3.8 Overview of the system

We already discussed about the details of the system. Let’s look again now
at the big picture of what is happening.

According to some input parameters, we read the snippets (input corpus) in
parallel from many machines. The way we read the snippets depends on the
parsing parameters. Then, we compress the words that we read according to
the compression parameters. We store the compressed representation of the
words in a mapping data structure in every machine along with necessary
information in order to create the co-occurrence statistics vectors later. When
the processing in every machine finishes, we regroup the data that we read
in order to create the semantic vectors. That concludes the creation of the
co-occurrence statistics vectors.

The creation of the query vectors presents no extra challenges. We have to
gather the necessary co-occurrence statistics vectors, create the representa-
tions of the queries and then extract their similarities.

31

Chapter 4

Evaluation

In the current chapter, we present and discuss the results from the experi-
ments on the different parameters of the system. We split the parameters
into two parts: parsing and compression parameters where we dedicate the
corresponding sections.

In order to evaluate our results, we use three correlation coefficients: Pearson
product-moment, Spearman and Kendall-tau. We evaluate our system under
different values of the input parameters and we also compare it with other
systems on the same task. Our system outperforms most of these systems
in both datasets that we used.

Before presenting our results, we explain the datasets that we used.

4.1 Description of evaluation datasets

We use two datasets. The evaluation dataset CC2000 was built from the
results of a search engine under the assumption that two queries are related
if a user clicks on same document. It contains 2000 pairs of queries. Each
query pair was rated on the scale 1 - 4 (unrelated - same meaning) by 5 raters.
The inter-rater agreement gave a Kappa value of 0.65. A more thorough
description of CC2000 can be found in [28] in section 6.

The other evaluation dataset, called QS1500, can be found in [4]. It contains
57 source queries, each one paired with up to 20 target queries. The queries
were rated in the 5-Likert scale. The inter-rater agreement gave a Kappa
value of 0.711.

For more details on the datasets, see [4, 28, 42]. At the end of the section,
we will present some aggregate results by comparing our system to several
other systems. This is based primarily on the work in [28].

33

4. Evaluation

4.2 Parsing Parameters

As parsing parameters and in accordance to the discussion in chapter 3, we
consider:

1. Window size.

2. Window sides.

3. Weight distribution.

4. Stop words.

5. Stemming.

6. Frequencies or positive pointwise mutual information as vector compo-
nents.

We dedicate one section in the study of every parameter by conducting a
series of experiments. After providing the data from the experiments, we
discuss the results.

The experiments using the first three parameters (window size, sides, distri-
bution), can be thought as our attempt to find experimentally evaluate dif-
ferent notions of the context. Experiments using stop words and stemming
are about improving the quality of the context window by transforming the
words that we observe within that window. Finally, the contrast between fre-
quencies and positive pointwise mutual information serves the purpose of
finding a good weighting scheme for the components of the co-occurrence
statistics vectors.

4.2.1 Window sides

We start by studying the effect of defining the context of one word (the target
word) in one side only or on both sides of a target word. As compositional
process we consider either addition or pointwise multiplication of the vector
components. The weights of the vector components are frequencies. We
consider window sizes from one up to three.

In the case of using as compositionality function the vector addition, the
results are very clear. We can observe in tables 4.1, 4.2, 4.3 and 4.4 that
considering windows on both sides of the target word always outperforms
one sided windows.

We omit the results for the component-wise multiplication because they are
not competitive (the correlation is between 0.10− 0.20). Nevertheless, even
in that case, looking both sides is in general a better approach than using
only one side of the context window.

34

4.2. Parsing Parameters

Correlation Pearson Spearman Kendall tau
Dataset CC2000 QS1500 CC2000 QS1500 CC2000 QS1500

left 0.32 0.30 0.26 0.26 0.23 0.21
right 0.30 0.35 0.24 0.30 0.21 0.23
both 0.35 0.39 0.29 0.36 0.25 0.29

Table 4.1: How choosing which sides to consider in the context window
affects the correlation of the system prediction with the gold standard. The
window size is one. As components of the vectors we use frequencies and
the compositional function is addition.

Correlation Pearson Spearman Kendall tau
Dataset CC2000 QS1500 CC2000 QS1500 CC2000 QS1500

left 0.32 0.30 0.26 0.26 0.23 0.21
right 0.31 0.35 0.25 0.32 0.22 0.25
both 0.35 0.38 0.29 0.38 0.25 0.30

Table 4.2: Study of context sides. Window size is two. The other parameters
are the same as in table 4.1.

Correlation Pearson Spearman Kendall tau
Dataset CC2000 QS1500 CC2000 QS1500 CC2000 QS1500

left 0.33 0.29 0.27 0.26 0.23 0.20
right 0.30 0.35 0.24 0.32 0.21 0.25
both 0.34 0.38 0.28 0.37 0.24 0.29

Table 4.3: Study of context sides. Window size is two and the distibution is
exponential. The rest of the parameters are the same as in table 4.1.

