
On the Use of Weber Polynomials

in Elliptic Curve Cryptography�

Elisavet Konstantinou1,2, Yannis C. Stamatiou1,3,4, and Christos Zaroliagis1,2

1 Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
2 Dept of Computer Eng. & Informatics, Univ. of Patras, 26500 Patras, Greece

{konstane,zaro}@ceid.upatras.gr
3 Dept of Mathematics, Univ. of the Aegean, Karlovassi, 83200, Samos, Greece

stamatiu@aegean.gr
4 Joint Research Group (JRG) on Communications and Information Systems
Security (Univ. of the Aegean and Athens Univ. of Economics and Business)

Abstract. In many cryptographic applications it is necessary to gener-
ate elliptic curves (ECs) with certain security properties. These curves
are commonly constructed using the Complex Multiplication method
which typically uses the roots of Hilbert or Weber polynomials. The for-
mer generate the EC directly, but have high computational demands,
while the latter are faster to construct but they do not lead, directly, to
the desired EC. In this paper we present in a simple and unifying manner
a complete set of transformations of the roots of a Weber polynomial to
the roots of its corresponding Hilbert polynomial for all discriminant val-
ues on which they are defined. Moreover, we prove a theoretical estimate
of the precision required for the computation of Weber polynomials. Fi-
nally, we experimentally assess the computational efficiency of the Weber
polynomials along with their precision requirements for various discrim-
inant values and compare the results with the theoretical estimates. Our
experimental results may be used as a guide for the selection of the most
efficient curves in applications residing in resource limited devices such as
smart cards that support secure and efficient Public Key Infrastructure
(PKI) services.

1 Introduction

Elliptic curve cryptography (ECC) has gained an increasing popularity over the
years, as it emerges as a fundamental and efficient technological alternative for
building secure public key cryptosystems. This stems from the fact that elliptic
curves (ECs) give rise to algebraic structures that offer a number of distinct
advantages (smaller key sizes and highest strength per bit) over more customary
algebraic structures used in various cryptographic applications (e.g., RSA). The
use of smaller parameters for a given level of cryptographic strength results in
� This work was partially supported by the Action IRAKLITOS (Fellowships for Re-

search in the University of Patras) with matching funds from EC and the Greek
Ministry of Education.

S.K. Katsikas et al. (Eds.): EuroPKI 2004, LNCS 3093, pp. 335–349, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

336 Elisavet Konstantinou, Yannis C. Stamatiou, and Christos Zaroliagis

faster implementations, less storage space, as well as reduced processing and
bandwidth requirements. These characteristics make ECC suitable for software
as well as for hardware implementations.

The advantage of EC-based cryptography is particularly apparent in appli-
cations supporting Public Key Infrastructure (PKI) services. In a typical PKI
scenario, all users wishing to communicate with each other securely, or access
some other services offered by the PKI (e.g., notary services, user authentica-
tion, etc), are given two keys, the public key and the private key. The former is
made available to all users through, e.g., a public directory. The latter should
be handled with special care in order to avoid accidental disclosure or illicit
interception. Protecting the private key is one of the most important issues
within a PKI. To this end, the common practice is to generate the two keys
within a physically secured (i.e., tamper resistant) device, which is most often
a smart card. The public key is exported to a publicly available directory but
the private key never leaves the smart card and, thus, it remains safe. It is at
this point where elliptic curves can make a difference compared to more con-
ventional schemes such as RSA: since EC-based cryptosystems can achieve the
same level of security using much smaller keys and system parameters, the ini-
tialization of an EC-based system (generation of the elliptic curve, generation
of private and public keys, etc) can be done more economically in hardware as
it requires smaller hardware elements (e.g., registers, arithmetic and logic units,
etc). Thus, EC-based cryptography seems a very attractive alternative to con-
ventional public key cryptosystems for the support of PKI services. Moreover,
in certain PKI applications, a vast number of such ECs may be required to
be generated and this should be done as fast as possible. A typical example
concerns a wireless and web-based PKI environment in which millions of client
devices (e.g., PDAs) connect to secure servers [8]. Clients may be frequently
requested to choose different key sizes and EC parameters depending on vendor
preferences, security requirements, and processor capabilities. The large number
of client connections/transactions along with the (possibly frequent) change of
security parameters by the vendor (e.g., due to evolving market conditions and
corporate policies) calls for strict timing response constraints not only on the
server, but also on the client side.

A frequently employed method for generating elliptic curves with order satis-
fying certain desirable (security) properties, is the Complex Multiplication (CM)
method. This method was used by Atkin and Morain in [1] for the construction
of elliptic curves with good properties in the context of primality proving while
the method was adapted to give rise to curves with good security properties by
Spallek [21] and Lay and Zimmer [13] independently. Furthermore, a number of
works appeared that compared variants of the CM method and presented exper-
imental results of the construction efficiency such as the recent works of Enge
and Morain [5], Müller and Paulus [16] as well as the PhD thesis of Weng [23]
and the PhD thesis of Baier [3]. Briefly, the CM method takes as input a given
number (usually a prime or a binary power) representing the order of the finite
field upon which the EC will be defined and determines a specific parameter,

