
A Software Library

for Elliptic Curve Cryptography�

Elisavet Konstantinou1,2, Yiannis Stamatiou1,2, and Christos Zaroliagis1,2

1 Computer Technology Institute
P.O. Box 1122, 26110 Patras, Greece

2 Department of Computer Engineering and Informatics
University of Patras, 26500 Patras, Greece

{konstane,stamatiu,zaro}@ceid.upatras.gr

Abstract. We present an implementation of an EC cryptographic li-
brary targeting three main objectives: portability, modularity, and ease
of use. Our goal is to provide a fully-equipped library of portable source
code with clearly separated modules that allows for easy development of
EC cryptographic protocols, and which can be readily tailored to suit
different requirements and user needs. We discuss several implementa-
tion issues regarding the development of the library and report on some
preliminary experiments.

1 Introduction

Cryptographic systems based on elliptic curves were introduced independently
by Koblitz [15] and Miller [20] in 1985 as an alternative to conventional pub-
lic key cryptosystems such as RSA [23] and DSA [14]. The main advantage
of elliptic curve (EC) cryptosystems is that they use smaller parameters (e.g.,
encryption key) than the conventional cryptosystems. The reason is that the
underlying mathematical problem on which their security is based, the EC dis-
crete logarithm problem (ECDLP), appears to require more time to solve than
the analogous problem in groups generated by prime numbers on which the
conventional cryptosystems are based. For groups defined on ECs (where the
group elements are the points of the EC), the best algorithm for attacking this
problem takes time exponential in the size of the group, while for groups gen-
erated by prime numbers there are algorithms that take subexponential time.
This implies that one may use smaller parameters for the EC cryptosystems
than the parameters used in RSA or DSA, obtaining the same level of security.
A typical example is that a 160-bit key of an EC cryptosystem is equivalent to
RSA and DSA with a 1024-bit modulus. As a consequence, smaller keys result
in faster implementations, less storage space, as well as reduced processing and
bandwidth requirements.
� This work was partially supported by the IST Programme of EU under con-

tracts no. IST-1999-14186 (ALCOM-FT) and no. IST-1999-12554 (ASPIS), and by
the Human Potential Programme of EU under contract no. HPRN-CT-1999-00104
(AMORE).

R. Möhring and R. Raman (Eds.): ESA 2002, LNCS 2461, pp. 625–637, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

626 Elisavet Konstantinou et al.

There are many important decisions that one should make before starting
implementing an elliptic curve cryptosystem (ECC). These include the type of
the underlying finite field, the algorithms for implementing the basic algebraic
operations, the type of the elliptic curve to be used as well as its generation,
and finally the elliptic curve protocols. The fields usually used are either prime
fields (denoted by Fp, where p is a prime) or binary fields. Selecting a prime
field (which will be our concern here) implies proper choice of p, since all basic
operations will be modulo that prime and the security of the system will depend
on its size. The larger the prime, the more secure but slower the cryptosystem.
The basic algebraic operations of the EC group that must be implemented are
addition of points on an EC, and scalar multiplication (multiplication of a point
by an integer). The latter is the operation upon which the ECDLP is based.
There should also be a way for generating secure elliptic curves and create ran-
dom points in them. The generation of such curves can be accomplished with
three methods, namely the point counting method (see [3]), the method based
on the constructive Weil descent [8], and the Complex Multiplication method
(see [3]). The latter two methods build ECs of a suitable order (where order
refers to the number of elements in the group defined by the EC), i.e., the or-
der satisfies certain conditions, necessary for the cryptographic strength of the
EC. The former method does not necessarily produce ECs of a suitable order.
Once all these basic operations have been implemented, one can start developing
cryptographic protocols.

Several studies have been conducted in the past and many papers have been
written on software implementations of ECCs. The majority of them focuses
either on the efficient implementation of the basic algebraic operations (see e.g.,
the excellent surveys of [18] and [19]), or on the efficient implementation of
a single protocol for one particular finite field. For example, in [4] a nice study of
the performance of the Elliptic Curve Discrete Signature Algorithm (ECDSA)
over prime fields is presented using the NIST recommended ECs, while in [10]
a similar study is presented regarding binary fields.