In total, we can conclude that defining the context window on both sides of
the target word outperforms the definitions that are limited to only one side
(left or right).

4.2.2 Weight distribution

We fix the window size to two, and we measure the effect on the correlation
with the gold standard if we double the weight of the words closer to the
target word compared to the putting the same weight to every word. The
results for vector addition as compositional method are listed on table 4.5.

The experiments presented here, as well as the experiments where the com-
positionality function was pointwise vector multiplication, did not show any
significant differences (the uniform distribution looks slightly better) using
different weights for context words according to their relative position.

35

4. Evaluation

Correlation Pearson Spearman Kendall tau
Dataset CC2000 QS1500 CC2000 QS1500 CC2000 QS1500

left 0.33 0.32 0.26 0.32 0.23 0.26
right 0.32 0.34 0.26 0.32 0.23 0.25
both 0.35 0.38 0.29 0.38 0.25 0.30

Table 4.4: Study of context sides. Window size is three. The rest of the
parameters are the same as in table 4.1.

Correlation Pearson Spearman Kendall tau
Dataset CC2000 QS1500 CC2000 QS1500 CC2000 QS1500

l u 0.33 0.32 0.27 0.30 0.24 0.24
l e 0.33 0.29 0.27 0.26 0.23 0.20
r u 0.31 0.35 0.25 0.32 0.22 0.25
r e 0.30 0.35 0.24 0.32 0.21 0.25
b u 0.35 0.38 0.29 0.38 0.25 0.30
b e 0.34 0.38 0.28 0.37 0.24 0.29

Table 4.5: Study of weight distribution. The window size is two. We look
at the left, right and both sides of the target word (correspondingly, every
two rows). As components of the vectors we use frequencies and the com-
positional function is vector addition. A number is bold faced if under the
same parameters, using the current distribution is at least as good as using
the other one.

4.2.3 Window size

We now focus on what the window size should be in order to maximize the
correlation with the gold standard. For brevity, we present only the uniform
distribution of weights considering both sides in the context window and as
compositional function we use the vector addition. Looking at the tables in
the previous sections, someone could expand the presentation of the results
to more cases. Still, the conclusions would remain the same.

Correlation Pearson Spearman Kendall tau
Dataset CC2000 QS1500 CC2000 QS1500 CC2000 QS1500

1 0.35 0.39 0.29 0.36 0.25 0.29
2 0.35 0.38 0.29 0.38 0.25 0.30
3 0.34 0.38 0.28 0.37 0.24 0.30

Table 4.6: Window size. We only look at both sides of the target word, assum-
ing uniform distribution. As components of the vectors we use frequencies
and the compositional function is vector addition.

36

4.2. Parsing Parameters

Again, no significant differences increasing the window size. We arrive
to the same conclusion even if we fix the other parameters (window sides,
weighting, compositional function) to different values. We omit the presen-
tation of these results but they can be deduced by the values that we have
presented in the context of other experiments.

4.2.4 Do simple groups of words matter?

So far the top performance of our results is not very interesting. To compare
with a reference system, the DistSim in [4] performs better by exhibiting
Spearman Correlation of 0.322 and 0.438 in CC2000 and QS1500 correspond-
ingly.

Using the conclusions so far (window size, side, weight distribution), we
can define a somehow experimentally validated context window. We want
proceed to the next round of experiments, where we try to improve the
correlation of the results of our system with the gold standard. To do so, we
want to test whether we can improve the correlation of the system prediction
with the gold standard by treating some simple groups of words differently.

More specifically, we experimentally evaluate the effect of ignoring stop
words within the context of a target word. Moreover, we also check whether
we can group words together when we build their word co-occurrence vec-
tors. A simple grouping can be based on their stems. We will test if the
performance of the system increases if we group together words that have
the same stem.

4.2.5 Stop words

We use a list of stop words which we ignore in our corpus. If a stop word
happens to occur in a query, we consider in its place the identity element
for our compositional function.

We present on table 4.7 the results of stop word removal under all the dif-
ferent parameters we have explored so far in one table. To facilitate the
presentation, we create a smaller table (table 4.8) where we compare the re-
sults of stop word removal with the best performing results without stop
word removal.

We can observe that stop words removal lead to increase in correlation with
the gold standard. To verify it more easily, the table 4.8 presents the cor-
relation of the system with and without stop word removal in the case of
window size equal to three, both sides are considered and the weight distri-
bution is uniform (one of the best performing cases so far).