On the Use of Weber Polynomials in Elliptic Curve Cryptography 337

called the CM discriminant D. The EC of the desirable order is generated by
constructing certain class field polynomials based on D and finding their roots.
The construction and the location of the roots (modulo the finite field’s order)
of these polynomials is perhaps the most crucial step in the whole process. The
most commonly used class field polynomials are the Hilbert (original version of
the CM method) and the Weber polynomials. Their main differences are: (i) the
coefficients of Hilbert polynomials grow excessively large as the discriminant D
increases, while for the same discriminant the Weber polynomials have much
smaller coefficients and thus are easier and faster to construct, a thing that is
especially desirable in a PKI setting where smart cards are in use; (ii) the roots
of the Hilbert polynomial construct directly the EC, while the roots of the We-
ber polynomial have to be transformed to the roots of its corresponding Hilbert
polynomial to construct the EC (a step that is not especially time consuming,
however).

The use of Hilbert polynomials in the CM method requires high precision in
the arithmetic operations involved in their construction, resulting in considerable
increase in computing resources and thus make them not appropriate for fast
and frequent generation of ECs within resource limited devices such as smart
cards and PDAs. To overcome these shortcomings of Hilbert polynomials, two
alternatives have been recently proposed: either to compute them off-line and
store them for subsequent use (see, e.g., [18]), or to use Weber polynomials for
certain values of D (see, e.g., [2,3,10,12,13,22]) and produce the required Hilbert
roots from them. Although the former approach tackles adequately the efficient
construction of ECs, there may still be problems with storing and handling
several Hilbert polynomials with huge coefficients, especially on cryptographic
hardware devices with limited resources. These problems are addressed by the
second approach. However, the known studies treat only certain values of D;
for example, the case of D ≡ 7 (mod 8) and not divisible by 3 is treated in
[2,3,10,13], while the cases of D �≡ 3 (mod 8) and D �≡ 0 (mod 3) were treated
in [12,22]. To the best of our knowledge, the other cases of D (i.e., D ≡ 3 (mod 8)
and D ≡ 0 (mod 3)) have not been treated before explicitly.

Starting from the fact that it is desirable to work with Weber polynomials
in various applications that require the fast and frequent generation of ECs, the
goals of this paper are the following: (i) to provide a complete set of transforma-
tions of Weber to Hilbert roots that cover all possible values of D, (ii) to prove a
theoretical estimate of the precision required for the construction of Weber poly-
nomials and (iii) to provide experiments that indicate values of discriminant D
leading to Weber polynomials with small computational requirements and com-
pare their actual precision requirements with the theoretical estimate we give.
To the best of our knowledge, no general theoretical treatment exists which gives
the required root transformations for all possible values of the discriminant D.
No general treatment exists either that for each value of D provides an estima-
tion for the precision requirements of the Weber polynomials. We believe that
our effort to present an exhaustive list of root transformations and an estimate
of the precision requirements of Weber polynomials in a simple, unifying exposi-

338 Elisavet Konstantinou, Yannis C. Stamatiou, and Christos Zaroliagis

tion will be useful to designers of ECC applications, especially applications that
will be placed in smart cards in order to support various PKI services.

The rest of the paper is organized as follows. In Section 2 we review some
basic definitions and facts about elliptic curves, number theory, and class field
polynomials discussing some of their properties relevant to the generation of
ECs. In Section 3 we give the transformations that map roots (modulo a prime)
of Weber polynomials to roots of Hilbert polynomials. In Section 4 we provide
a theoretical estimate of the precision requirements of Weber polynomials and,
finally, in Section 5 we give a number of experimental observations that are of
relevance to implementations, especially in resource limited devices.

2 Preliminaries

In this section we briefly review the necessary concepts from EC theory, number
theory, and the Hilbert and Weber class field polynomials in order to better
explain the importance of polynomials in ECC as well as to facilitate the pre-
sentation of the root transformations.

2.1 Elliptic Curves

In this work, we consider ECs defined over prime fields. An elliptic curve over a
(prime) finite field Fp, p > 3 and prime, is denoted by E(Fp) and it is comprised
of all the points (x, y) ∈ Fp (in affine coordinates) such that

y2 = x3 + ax + b, (1)

where a, b ∈ Fp satisfy 4a3+27b2 �= 0. These points, together with a special point
denoted by O (the point at infinity) and a properly defined addition operation
form an Abelian group. This is the Elliptic Curve group and the point O is its
identity element (see [4,20] for more details on this group).

The order m of an elliptic curve is the number of the points in E(Fp). The
difference between m and p is measured by the so-called Frobenius trace t =
p + 1 − m for which Hasse’s theorem (see e.g., [4,20]) states that |t| ≤ 2

√
p,

providing upper and lower bounds for m based on p:

p + 1 − 2
√

p ≤ m ≤ p + 1 + 2
√

p. (2)

The order of a point P ∈ E(Fp) is the smallest positive integer n for which
nP = O. Application of Langrange’s theorem on E(Fp) dictates that the order
of a point P ∈ E(Fp) divides the order of the elliptic curve group, and hence
mP = O for any P ∈ E(Fp). This in turn implies that the order of a point
cannot exceed the order of the elliptic curve.