In this paper, we present an implementation of an EC cryptographic library
targeting three main objectives: portability, modularity, and ease of use. Our
goal is to provide a fully-equipped library of portable source code with clearly
separated modules which allow for the easy development of EC cryptographic
protocols, and which can be readily tailored to suit different requirements and
user needs. The library has been implemented in ANSI C using the GNUMP [9]
library. We have chosen prime fields as the underlying field of our implementa-
tions, because of their simplicity in representation and in performing algebraic
operations. Our library includes all the basic operations of an EC group, sev-
eral cryptographic protocols based on ECs (including the EC Discrete Signature
Algorithm – ECDSA), and the Complex Multiplication (CM) method for gener-
ating secure elliptic curves. The implementation of the latter method included
several engineering challenges due to the fact that it heavily relies on the abil-
ity to perform unlimited precision computations on complex numbers, and in
addition requires the use of special trigonometric and exponentiation functions.

A Software Library for Elliptic Curve Cryptography 627

The reason for high precision stems from a crucial step of the method, namely
the construction of the so-called Hilbert or Weber polynomials. The GNUMP
library for high-precision floating point arithmetic lacks both an implementation
of the required functions as well as of high-precision complex number arithmetic,
and hence we had to implement them from scratch. For the implementation of
the functions, we had to resort to their Taylor series expansion and study the
interrelationship between the precision of basic complex number (floating point)
arithmetic and the number of terms in the Taylor series necessary to produce
correct results. Clearly, the number of terms depended on the required precision.
Another problem was that the roots of the Hilbert polynomials are absolutely
necessary in order to find the EC, but their construction is a considerably high
burden, because of the very high precision they require. On the other hand, the
construction of Weber polynomials does not require such a high precision and
consequently turns out to be incredibly faster (cf. Section 5), but their roots
are not appropriate for the CM method. Hence, we had to find a practical way
to transform Weber roots to the roots of the corresponding Hilbert polynomial
(something that was not adequately addressed in the bibliography).

At the current stage of the library, we are making no claims that the im-
plemented algorithms are the best or fastest possible (they certainly are not,
although preliminary experiments are rather encouraging). We hope, however,
that our work will be valuable to those interested in developing easily proto-
cols based on elliptic curve cryptography by providing, in a nutshell, basic and
advanced cryptographic primitives and by uncovering many of the pitfalls and
their treatment, inherent in their implementation. Our library is publicly avail-
able from http://www.ceid.upatras.gr/faculty/zaro/software/ecc-lib/.

To the best of our knowledge, there are two other libraries which offer prim-
itives for EC cryptography: LiDIA [16] and MIRACL [21]. Both are efficient,
general purpose, number-theoretic libraries implemented in C++ that offer a vast
number of cryptographic primitives. Although there seem to exist implementa-
tions of EC cryptographic protocols (e.g., ECDSA) and EC generation methods
(CM method) based on these libraries, these implementations are either not
publicly offered (LiDIA), or are partly provided (MIRACL).

2 Basic Concepts of Elliptic Curve Algebra

In this section we review some basic concepts regarding elliptic curves and their
definition over finite fields. The interested reader may find additional informa-
tions, for example, in [3, 25]. We also assume some familiarity with elementary
number theory (see e.g., [5]).

The elliptic curves are usually defined over binary fields F2m (m ≥ 1), or over
prime fields Fp, p > 3. The case p = 3 for prime fields requires separate attention
but it is, generally, not difficult to transfer results obtained for Fp, p > 3, to the
case p = 3. In our library we use elliptic curves defined over prime fields.

An elliptic curve (EC) over the prime field Fp, denoted by E(Fp), is the set of
points (x, y) ∈ Fp (represented by affine coordinates) which satisfy the equation

628 Elisavet Konstantinou et al.

y2 = x3 + ax + b (1)

where 4a3 + 27b2 �= 0 (this condition guarantees that Eq. (1) does not have
multiple roots in Fp), along with a special point denoted by O, called the point
at infinity. An addition operation + is defined over E(Fp) such that (E(Fp), +)
defines an Abelian group, called the EC group, with O acting as its identity. The
addition operation on E(Fp) is defined as: P +Q = O, if P = −Q; P +Q = Q, if
P = O; and P +Q = R, otherwise, where, if P = (x1, y1) and Q = (x2, y2), then
the coordinates of the point R = (x3, y3) are given by x3 = z2 − x1 − x2, y3 =
z(x1 − x3) − x3 − y1 with z = y1−y2

x1−x2
, if P �= Q, and z = 3x2

1+a
2y1

, if P = Q (a is
the coefficient from Eq. (1)). The negative −Q of a point Q = (x, y) is the point
(x, p − y).