37

4. Evaluation

Correlation Pearson Spearman Kendall tau
Dataset CC2000 QS1500 CC2000 QS1500 CC2000 QS1500

1 l u 0.37 0.38 0.32 0.33 0.28 0.26
1 r u 0.39 0.45 0.31 0.35 0.27 0.28
1 b u 0.41 0.46 0.35 0.38 0.31 0.31
2 l u 0.38 0.40 0.31 0.35 0.27 0.28
2 r u 0.39 0.46 0.32 0.38 0.28 0.31
2 b u 0.40 0.48 0.34 0.40 0.29 0.32
2 l e 0.38 0.39 0.31 0.34 0.28 0.28
2 r e 0.39 0.46 0.33 0.36 0.29 0.29
2 b e 0.41 0.47 0.34 0.39 0.29 0.32
3 l u 0.38 0.45 0.31 0.41 0.28 0.33
3 r u 0.40 0.47 0.33 0.41 0.28 0.33
3 b u 0.42 0.49 0.35 0.42 0.30 0.34

Table 4.7: The correlation of the system after stop word removal. The ele-
ments of the first column indicate window size, sides (left, right, both) and
weight distribution (uniform, exponential) correspondingly.

Correlation Pearson Spearman Kendall tau
Dataset CC2000 QS1500 CC2000 QS1500 CC2000 QS1500

with 0.34 0.38 0.28 0.37 0.24 0.30
without 0.42 0.49 0.35 0.42 0.30 0.34

Table 4.8: We study the performance of the system with and without stop-
words. We only look at both sides of the target word, assuming uniform
distribution. As components of the vectors we use frequencies and the com-
positional function is vector addition.

Clearly, the stop word removal is beneficial for the system. Moreover, now
we are very close to DistSim performance with slightly better results in the
CC2000 dataset and slightly worse results in the QS1500 dataset.

In bibliography, it is not clear what the effect of the stop word removal is
(for an example, see studies [10] and [11]).

4.2.6 Stemming

After the success of the stopword removal, we also tested the performance
of our system after applying stemming. We tried two different approaches.
Stem only the context of the target words or also apply stemming to the
target words. If we apply stemming on the target words, we must apply it
on the queries as well.

38

4.2. Parsing Parameters

We present on the table 4.9 the results of the three approaches (no stemming,
stemming only on context, stemming everywhere).

Correlation Pearson Spearman Kendall tau
Dataset CC2000 QS1500 CC2000 QS1500 CC2000 QS1500
without 0.42 0.49 0.35 0.42 0.30 0.34
context 0.43 0.50 0.35 0.43 0.31 0.35

everywhere 0.45 0.53 0.37 0.45 0.32 0.37

Table 4.9: Stemming. We only look at both sides of the target word, as-
suming uniform distribution and stop word removal. As components of the
vectors we use frequencies and the compositional function is vector addition.

The performance boost is maximized if we apply stemming everywhere
(both context and target words). This is the first point where a specific
set of values in our parameters results in better correlation in both datasets
compared to DistSim. The main insight from the current section is that for
queries, it is beneficial to merge the semantic representation of words with
the same stem.

4.2.7 Positive Pointwise Mutual Information vs Frequencies

Lastly, we also tried using positive pointwise mutual information instead
of frequencies. Because in order to compute the positive pointwise mutual
information we need the probability of a word occurrence in the whole cor-
pus, our system could not scale efficiently to that size due to memory con-
straints. Some back of the envelope calculations indicate that if we need 20
bytes for each word, frequency counter, alignment and other internal book-
keeping data (such as pointers if we use as a mapping data structure a tree),
and assuming that the mapping data structure that we use is dense (which
excludes many hash map implementations), then if using 1 GB memory
exclusively for that dictionary, we can store up 5 · 107 different tokens. The
problem is presented when we try to compute (efficiently) the pointwise mu-
tual information which requires the global map to be in memory and load
each one of the maps for the individual words. Unfortunately, the current
implementation collects all the mapping data structures in the memory of
one machine, before it starts processing them, that is, compute the pointwise
mutual information.

To make it more easy to understand why that happens we have to dive into
the internals of the system. Flume is based on Map Reduce. The specific
high level operation that we use, during the shuffle phase (redistribution of
the key/value pairs according to their keys), sends all mapping data struc-
tures to one machine and forces that machine to load them. That explodes

39

4. Evaluation

the memory needs. To circumvent this issue, we have to change the way we
perform the computation in a similar way to how we perform the merge op-
eration on the mapping data structures. Unfortunately, that would require
a lot of effort, and it would result to a only slight increase in the correla-
tion with the gold standard (as we will see, the compression methods work
surprisingly well) and it would slow down the system in general.

Therefore, we were forced to use compression (we analyze the the perfor-
mance under compression in the section 4.3). Nevertheless, despite the use
of compression, we get the best performance using positive pointwise mu-
tual information instead of frequencies as we can see in the table 4.10.

Correlation Pearson Spearman Kendall tau
Dataset CC2000 QS1500 CC2000 QS1500 CC2000 QS1500

frequencies 0.42 0.51 0.35 0.45 0.31 0.36
ppmi 0.46 0.61 0.40 0.50 0.36 0.41

Table 4.10: We examine the effect of using positive pointwise mutula infor-
mation instead of frequencies as a weighting scheme for the vector compo-
nents. We only look at both sides of the target word, assuming uniform
distribution , stop word removal and stemming both on context and the key-
words. The compositional function is vector addition. We use compression
by having a hash function with output of 211 different values.