Among the most important quantities defined for an elliptic curve E(Fp)
given by Eq. (1) are the curve discriminant ∆ and the j-invariant. These two
quantities are given by the equations ∆= −16(4a3+27b2) and j = −1728(4a)3/∆.

On the Use of Weber Polynomials in Elliptic Curve Cryptography 339

For a specific j-invariant j0 ∈ Fp (where j0 �= 0, 1728) two ECs can be readily
constructed. This j-invariant is actually a root modulo p of a Hilbert polynomial.
Let k = j0/(1728 − j0) mod p. One EC is given by Eq. (1) with a = 3k mod p
and b = 2k mod p. The other, which is called the twist of the first, is given by

y2 = x3 + ac2x + bc3 (3)

with c any quadratic non-residue in Fp. If m1 and m2 are the orders of an elliptic
curve and its twist respectively, then m1 + m2 = 2p+ 2. This implies that if one
of the curves has order p + 1− t, then its twist has order p + 1 + t, or vice versa
(see [4, Lemma VIII.3]).

2.2 Quadratic Fields and Forms

Let ξ be an algebraic integer (algebraic number satisfying some monic5 polyno-
mial equation with integral coefficients), and let f and h be polynomials over Q.
Then, the collection of all numbers of the form f(ξ)/h(ξ), h(ξ) �= 0, constitutes
a field denoted by Q(ξ) and called the extension of Q by ξ. If ξ is a root of an
irreducible1 quadratic polynomial over Q, then Q(ξ) is called a quadratic field.
Additional information on algebraic numbers and quadratic fields can be found
in [17].

Let D be a positive integer which is not divisible by any square of an odd
prime and which satisfies D ≡ 3 (mod 4) or D ≡ 4, 8 (mod 16). The quantity
−D < 0 is called a fundamental discriminant. The subset of integers in Q(

√−D)
forms a ring which is denoted by O. A quadratic form of a discriminant −D is a
3-tuple of integers [a, b, c] such that b2 − 4ac = −D. The form is called primitive
if gcd(a, b, c) = 1, and reduced if |b| ≤ a ≤ c and b ≥ 0 whenever c = a or |b| = a.

There is a natural correspondence between a quadratic form [a, b, c] and the
root τ of the quadratic equation az2 + bz + c = 0 with Im(τ) > 0: −D is
the discriminant of τ and τ = (−b +

√−D)/2a. It can be proved that the set
of primitive reduced quadratic forms of discriminant −D, denoted by H(−D),
is finite. Moreover, it is possible to define an operation that gives to H(−D)
the structure of an Abelian group whose neutral element is called the principal
form. The order of H(−D) is denoted by h(−D), or simply h if −D is clear from
the context. The principal form is equal to [1, 0, D/4] if D ≡ 0 (mod 4), and
to [1,−1, (D + 1)/4] if D ≡ 3 (mod 4). In this case, the root of the quadratic
equation, denoted by τ∗, is τ∗ =

√−D/2 if D ≡ 0 (mod 4), and τ∗ = (1 +√−D)/2 if D ≡ 3 (mod 4).

2.3 Class Field Polynomials

Let τk be the root corresponding to a reduced positive primitive quadratic form
[ak, bk, ck] ∈ H(−D). Then the class equation of O ⊂ Q(

√−D), or Hilbert poly-
nomial, is defined by
5 A polynomial is called monic if its leading coefficient is 1, and irreducible if it cannot

be written as a product of two polynomials.

340 Elisavet Konstantinou, Yannis C. Stamatiou, and Christos Zaroliagis

HD (x) =
h∏

k=1

(x − j(τk)) (4)

where the quantity j(τk), for τk ∈ O, is called a class invariant of O. In particular,
for any τ ∈ O, j(τ) is defined as

j(τ) =
(256θ(τ) + 1)3

θ(τ)
,

where z = e2π
√−1τ , θ(τ) = ∆(2τ)

∆(τ) , and

∆(τ) = z

1 +
∑

n≥1

(−1)n
(
zn(3n−1)/2 + zn(3n+1)/2

)

24

.

The class invariants j(τk) (which are the roots of HD(x)) generate a field over
Q(

√−D) called the Hilbert class field.
Alternative generators of the class field can be provided by singular values of

other functions. Such functions are powers of the Weber functions which generate
the Weber polynomials.

The first main theorem of complex multiplication says that the class invariant
j(τ), τ ∈ O, generates the Hilbert class field over Q(

√−D). Weber considered
the explicit construction of the Hilbert class field using other modular functions
g(z). When g(τ) and j(τ) generate the same field over Q(

√−D), g(τ) is also
called a class invariant of O, and its minimal polynomial WD(x) is called the
reduced class equation or the Weber polynomial. Weber polynomials are defined
using the Weber functions (see [1,9])

f(z) = q−1/48
∞∏

m=1

(1 + q(m−1)/2) f1(z) = q−1/48
∞∏

m=1

(1 − q(m−1)/2)

f2(z) =
√

2 q1/24
∞∏

m=1

(1 + qm) where q = e2πz
√−1.