A fundamental operation of cryptographic protocols based on EC is the scalar
(or point) multiplication, i.e., the multiplication of a point P by an integer k (an
operation analogous to the exponentiation in multiplicative groups), that pro-
duces another point Q = kP (the point resulting by adding P to itself for k
times). Several algorithms exist for the fast and efficient implementation of the
scalar multiplication operation. Most of them are based on the binary represen-
tation of the integer k.

The order m of an elliptic curve is the number of points in E(Fp). Hasse’s
theorem (see e.g., [3, 25]) gives upper and lower bounds for m that are based on
the order p of Fp:

p + 1 − 2
√

p ≤ m ≤ p + 1 + 2
√

p. (2)

The order of a point P is the smallest positive integer n for which nP = O. Ap-
plication of Langrange’s theorem (stating that the exponentiation of any group
element to the power of the group’s order gives the identity element) on E(Fp),
gives that mP = O for any point P ∈ E(Fp), which in turn implies that the
order of a point cannot exceed the order of the elliptic curve.

3 Generation of Elliptic Curves and the Complex
Multiplication Method

Many of the security properties of elliptic curve cryptosystems depend on the
order of the EC group and this is determined by the generated EC. If this order is
suitable, i.e., it obeys some specific good properties, then there is a guarantee for
a high level of security. The order m of an EC is called suitable, if the following
conditions are satisfied:

1. m must have a sufficiently large prime factor (greater than 2160).
2. m �= p.
3. For all 1 ≤ k ≤ 20, it should hold that pk �= 1 mod m.

The above conditions ensure the robustness of cryptosystems based on the dis-
crete logarithm problem for EC groups (ECDLP), since it is very difficult for all

A Software Library for Elliptic Curve Cryptography 629

known attacks to solve this problem efficiently, if m obeys the above properties.
ECDLP asks for determining the value of t when two points P, Q in E(Fp) are
given such that P is of order n and Q = tP , where 0 ≤ t ≤ n − 1.

As it was mentioned in the introduction, there are three methods for gen-
erating ECs: the point counting method (see [3]), the method based on the
constructive Weil descent [8], and the Complex Multiplication (CM) method
(see [3]). The point counting method does not necessarily construct an EC of
suitable order, but it may achieve this by repeated applications of the method.
The other two methods construct ECs of a suitable order. In [8] it was shown
that the method based on the constructive Weil descent suffers from a major
drawback that is not easy to handle: it samples from a very small subset of the
set of possible elliptic curves. For this reason, we didn’t implement this particu-
lar method in our library. We only implemented the CM method and compared
it to an implementation of the point counting method given in [12]. The point
counting method is based on Schoof’s algorithm for the exact counting of ratio-
nal points on an elliptic curve (see [3] for details as well as some improvements
on Schoof’s algorithm). In the rest of this section we shall briefly review the CM
method.

3.1 A High-Level Description of the CM Method

The Complex Multiplication method generates an EC of a suitable order and
also computes the coefficients a, b which determine the EC. The method starts
by creating an EC of a suitable order and then proceeds to determine the coeffi-
cients a, b. To accomplish the latter, the roots of the so-called Hilbert or Weber
polynomials have to be computed. Each root of such a polynomial determines
two possible elliptic curves. However, only one of them has the desired suitable
order.

Let E(Fp) be an elliptic curve of order m defined over the prime field Fp.
Hasse’s theorem (Eq. (2)) implies that the quantity Z = 4p − (p + 1 − m)2 is
positive, and that it exists a unique factorization Z = Dv2, where D is a square-
free positive integer and v is some integer. In addition, there exists an integer u
such that:

4p = u2 + Dv2 (3)

where u satisfies m = p + 1 ± u. We say that D is a CM discriminant for the
prime p and that E(Fp) has a CM by D. The Complex Multiplication method
takes as input some discriminant D. The basic steps of the method are as follows:

1. Pick a random prime p and check whether Eq. (3) has a solution (u, v), with
u, v integers. One algorithm that can be used to solve this equation in u, v
is Cornacchia’s algorithm [6]. If there is no solution, then another prime p
is chosen and the step is repeated. The prime number p is going to be the
order of the underlying finite field Fp.