4.2.8 Comparison with other methods

For this comparison, we use the data from [28] as well as their original
scripts in order to produce a table similar to the Table 4 of [28] including
our system. We call our system as Our System.

The parameters that we used are:

• Window: 3 words before and after the target word.

• Weight distribution: uniform.

• Components: positive pointwise mutual information.

• Stop words: removal.

• Stemming: both on target words and context.

• Number of components: 211 using a single hash function.

From the tables 4.11 and 4.12 can be seen that the system performs relatively
well outperforming significantly the other similar system DistSim [4]. For
details on the different metrics displayed on the tables 4.11 and 4.12, see
[28].

40

4.3. Compression Parameters

Feature Spearman mAP Prec@1 Prec@3 Prec@5 Sig.
1 NN(All) 0.500 0.806 0.836 0.741 0.637 9
2 Our System 0.496 0.786 0.829 0.713 0.653 9
3 PCA 0.494 0.793 0.800 0.722 0.652 9
4 Oommen-Kashyap 0.470 0.747 0.782 0.698 0.637 12
5 DistSim (Alfonseca et al.) 0.438 0.745 0.767 0.676 0.628 15
6 Mean all 0.435 0.772 0.818 0.691 0.633 16
7 SortedSessionEdit(S) 0.429 0.772 0.837 0.710 0.640 17
8 SortedSessionEdit(G) 0.428 0.776 0.835 0.719 0.648 17
9 WebPMI(S) 0.417 0.713 0.764 0.630 0.589 17
10 WebPMI(J) 0.409 0.730 0.782 0.679 0.595 17
11 SortedSessionEdit(J) 0.408 0.769 0.828 0.709 0.641 17
12 SortedWebEdit(J) 0.386 0.740 0.764 0.676 0.624 19
13 SessionEdit(S) 0.382 0.745 0.796 0.693 0.617 20
14 SessionEdit(G) 0.380 0.742 0.797 0.696 0.624 20
15 SessionEdit(J) 0.365 0.737 0.792 0.692 0.613 22
16 SortedWebEdit(S) 0.357 0.701 0.757 0.663 0.589 23
17 SortedEdit2 0.320 0.714 0.756 0.669 0.631 25
18 SortedEdit1 0.314 0.695 0.761 0.668 0.590 25
19 SortedWebEdit(G) 0.306 0.702 0.753 0.660 0.596 25
20 WebEdit(S) 0.302 0.639 0.701 0.612 0.561 25
21 WebEdit(J) 0.299 0.682 0.691 0.666 0.598 25
22 WebPMI(G) 0.283 0.669 0.608 0.548 0.570 26
23 WordEdit2 0.270 0.648 0.721 0.615 0.571 26
24 WordEdit1 0.252 0.636 0.697 0.620 0.555 26
25 WebEdit(G) 0.220 0.620 0.655 0.593 0.530 26
26 Len2(Char) 0.139 0.519 0.437 0.454 0.436 28
27 Len2(Term) 0.112 0.505 0.454 0.429 0.411 28
28 lp2 -0.161 0.452 0.309 0.309 0.341 -
29 lp1 NaN 0.467 0.379 0.382 0.369 -
30 Len1(Term) NaN 0.465 0.391 0.376 0.371 -
31 Len1(Char) NaN 0.467 0.375 0.373 0.365 -

Table 4.11: QS1500. Comparing of many different systems using data from
[28]. The last column gives the index of the model with the highest Spear-
man correlation that the corresponding model is significantly higher with
p < 0.05.

4.3 Compression Parameters

In order to have a system that scales well, we require it to be able to handle
growing corpus of data without requiring too much memory. That is not
true when we use the full vectors as we did in most of the previous cases.
Moreover, we already encountered a scaling problem when we tried to use
as vector components the positive pointwise mutual information. To solve
these issues, we try to compress the vector representations of the word and
we study the performance drop due to this compression.