Then, the Weber polynomial WD(x) is defined as

WD(x) =
h′∏

�=1

(x − g(τ�)) (5)

where g(τ�) (a class invariant of WD(x)) is an expression – depending on the value
of D – of the Weber functions, τ� ∈ O satisfies the equation a�z

2 + 2b�z + c� = 0
for which 4b2

� − 4a�c� = −4d, where d = D/4 if D ≡ 0 (mod 4), and d = D if
D ≡ 3 (mod 4), and h′ (the degree of WD(x)) can be either h or 3h. All class
invariants for the different values of D will be defined in Section 3.

We would like to mention that the possible class invariants for a given dis-
criminant D are potentially infinite, giving rise to different class polynomials

On the Use of Weber Polynomials in Elliptic Curve Cryptography 341

and consequently to the problem of which one to use (for details see [5,6,19]). A
comparison of all possible class invariants for a given D was made in [5] using
as criterion the height6 of their minimal polynomials, since it is computationally
easier to use invariants that produce polynomials of small height. In particular,
it is shown in [5] that Weber polynomials is one of the best choices between all
possible polynomials. In addition, an ordering of class invariants (from the best
to the worst) is made in [5], where the best invariant is the one with minimum
height. According to this ordering, the cases of D ≡ 0 (mod 3) are “worse” than
the cases of D �≡ 0 (mod 3).

3 Transformations of Weber Roots to Hilbert Roots

In this section, we will describe a complete set of transformations of the roots
of the Weber polynomials to the roots of the corresponding (generated by the
same D) Hilbert polynomials. The transformations will be given for all possible
values of discriminant D.

In order to explain the transformations that will follow, we need two relations.
From the definition of the Weber functions and the class invariant j(τ) that
generates the Hilbert polynomials, one can readily obtain the following relations:

f(τ)f2

(
1 + τ

2

)
= eπ

√−1/24
√

2 (6)

j(τ) =
(A − 16)3

A
, (7)

where A ∈ {f24(τ),−f24
1 (τ),−f24

2 (τ)}.
Recall from Section 2.3 that the Weber polynomial WD(x) is generated by

its class invariants which are also the roots of the polynomial. The real roots of
WD(x), for all values of D, are given by the class invariants presented in Tables 1
and 2. There are ten cases of discriminant D that define ten different class
invariants. Recall from Section 2.2 that D is either 3 (mod 4) or 4, 8 (mod 16)
and that d = D/4 if D ≡ 0 (mod 4), and d = D if D ≡ 3 (mod 4). This in turn
implies that d ≡ 3, 7 (mod 8) if D ≡ 3 (mod 4), while d ≡ 1, 2, 5, 6 (mod 8)
when D ≡ 4, 8 (mod 16). The ten class invariants split into two groups of five
each, depending on whether D �≡ 0 (mod 3) or D ≡ 0 (mod 3). Tables 1 and 2
give the details.

We verified the correctness of the class invariants given in Tables 1 and 2
using the IEEE Standard P1363 [9]. We would like to mention that: (i) the
above class invariants have been very recently given in [15], where, however a
different invariant is presented for the case of d ≡ 3 (mod 8) in Table 2, which
does not agree with the IEEE Standard P1363 [9]; (ii) the class invariants of
Table 1 are also given in [1,11,22], where however a different invariant for the
case of d ≡ 5 (mod 8) is presented which does not agree with both the IEEE

6 The logarithm of the largest coefficient of the polynomial.

342 Elisavet Konstantinou, Yannis C. Stamatiou, and Christos Zaroliagis

d mod 8 class invariant

1 f2(
√−d)/

√
2

2 or 6 f2
1 (
√−d)/

√
2

3 f(
√−d)

5 f4(
√−d)/2

7 f(
√−d)/

√
2

Table 1. Class invariants for
D �≡ 0 (mod 3)

d mod 8 class invariant

1 f6(
√−d)/(2

√
2)

2 or 6 f6
1 (
√−d)/(2

√
2)

3 f3(
√−d)/2

5 f12(
√−d)/23

7 f3(
√−d)/(2

√
2)

Table 2. Class invariants for
D ≡ 0 (mod 3)

Standard P1363 [9] and the class invariant for the same case (D �≡ 0 (mod 3))
given in [15].

In both applications that we described, it is necessary to obtain the roots
modulo a prime p of the Hilbert polynomial and we want to achieve this by
using the roots (modulo p) of Weber polynomials. Hence, there must be a way
to retrieve a root modulo p of the Hilbert polynomial HD(x) from a root modulo
p of the corresponding Weber polynomial WD(x). It can be shown that if we can
find a transformation T () of a real root g(τ�) of the Weber polynomial to a real
root j(τi) of the corresponding Hilbert polynomial, then the same transformation
will hold for the roots of the polynomials modulo p.

We have already mentioned that the class invariants given in Tables 1 and
2 represent the real roots of the Weber polynomials. We shall refer to all these
values by F (

√−d), where F depends on the value of D. It is also known that
when τ∗ corresponds to a principal form, then the class invariant j(τ∗) of HD(x)
is a real root. Hence the goal is to find a transformation T () such that j(τ∗) =
T (F (

√−d)).
The idea is as follows. From Equation (7) we know that if one of f24(τ∗),

−f24
1 (τ∗), −f24

2 (τ∗) can be calculated, then j(τ∗) can also be computed. The
problem now is reduced in finding one of f24(τ∗), −f24

1 (τ∗), −f24
2 (τ∗) from

F (
√−d). When D ≡ 0 (mod 4), then τ∗ =

√−d, and finding f24(
√−d), or

−f24
1 (

√−d), or −f24
2 (

√−d) from F (
√−d) is rather easy. When D ≡ 3 (mod 4)

however, then τ∗ = 1+
√−d
2 , and finding f24(1+

√−d
2), or −f24

1 (1+
√−d
2), or

−f24
2 (1+

√−d
2) from F (

√−d) is a little more complicated (actually, we have to
use Equation (6) for these cases).