As compression parameters and in accordance to the discussion in chapter

41

4. Evaluation

Feature Spearman mAP Prec@1 Prec@2 Prec@3 Sig.
1 NN(All) 0.432 0.739 0.583 0.511 0.451 12
2 SessionEdit(G) 0.424 0.716 0.544 0.486 0.446 13
3 SortedSessionEdit(G) 0.419 0.711 0.550 0.478 0.446 13
4 SessionEdit(S) 0.414 0.713 0.543 0.486 0.446 13
5 SortedSessionEdit(S) 0.407 0.709 0.548 0.477 0.445 13
6 SessionEdit(J) 0.402 0.713 0.540 0.483 0.448 13
7 Our System 0.402 0.713 0.525 0.492 0.442 13
8 PCA 0.392 0.708 0.531 0.481 0.449 13
9 Oommen-Kashyap 0.391 0.705 0.516 0.484 0.451 13
10 SortedSessionEdit(J) 0.391 0.707 0.537 0.473 0.445 13
11 Mean all 0.386 0.711 0.531 0.485 0.448 14
12 WebPMI(G) 0.369 0.699 0.507 0.473 0.449 17
13 WebPMI(J) 0.330 0.692 0.486 0.474 0.444 23
14 SortedWebEdit(J) 0.323 0.696 0.513 0.466 0.441 25
15 DistSim (Alfonseca et al.) 0.322 0.707 0.532 0.492 0.427 25
16 WebEdit(J) 0.322 0.678 0.481 0.451 0.442 25
17 WordEdit1 0.299 0.659 0.444 0.435 0.418 26
18 SortedEdit1 0.298 0.661 0.463 0.434 0.418 26
19 SortedWebEdit(G) 0.295 0.690 0.509 0.457 0.431 26
20 WordEdit2 0.292 0.675 0.473 0.457 0.432 26
21 SortedEdit2 0.288 0.687 0.486 0.462 0.431 26
22 WebEdit(G) 0.287 0.669 0.458 0.457 0.430 26
23 WebPMI(S) 0.264 0.682 0.477 0.461 0.437 26
24 SortedWebEdit(S) 0.264 0.678 0.488 0.458 0.426 26
25 WebEdit(S) 0.258 0.667 0.472 0.438 0.428 26
26 lp2 0.114 0.626 0.382 0.416 0.404 27
27 Len2(Char) -0.036 0.603 0.363 0.390 0.391 -
28 Len2(Term) -0.077 0.604 0.364 0.388 0.385 -
29 lp1 NaN 0.609 0.388 0.388 0.387 -
30 Len1(Term) NaN 0.614 0.391 0.388 0.388 -
31 Len1(Char) NaN 0.608 0.391 0.385 0.387 -

Table 4.12: CC2000. Comparing of many different systems using data from
[28]. The last column gives the index of the model with the highest Spear-
man correlation that the corresponding model is significantly higher with
p < 0.05.

3, we consider:

1. Hash kernels

a) Number of output values in a hash function.

2. Count-min sketch

a) Number of output values in a hash function.

b) Number of hash functions.

c) Use of conservative update.

42

4.3. Compression Parameters

4.3.1 Hash kernels

As we increase the number of hash values that a hash function is allowed to
output, the closer we get to the performance without using hash functions.
The impressive fact here is how fast we approach the accuracy of the non-
compressed representation (see figure 4.1).

For all the plots that we present, the following are true: We only look at
both sides of the target word, within a window of size three, assuming
uniform distribution, stop word removal and the compositional function
is vector addition. Moreover, we present only the Spearman correlation
in order to make our results directly comparable with other studies. The
Pearson correlation is typically sightly higher and the Kendall tau is sightly
lower. The x axis is logarithmic, that is, for a value i, the co-domain of the
hash function has cardinality 2i.

We present first the plot on figure 4.1 that demonstrates that it is possible
to aggressively reduce the dimensionality of the data, without worrying too
much about a performance drop. We observe that about 211 output values
of the hash function are enough to achieve accuracy close to that of the
non-compressed representation.

0 5 10 15 20 25

0.1

0.2

0.3

C
or

re
la

ti
on

(a) CC2000

0 5 10 15 20 25

0.2

0.3

0.4

(b) QS1500

Figure 4.1: We increase the possible number of output values for the hash
function. The horizontal axis is the logarithm of the number of values that a
hash function may output. The value xi corresponds to 2xi different possible
output values from the hash function. For the other parameters, we use
stemming on everything with frequencies as component weight.

For completeness, we present some more plots with different set of param-
eters in our system. The relevant plots for stemming only the context are:
figure 4.2 (frequencies) and figure 4.3 (ppmi). Correspondingly for stem-
ming everything: figure 4.1 (frequencies) and figure 4.4 (pmi).

43

4. Evaluation

0 2 4 6 8 10 12

0.1

0.2

0.3
C

or
re

la
ti

on

(a) CC2000

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

(b) QS1500

Figure 4.2: Similar to figure 4.1 but we perform stemming only on context.

0 2 4 6 8 10 12

0.1

0.2

0.3

0.4

C
or

re
la

ti
on

(a) CC2000

0 2 4 6 8 10 12

0.2

0.3

0.4

0.5

(b) QS1500

Figure 4.3: Similar to figure 4.1 but we perform stemming only on context
and we use positive pointwise mutual information as component weights.

The application of a hash kernel is very compelling in our case. It is very
simple and the benefits can be shown even having a relatively small co-
domain. In the next section, we are motivated to study the count-min sketch.
A count-min sketch using only one hash-function is the same as the case that
we examined in this section.

4.3.2 Count-min sketch

In the case of Count-min sketch, we have three parameters.

1. Number of output values in a hash function. (width)

2. Number of hash functions. (depth)

3. Use of conservative update.

44

4.3. Compression Parameters

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

C
or

re
la

ti
on

(a) CC2000

0 2 4 6 8 10 12

0.2

0.3

0.4

0.5

(b) QS1500

Figure 4.4: Similar to figure 4.3 but we perform stemming on everything.

We will present results in the following two combinations:

1. For stemming everywhere, we study what happens when we increase
the depth as we increase the width without conservative update. We
present two different figures for positive pointwise mutual informa-
tion and frequencies.

2. For stemming everywhere, we study the effect of conservative update
by fixing the width to 256 values and using as an x axis the depth.

Width vs depth in count-min sketch

We observe that increasing the depth is more beneficial than increasing the
width for small co-domains of the hash function. On the other hand, for
larger values, it is not clear that increasing the depth helps any more. Some-
one, could also argue that we have already reached about the maximum
(uncompressed) performance of the system and therefore we should not ex-
pect any benefits from a better lossy compression method.

Conservative update and its relation to the number of hash functions

The usage of conservative update looks important only if we use few hash
functions, otherwise the benefits are diminishing.

45

4. Evaluation

4 5 6 7 8
0

0.1

0.2

0.3

Width (log scale)

C
or

re
la

ti
on

2
4
8
16

(a) CC2000

4 5 6 7 8
0

0.2

0.4

Width (log scale)

2
4
8
16

(b) QS1500

Figure 4.5: We study the effect of using more hash functions while increas-
ing the width (the number of output values of each hash function). We
perform stemming on everything, and remove stop words. The components
are weighted by frequencies.

4 5 6 7 8
0

0.1

0.2

0.3

0.4

C
or

re
la

ti
on

2
4
8
16

(a) CC2000

4 5 6 7 8
0

0.2

0.4

2
4
8
16

(b) QS1500

Figure 4.6: Width/dedpth study. The components are weighted by positive
pointwise mutual information. The other parameters are the same as in
figure 4.5.

46

4.3. Compression Parameters

5 10 15
0

0.1

0.2

0.3

C
or

re
la

ti
on

No CU.
CU.

(a) CC2000

5 10 15
0

0.2

0.4

No CU.
CU.

(b) QS1500

Figure 4.7: We study the effect of conservative update with stemming on
everything, increasing the depth of count-min sketch. The components are
weighted by frequencies and the width is fixed to 256 values.

5 10 15
0

0.1

0.2

0.3

0.4

C
or

re
la

ti
on

No CU.
CU.

(a) CC2000

5 10 15
0

0.2

0.4

No CU.
CU.

(b) QS1500

Figure 4.8: We study the effect of conservative update with stemming on
everything, increasing the depth of count-min sketch. The components are
weighted by positive pointwise mutual information and the width is fixed
to 256 values.

47

Chapter 5

Conclusions and Further Work

We studied some concepts of distributional semantics in the context of as-
sessing query similarities. During the implementation of the system, where
we were exploring slightly different definitions of context and semantic rep-
resentation, we needed to compress the vectors that we were constructing.
We managed to achieve close to state of the art performance using a rela-
tively simple system in conceptual terms which allowed us to focus on the
engineering side, and more specifically, the scalability of the system. We
managed to scale the system to process a very large collection of snippets
in a distributed environment and in a single pass. The vectors that were cre-
ated during that phase were used by another program that performed the
evaluation task (query similarity). Our main insights as result of this work is
that in an experimentally driven definition of the necessary notions for dis-
tributional semantics, we can derive better performance but taking into con-
sideration simple linguistic facts (such as stop words and stems). Moreover,
we can apply aggressive dimensionality reduction for the vector represen-
tations using either hash kernels or the count-min sketch. In the later case,
it would be interesting to investigate what are the best parameters when
the vocabulary size increases significantly (when, for instance, we consider
bi-grams as tokens). Our limited results point that count-min sketch would
be more important in that case. Especially, the trade-off between width and
depth while keeping the space needs constant is interesting. Similarly, for
the effect of the conservative update if we can tolerate spending some time
more in order to generate our word vectors.

49

Bibliography

[1] Dimitris Achlioptas. Database-friendly random projections. In Proceed-
ings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems, PODS ’01, pages 274–281, New York, NY, USA,
2001. ACM.

[2] Nir Ailon and Bernard Chazelle. The fast johnson-lindenstrauss trans-
form and approximate nearest neighbors. SIAM J. Comput, pages 302–
322, 2009.

[3] Nir Ailon and Edo Liberty. Fast dimension reduction using rademacher
series on dual bch codes. In Proceedings of the nineteenth annual ACM-
SIAM symposium on Discrete algorithms, SODA ’08, pages 1–9, Philadel-
phia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

[4] Enrique Alfonseca, Keith Hall, and Silvana Hartmann. Large-scale com-
putation of distributional similarities for queries. In Proceedings of Hu-
man Language Technologies: The 2009 Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics, Companion
Volume: Short Papers, NAACL-Short ’09, pages 29–32, Stroudsburg, PA,
USA, 2009. Association for Computational Linguistics.

[5] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity
of approximating the frequency moments. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, pages 20–29. ACM,
1996.

[6] Noga Alon and Dedicated To Miki Simonovits. Problems and results
in extremal combinatorics–i. Discrete Mathematics, 2003.