In the following, we present the details for three different cases of D of the
transformation of a real root RW of a Weber polynomial to a real root RH of
the corresponding Hilbert polynomial. The remaining seven cases can be derived
with a similar way and are not described due to lack of space.

(a) D ≡ 7 (mod 8) and D �≡ 0 (mod 3): From Table 1, the class invariant in
this case is f(

√−d)√
2

= RW . Since d ≡ 3 mod 4, we have that τ∗ = (1 +
√−d)/2.

Using Equation (6), we get

On the Use of Weber Polynomials in Elliptic Curve Cryptography 343

f2(τ∗) = f2(
1 +

√−d

2
) = e

π
√−1
24

√
2f−1(

√−d) ⇒ f2(τ∗) = e
π
√−1
24 R−1

W

⇒ −f24
2 (τ∗) = R−24

W = A.

Thus, from Equation (7) we obtain

RH =
(A − 16)3

A
=

(R−24
W − 16)3

R−24
W

.

(b) D ≡ 3 (mod 8) and D �≡ 0 (mod 3): This is a very interesting case be-
cause the degree of the Weber polynomial is three times larger than the degree
of the corresponding Hilbert polynomial. This case is frequently referred to as
problematic, because of the high degree of the resulting Weber polynomials. If
the number of distinct roots of the Weber polynomial is exactly three times the
number of the roots of the corresponding Hilbert polynomial, the transforma-
tion below maps three roots of the Weber polynomial into the same root of the
Hilbert polynomial. Obviously, when the number of distinct roots of the Weber
polynomial is equal to the number of distinct roots of the Hilbert polynomial,
one root of the Weber polynomial is mapped to exactly one root of the Hilbert
polynomial.

Since d = D ≡ 3 (mod 8), we have that τ∗ = 1+
√−d
2 , and from Table 1 the

class invariant is f(
√−d) = RW . According to Equation (6) we have

f2(τ∗) = f2(
1 +

√−d

2
) = e

π
√−1
24

√
2f−1(

√−d) ⇒ −f24
2 (τ∗) = 212R−24

W = A.

Hence, by Equation (7)

RH =
(A − 16)3

A
=

(212R−24
W − 16)3

212R−24
W

.

(c) D/4 ≡ 2, 6 (mod 8) and D �≡ 0 (mod 3): For this value of D = 4d, we have
that τ∗ =

√−d, and the class invariant is f2
1 (
√−d)/

√
2 = RW (see Table 1).

Then,
f2
1 (τ∗) = f2

1 (
√−d) =

√
2RW ⇒ −f24

1 (τ∗) = −26R12
W = A

which by Equation (7) gives

RH =
(A − 16)3

A
=

(−26R12
W − 16)3

−26R12
W

=
(26R12

W + 16)3

26R12
W

.

Finally, we would like to remark that in the IEEE Standard P1363 [9] for-
mulas are given that lead directly from the roots of Weber polynomials to the
parameters of the ECs, without involving transformations to roots of Hilbert
polynomials. However, we believe that the transformations given in our paper,
not only are they not slower than the formulas given in the Standard but they
also give a justification as to how the roots of Weber polynomials lead to the
construction of ECs.

344 Elisavet Konstantinou, Yannis C. Stamatiou, and Christos Zaroliagis

4 Precision Requirements of Weber Polynomials

In this section we will focus on the precision required for the construction of the
Weber polynomials. First, for reasons of comparison and completeness, we note
that a very accurate estimation of the bit precision of Hilbert polynomials made
in [13] gives an upper bound of 3.32(ΛH +h/4+ 5), where ΛH = π

√
D

ln 10

∑h
k=1

1
ak

.
Our experiments showed that this bound is remarkably accurate.

Let ΛW = π
√

D
ln 2

∑
�

1
a�

, where the sum runs over the same values of � as
the product in Eq. (5). The bit precision required for the construction of the
Weber polynomial is upper bounded by v0 + ΛW (see e.g., [22]), where v0 is a
positive constant that handles round-off errors (typically v0 = 33). This estimate
of precision can be, however, much larger than the actual precision required for
the Weber polynomials. For the case of D ≡ 7 (mod 8) and not divisible by 3, a
better upper bound of 3.32(1+(ΛH +h/4+5)/47) is provided by [13]. However,
this precision estimate can not be used in other cases of D. For this reason, we
provide in the following lemma a new precision estimate that covers all values
of discriminant D.