[7] Michael W. Berry. Large scale sparse singular value computations. In-
ternational Journal of Supercomputer Applications, 6:13–49, 1992.

51

Bibliography

[8] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, July 1970.

[9] Andrei Broder, Michael Mitzenmacher, and Andrei Broder I Michael
Mitzenmacher. Network applications of bloom filters: A survey. In
Internet Mathematics, pages 636–646, 2002.

[10] J.A. Bullinaria and J.P. Levy. Extracting semantic representations from
word co-occurrence statistics: A computational study. Behavior Research
Methods, (3):510, 2007.

[11] John A Bullinaria and Joseph P Levy. Extracting semantic representa-
tions from word co-occurrence statistics: stop-lists, stemming, and svd.
Behavior research methods, 44(3):890–907, 2012.

[12] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash
functions (extended abstract). In Proceedings of the Ninth Annual ACM
Symposium on Theory of Computing, STOC ’77, pages 106–112, New York,
NY, USA, 1977. ACM.

[13] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams,
Robert R. Henry, Robert Bradshaw, and Nathan Weizenbaum. Flume-
java: easy, efficient data-parallel pipelines. SIGPLAN Not., 45(6):363–
375, June 2010.

[14] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: a distributed storage system for structured
data. In Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation - Volume 7, OSDI ’06, pages 15–15, Berkeley,
CA, USA, 2006. USENIX Association.

[15] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical
foundations for a compositional distributional model of meaning. 2010.

[16] Graham Cormode and S. Muthukrishnan. An improved data stream
summary: The count-min sketch and its applications. J. Algorithms,
55(1):58–75, April 2005.

[17] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlos. A sparse johnson:
Lindenstrauss transform. In Proceedings of the 42nd ACM symposium
on Theory of computing, STOC ’10, pages 341–350, New York, NY, USA,
2010. ACM.

[18] Enzo (ed.) De Pellegrin. Interactive Wittgenstein. Essays in memory of
Georg Henrik von Wright. Synthese Library 349. Berlin: Springer., 2011.

52

Bibliography

[19] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary
cache: A scalable wide-area web cache sharing protocol. IEEE/ACM
Trans. Netw., 8(3):281–293, June 2000.

[20] John R. Firth. A Synopsis of Linguistic Theory, 1930-1955. Studies in
Linguistic Analysis, pages 1–32, 1957.

[21] George Forman and Evan Kirshenbaum. Extremely fast text feature
extraction for classification and indexing. In CIKM ’08: Proceeding of
the 17th ACM conference on Information and knowledge management, pages
1221–1230, New York, NY, USA, 2008. ACM.

[22] Gottlob Frege. Über Sinn und Bedeutung. Zeitschrift für Philosophie und
philosophische Kritik, 100:25–50, 1892.

[23] Amit Goyal, Hal Daumé, III, and Graham Cormode. Sketch algorithms
for estimating point queries in nlp. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning, EMNLP-CoNLL ’12, pages 1093–1103,
Stroudsburg, PA, USA, 2012. Association for Computational Linguis-
tics.

[24] Edward Grefenstette and Mehrnoosh Sadrzadeh. Experimental support
for a categorical compositional distributional model of meaning. 2011.

[25] Emiliano Guevara. Computing semantic compositionality in distribu-
tional semantics. In Proceedings of the Ninth International Conference on
Computational Semantics, IWCS ’11, pages 135–144, Stroudsburg, PA,
USA, 2011. Association for Computational Linguistics.

[26] Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear
Phenomena, 42:335–346, 1990.

[27] Zellig Harris. Distributional structure. Word, 10(23):146–162, 1954.

[28] Amac Herdagdelen, Massimiliano Ciaramita, Daniel Mahler, Maria
Holmqvist, Keith Hall, Stefan Riezler, and Enrique Alfonseca. Gen-
eralized syntactic and semantic models of query reformulation. In Pro-
ceeding of the 33rd international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’10, pages 283–290, New York,
NY, USA, 2010. ACM.

[29] William Johnson and Joram Lindenstrauss. Extensions of Lipschitz
mappings into a Hilbert space. In Conference in modern analysis and prob-
ability (New Haven, Conn., 1982), volume 26 of Contemporary Mathematics,
pages 189–206. American Mathematical Society, 1984.

53

Bibliography

[30] Martin Joos. Description of language design. The Journal of the Acoustical
Society of America, 22:701, 1950.

[31] Pentti Kanerva, Jan Kristoferson, and Anders Holst. Random indexing
of text samples for latent semantic analysis. In In Proceedings of the 22nd
Annual Conference of the Cognitive Science Society, pages 103–6. Erlbaum,
2000.

[32] J. Karlgren and M. Sahlgren. From words to understanding. In Y. Ue-
saka, P. Kanerva, and H. Asoh, editors, Foundations of real-world under-
standing, pages 294–308. 2001.

[33] Thomas K Landauer and Susan T. Dutnais. A solution to plato’s prob-
lem: The latent semantic analysis theory of acquisition, induction, and
representation of knowledge. Psychological review, pages 211–240, 1997.