Lemma 1. The bit precision required for the construction of Weber polynomials
for various values of the discriminant D is approximately

c1h +
π
√

D

c2 ln 2

∑

�

1
α�

,

where the sum runs over the same values of � as the product in Eq. (5) and the
constants c1 and c2 are given by

c1 =
{

3 if D ≡ 3 (mod 8)
1 if D �≡ 3 (mod 8) (8)

c2 =

24 if D ≡ 3, 7 (mod 8) and D �≡ 0 (mod 3)
8 if D ≡ 3, 7 (mod 8) and D ≡ 0 (mod 3)
6 if D/4 ≡ 5 (mod 8) and D �≡ 0 (mod 3)
2 if D/4 ≡ 5 (mod 8) and D ≡ 0 (mod 3)

12 if D/4 ≡ 1, 2, 6 (mod 8) and D �≡ 0 (mod 3)
4 if D/4 ≡ 1, 2, 6 (mod 8) and D ≡ 0 (mod 3)

(9)

Proof. For the case D �≡ 3 (mod 8) and from the proof of Proposition (B4.4) in
[11], if the Weber polynomial is written in the form WD(x) = xh + wh−1x

h−1 +
. . .+w1x+w0 then |wi| ≤ 2hM , where M =

∏
� max(1, |g(τ�)|). This means that

the bit precision required for the coefficient wi of the polynomial is log2(|wi|) ≤
h + log2 M ≤ h +

∑
� log2(|g(τ�)|). Therefore, the bit precision required for the

construction of the whole polynomial (i.e., the construction of its coefficients) is
at most h +

∑
� log2(|g(τ�)|) and thus c1 = 1. If D ≡ 3 (mod 8), then the degree

of WD(x) is equal to 3h and repeating the same steps as above, we conclude

On the Use of Weber Polynomials in Elliptic Curve Cryptography 345

that the bit precision is at most 3h +
∑

� log2(|g(τ�)|) which gives c1 = 3. Thus,
we need to estimate the precision requirements for the computation of g(τ�).

The precision required by each g(τ�) is related to the precision required by
f(τ�), f1(τ�) or f2(τ�) as evidenced by Table 1 and 2. We observe that, in general,
g is equal to one of these functions raised to a constant power K and multiplied
by a small constant which we will ignore in the following computations as it will
affect the final estimate only by a very small additive constant. This implies that
the precision needed for g(τ�) is approximately K times the precision needed for
f(τ�), f1(τ�) or f2(τ�).

In addition, it is known that j(z) = (f24(z)−16)3

f24(z) = (f24
1 (z)+16)3

f24
1 (z)

= (f24
2 (z)+16)3

f24
2 (z)

.
These equalities imply that the precision needed for j(τ�) is approximately 48
times the precision needed for f(τ�), f1(τ�) or f2(τ�). Using the expansion of
j in terms of its Fourier series (see [4]), we obtain that |j(τ�)| ≈ |e−2π

√−1�| =
e2π

√
D/α. Therefore, the bit precision that is required for the computation of j(τ�)

is log2 |j(τ�)| ≈ 2π
√

D
α ln 2 and, consequently, the precision required for g(τ�) is given

by log2 |g(τ�)| ≈ K
48 log2 |j(τ�)| = 2Kπ

√
D

48α ln 2 = Kπ
√

D
24α ln 2 . This, in turn, results in the

total bit precision requirements for the computation of the Weber polynomial:
c1h + Kπ

√
D

24 ln 2

∑
�

1
α�

.
We will show for a case of D how we can derive the constant c2: for the

case D ≡ 3 (mod 8) and D ≡ 0 (mod 3), the precision required by g(τ�) is
approximately three times (i.e., K = 3) the precision required by f(τ�), f1(τ�)
or f2(τ�) as it is evident from Table (2). Thus we obtain that the bit precision
required in this case is given by 3h + 3π

√
D

24 ln 2

∑
�

1
α�

. This results to c2 = 8. Using
the same reasoning we can compute the bit precision requirements for the other
cases of D, completing the proof of the lemma.
�

We would like to point out that our lemma suggests an ordering (based on the
theoretical estimates) of the bit precision requirements for the different values
of discriminant D. For example, it seems that the case D ≡ 3, 7 (mod 8) and
D �≡ 0 (mod 3) requires less precision that the other cases and this can mean
that these values of discriminants are better for implementations. This ordering
is verified by our experiments described in Section 5 below.

5 Experimental Results

In this section, we present an experimental study regarding the computational
efficiency and the bit precision requirements of Weber polynomials and how these
requirements are compared with their approximated precision requirements us-
ing Lemma 1. Our implementations for generating the polynomials are actually
part of a variant of the CM method that generates ECs of a desirable order
and uses both Weber and Hilbert polynomials. In contrast with other imple-
mentations (see e.g., [2,3]) which have been carried out in C++ and use advanced
C++ libraries (e.g., LiDIA [14]) our implementations have been carried out in
ANSI C using the (ANSI C) library GNUMP [7] (for high precision floating

346 Elisavet Konstantinou, Yannis C. Stamatiou, and Christos Zaroliagis

point arithmetic and also for the generation and manipulation of integers of
unlimited precision), for maximum portability. Our implementation and experi-
mentation environment was a Pentium III PC (933 MHz) running Linux 2.4.10
and equipped with 256 MB of main memory. The code for the generation of ECs
using Weber polynomials had size 53KB, while the code for the generation of
ECs using Hilbert polynomials had size 49KB.

The construction of Hilbert and Weber polynomials require high-precision
complex and floating point arithmetic with the greater demands placed by
Hilbert polynomials. Also, their construction required the implementation of
functions such as cos(x), sin(x), exp(x), ln(x), arctan(x) and

√
x, which were

implemented using their Taylor series expansion. Since the basic complex num-
ber algebraic operations (addition, multiplication, exponentiation, and squaring)
as well as a high precision floating point implementation of the other involved
functions did not exist in GNUMP, we had to implement them from scratch.

In our experiments we have mainly focused on measuring the time (in secs)
for the construction of Weber polynomials, the bit precision they require (number
of bits that are required by the GNUMP library), and the difference between
the actual precision and the approximated precision from Lemma 1. In Figure 1
we present the approximated vs. the actual bit precision for Weber polynomials
with even discriminant D. The degree h of the polynomials ranges from 4 to
52 as the discriminant D increases from 228 to 9924. We observe that all the
estimates of the precision are larger than the actual precision. However, for values
of discriminant D that are not divided by 3 the estimation of the precision is
close to the actual one, while for the other cases the estimation can be much
larger. However, for all the cases of D, the estimate of precision is very close to
the actual one for polynomials with small h (h < 20, corresponding to D < 2500
approximately). Similar observations hold for odd values of the discriminant D.

Figure 1 indicates also that there is an ordering in the precision figures for
various values of D. It can be seen, for instance, that the case of D/4 ≡ 1, 2, 6
(mod 8) and D �≡ 0 (mod 3) requires less precision than the case D/4 ≡ 5
(mod 8) and D �≡ 0 (mod 3), which in turn is better than the case D/4 ≡ 1, 2, 6
(mod 8) and D ≡ 0 (mod 3). The worst case is D/4 ≡ 5 (mod 8) and D ≡ 0
(mod 3). The case of D that requires the least precision among all the possible
values is D ≡ 3, 7 (mod 8) and D �≡ 0 (mod 3) (it is not included in Figure 1,
because in this figure we report only on even values of D). Note also that a
similar ordering is implied by the estimates provided by Lemma 1.

The difference in the precision requirements for the various values of dis-
criminant D is reflected in the time requirements for the construction of the
polynomials. In Figure 2, we summarize all possible cases of D. The degree h of
the polynomials ranges from 50 to 150 and D from 10766 to 69396. It is evident
that there is, again an ordering among the different cases of the discriminant.
The worst case is D/4 ≡ 5 (mod 8) ≡ 0 (mod 3), while the best is D ≡ 3, 7
(mod 8) �≡ 0 (mod 3) (for D = 68383 and h = 148 the time for the construction
of the polynomial is only 4.43 seconds). We observe that the three worst cases
are those that correspond to values of D that are divided by 3. The ordering

On the Use of Weber Polynomials in Elliptic Curve Cryptography 347

0

200

400

600

800

1000

1200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
it

pr
ec

is
io

n

D

appr. prec. D/4 cong. 5 mod 8, D divided by 3
appr. prec. D/4 cong. 1,2,6 mod 8, D divided by 3
appr. prec. D/4 cong. 5 mod 8, D not divided by 3

appr. prec. D/4 cong. 1,2,6 mod 8, D not divided by 3
act. prec. D/4 cong. 5 mod 8, D divided by 3

act. prec. D/4 cong. 1,2,6 mod 8, D divided by 3
act. prec. D/4 cong. 5 mod 8, D not divided by 3

act. prec. D/4 cong. 1,2,6 mod 8, D not divided by 3

Fig. 1. Actual and approximated bit precision for the construction of Weber
polynomials

between the two groups of D (divided or not divided by 3) is the same: the worst
case is D/4 ≡ 5 (mod 8), then is the case of D/4 ≡ 1, 2, 6 (mod 8) and the best
one is D ≡ 3, 7 (mod 8). We also note that the same ordering is observed in the
precision requirements for the various values of D. This apparent ordering may
be helpful to the designers of ECCs as it may be used as a guideline for the selec-
tion of values of D that lead to Weber polynomials with the least computational
requirements.

6 Conclusions

In this paper we have considered the use of Weber polynomials in elliptic curve
cryptography implemented in resource limited devices, such as smart cards and
PDAs. Weber polynomials are important in EC-based cryptography since their
coefficients are considerably smaller than the coefficients of the corresponding
Hilbert polynomials and can, thus, be manipulated with ease by resource limited
devices that are used within PKIs. The only problem is that the roots of the We-
ber polynomials do not lead directly to the construction of the EC parameters
and should be, first, transformed into equivalent Hilbert polynomial roots. To
this end we have presented in this paper, in a unifying and simple manner, all
the transformation of roots of Weber polynomials into roots of the correspond-
ing Hilbert polynomials as well as estimates for the precision requirements of
Weber polynomials for all possible discriminant values. We have also conducted
experiments and compared the construction efficiency of Weber polynomials for
various discriminant values. We observed that there is an ordering among the
values of D that is defined by its divisibility properties. We believe that our

348 Elisavet Konstantinou, Yannis C. Stamatiou, and Christos Zaroliagis

0

20

40

60

80

100

120

10000 20000 30000 40000 50000 60000 70000

T
im

e
in

 s
ec

on
ds

D

D/4 congruent to 5 mod 8, D divided by 3
D/4 congruent to 1,2,6 mod 8, D divided by 3

D odd, divided by 3
D/4 congruent to 5 mod 8, D not divided by 3

D/4 congruent to 1,2,6 mod 8, D not divided by 3
D odd, not divided by 3

Fig. 2. Time for the construction of Weber polynomials

experimental results can be used as a guideline for the selection of the appro-
priate class field polynomials when constructing elliptic curves as the potential
designer can have an estimate of the computation time as well as the precision
required before the actual implementation is accomplished within some devices
with limited computing power.