[34] Jirı́ Matousek. On variants of the johnson-lindenstrauss lemma. Random
Struct. Algorithms, 33(2):142–156, 2008.

[35] Jeff Mitchell and Mirella Lapata. Vector-based models of semantic com-
position. In In Proceedings of ACL-08: HLT, pages 236–244, 2008.

[36] Preslav Nakov and Marti A Hearst. Solving relational similarity prob-
lems using the web as a corpus. In ACL, pages 452–460, 2008.

[37] Charles E. Osgood, George J. Suci, and Percy H. Tannenbaum. The
Measurement of Meaning. University of Illinois Press, 1957.

[38] T. A. Plate. Holographic reduced representations. Neural Networks, IEEE
Transactions on, 6(3):623–641, 1995.

[39] Hecht-Nielsen R. Context vectors: general purpose approximate mean-
ing representations self-organized from raw data. Computational Intelli-
gence: Imitating Life, IEEE Press, pages 43–56, 1994.

[40] Reinhard Rapp. Word sense discovery based on sense descriptor dis-
similarity. In Proceedings of the Ninth Machine Translation Summit, pages
315–322, 2003.

[41] Mehran Sahami and Timothy D. Heilman. A web-based kernel function
for measuring the similarity of short text snippets. In Proceedings of the
15th international conference on World Wide Web, WWW ’06, pages 377–
386, New York, NY, USA, 2006. ACM.

[42] Mehran Sahami and Timothy D. Heilman. A web-based kernel function
for measuring the similarity of short text snippets. In Proceedings of the

54

Bibliography

15th international conference on World Wide Web, WWW ’06, pages 377–
386, New York, NY, USA, 2006. ACM.

[43] M. Sahlgren and J. Karlgren. Automatic bilingual lexicon acquisition
using random indexing of parallel corpora. Nat. Lang. Eng., 11(3):327–
341, September 2005.

[44] Magnus Sahlgren. The Distributional Hypothesis. Special issue of the
Italian Journal of Linguistics, 20, 2008.

[45] Magnus Sahlgren and Rickard Cöster. Using bag-of-concepts to im-
prove the performance of support vector machines in text categoriza-
tion. In COLING, 2004.

[46] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space
model for automatic indexing. Communications of the ACM, 18(11):613–
620, 1975.

[47] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. In-
cremental singular value decomposition algorithms for highly scalable
recommender systems, 2002.

[48] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola,
and S.V.N. Vishwanathan. Hash kernels for structured data. J. Mach.
Learn. Res., 10:2615–2637, December 2009.

[49] Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y.
Ng. Semantic Compositionality Through Recursive Matrix-Vector
Spaces. In Proceedings of the 2012 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2012.

[50] Richard Socher, Cliff C. Lin, Andrew Y. Ng, and Christopher D. Man-
ning. Parsing Natural Scenes and Natural Language with Recursive
Neural Networks. In Proceedings of the 26th International Conference on
Machine Learning (ICML), 2011.

[51] Zoltán Gendler Szabó. Compositionality. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Fall 2013 edition, 2013.

[52] Peter D Turney, Patrick Pantel, et al. From frequency to meaning: Vec-
tor space models of semantics. Journal of artificial intelligence research,
37(1):141–188, 2010.

[53] K.Q. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg.
Feature hashing for large scale multitask learning. In Proceedings of the
26th Annual International Conference on Machine Learning, pages 1113–
1120. ACM, 2009.

55

Bibliography

[54] Dominic Widdows. Semantic vector products: Some initial investiga-
tions. In Proceedings of the Second AAAI Symposium on Quantum Interac-
tion, 2008.

[55] L. Wittgenstein. Philosophical Investigations. Basil Blackwell, Oxford,
1953.

56

	Contents
	Introduction
	Background and Motivation
	Problem Statement
	Outline

	Background and Related Work
	Distributional Semantics
	Computational model
	Limitations
	Parameter estimation
	Quality of vector representation
	Distance (between semantic vectors)
	Alternative component weighting
	Distributional Similarity

	Vector representation
	Latent Semantic Analysis (LSA)
	Hyperspace Analogue to Language
	Problems and solutions
	Random Indexing
	Theory behind Random Projections
	Hashing kernels
	Sketch algorithms

	Compositional Process
	Models of Compositionality
	Compositionality in queries

	System Description
	Basic concepts
	Input parameters
	Constructing the Co-occurrence statistics vectors
	From word representations to queries and their similarities
	Differences with previous systems
	Challenges of the distributed environment
	Challenges of the reduced space
	Overview of the system

	Evaluation
	Description of evaluation datasets
	Parsing Parameters
	Window sides
	Weight distribution
	Window size
	Do simple groups of words matter?
	Stop words
	Stemming
	Positive Pointwise Mutual Information vs Frequencies
	Comparison with other methods

	Compression Parameters
	Hash kernels
	Count-min sketch

	Conclusions and Further Work
	Bibliography