References

1. A.O.L. Atkin and F. Morain, Elliptic curves and primality proving, Mathematics
of Computation 61, pp. 29–67, 1993.

2. H. Baier and J. Buchmann, Efficient construction of cryptographically strong el-
liptic curves, in Progress in Cryptology – INDOCRYPT 2000, Lecture Notes in
Computer Science Vol. 1977, Springer-Verlag, pp. 191–202, 2000.

3. H. Baier, Efficient Algorithms for Generating Elliptic Curves over Finite Fields
Suitable for Use in Cryptography, PhD Thesis, Dept. of Computer Science, Tech-
nical Univ. of Darmstadt, May 2002.

4. I. Blake, G. Seroussi, and N. Smart, Elliptic curves in cryptography , London Math-
ematical Society Lecture Note Series 265, Cambridge University Press, 1999.

5. A. Enge and F. Morain, Comparing invariants for class fields of imaginary quadratic
fields, in Algorithmic Number Theory – ANTS-V, Lecture Notes in Computer Sci-
ence Vol. 2369, Springer-Verlag, pp. 252–266, 2002.

6. A. Enge and R. Schertz, Constructing Elliptic Curves from Modular Curves of
Positive Genus, Preprint, March 2003.

7. GNU multiple precision library, edition 3.1.1, September 2000.
Available at: http://www.swox.com/gmp.

8. N. Gura, H. Eberle, and S.C. Shantz, Generic Implementations of Elliptic Curve
Cryptography using Partial Reduction, in Proc. 9th ACM Conf. on Computer and
Communications Security – CCS’02, pp.108-116.

On the Use of Weber Polynomials in Elliptic Curve Cryptography 349

9. IEEE P1363/D13, Standard Specifications for Public-Key Cryptography, ballot
draft, 1999. http://grouper.ieee.org/groups/1363/tradPK/draft.html.

10. E. Kaltofen, T. Valente, and N. Yui, An Improved Las Vegas Primality Test, in
Proc. ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic
Computation, pp. 26-33, 1989.

11. E. Kaltofen and N. Yui, Explicit construction of the Hilbert class fields of imaginary
quadratic fields by integer lattice reduction. Research Report 89-13, Renseelaer
Polytechnic Institute, May 1989.

12. E. Konstantinou, Y.C. Stamatiou, and C. Zaroliagis, On the Efficient Generation
of Elliptic Curves over Prime Fields, in Cryptographic Hardware and Embedded
Systems – CHES 2002, Lecture Notes in Computer Science Vol. 2523, Springer-
Verlag, pp. 333–348, 2002.

13. G.J. Lay and H. Zimmer, Constructing Elliptic Curves with Given Group Order
over Large Finite Fields, in Algorithmic Number Theory – ANTS-I, Lecture Notes
in Computer Science Vol. 877, Springer-Verlag, pp.250-263, 1994.

14. LiDIA. A library for computational number theory, Technical University of Darm-
stadt. Available from
http://www.informatik.tu-darmstadt.de/TI/LiDIA/Welcome.html.

15. F. Morain, Computing the cardinality of CM elliptic curves using torsion points,
Preprint, October 2002.

16. V. Müller and S. Paulus, On the Generation of Cryptographically Strong Elliptic
Curves, preprint, 1997.

17. I. Niven, H.S. Zuckerman, and H.L. Montgomery, An Introduction to the Theory
of Numbers, John Wiley & Sons, 5th edition, 1991.

18. E. Savaş, T.A. Schmidt, and Ç.K. Koç, Generating Elliptic Curves of Prime Order,
in Cryptographic Hardware and Embedded Systems – CHES 2001, LNCS Vol. 2162
(Springer-Verlag, 2001), pp. 145-161.

19. R. Schertz, Weber’s class invariants revisited, J. Théor. Nombres Bordeaux 14:1,
2002.

20. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, GTM 106,
1986.

21. A.-M. Spallek, Konstruktion einer elliptischen Kurve über einem endli-chen Körper
zu gegebener Punktegruppe, Master Thesis, Universitäat GH Essen, 1992.

22. T. Valente, A distributed approach to proving large numbers prime, Rensselaer
Polytechnic Institute Troy, New York, PhD Thesis, August 1992.

23. A. Weng, Konstruktion kryptographisch geeigneter Kurven mit komplexer Multi-
plikation, PhD thesis, Institut für Experimentelle Mathematik, Universität GH
Essen, 2001.

	Introduction
	Preliminaries
	Transformations of Weber Roots to Hilbert Roots
	Precision Requirements of Weber Polynomials
	Experimental Results
	Conclusions