2. There are only two possible orders for the group E(Fp), namely m = p+1−u
and m = p + 1 + u. Check whether (at least) one of them is suitable. If this

630 Elisavet Konstantinou et al.

is the case, then proceed to Step 3 (m is the order of the elliptic curve that
we will generate). Otherwise, return to Step 1.

3. Construct either the Hilbert or the Weber polynomial, using the discrim-
inant D. It should be noted that both types of polynomials lead to the
construction of the same elliptic curve.

4. Compute the roots (modulo p) of either polynomial (this is accomplished by
using a slight modification of Berlekamp’s algorithm [2]). To further proceed,
however, the roots of the Hilbert polynomial are required. If in Step 3 the
construction of the Weber polynomial was chosen, then transform their roots
(cf. Subsection 3.2) to the roots of the corresponding Hilbert polynomial
(constructed using the same discriminant D). From every (Hilbert) root,
two elliptic curves will be generated, but only one has the desired order m.
Given a root j, the first curve is given by the equation y2 = x3 + ax + b,
where a = 3k, b = 2k and k = j

1728−j (all operations are modulo p). The
second curve, called the twist of the first, is given by y2 = x3 + ac2x + bc3,
where c is any quadratic non-residue in Fp.

5. Since only one of the curves has the required suitable order m, we can find
the particular one using a simple procedure that is based on Langrange’s
theorem (for any group point P , it should hold that mP = O): repeatedly
pick random points P on each elliptic curve, until a point is found for which
mP �= O. Then, we are certain that the other curve is the one we seek.

3.2 The Hilbert and Weber Polynomials

One major difficulty associated with the construction of Hilbert and Weber poly-
nomials for a given discriminant D, denoted by HD(x) and WD(x) respectively, is
the need for implementing high precision, complex arithmetic. Especially for the
Hilbert polynomials, whose coefficients can become huge for large values of D,
the need for high precision is more apparent. On the other hand, the Weber
polynomials have smaller coefficients than the equivalent Hilbert polynomials,
and their construction requires less time. Due to space limitations, we cannot
provide the (rather lengthy) definitions of these polynomials, but will give an
example of the two polynomials for D = 292 in order to get an idea on the size
of the coefficients and hence on the required high precision.

W292(x) = x4 − 5x3 − 10x2 − 5x + 1
H292(x) = x4

−20628770986042830460800x3

−93693622511929038759497066112000000x2

+45521551386379385369629968384000000000x

−380259461042512404779990642688000000000000

In our library, we have implemented both Hilbert and Weber polynomials, mainly
in order to perform a comparative study of how their requirements for time and
precision scale in connection with certain parameters such as the discriminant D.

A Software Library for Elliptic Curve Cryptography 631

If in Step 3 of the CM method we choose to implement the Weber polynomi-
als, we must transform their roots into the roots of the corresponding Hilbert
polynomials (generated from the same discriminant D). A detailed analysis of
how this transformation can be carried out is partly presented in [26], where
a different representation of the polynomials is used. By working out the details
and taking into account the representation of polynomials that we use, we came
up with an easy to implement transformation.

4 Implementation Considerations

In this section, we will discuss several implementation issues regarding the de-
velopment of our library. Our major design goals were to develop a portable,
modular, and easy-to-use library. Before designing the library components, sev-
eral decisions had to be made regarding the choice of the field on which to
base the library, its size, as well as the libraries for generating and performing
arithmetic with large numbers (e.g., primes).

To address portability, we have chosen to implement our library in ANSI C,
using the (ANSI C) GNU Multiple Precision arithmetic library [9] for integer
and floating point arithmetic with infinite precision.

We have chosen prime fields Fp mainly due to their simplicity in representa-
tion and in performing the basic algebraic operations. For the representation of
numbers in Fp, we use the representation of large numbers provided by GNUMP.
GNUMP represents integers and floating point numbers using a number of units
called limbs, each consisting of 32 bits (with 2 limbs being the minimum pre-
cision required for any computation). Although GNUMP supports infinite pre-
cision computations with integers, we had to enhance it with some useful inte-
ger functions such as factorization, primitive root location, etc, which were not
provided1. We also had to augment GNUMP’s floating point capabilities with
implementations of the basic complex number algebraic operations (addition,
multiplication, exponentiation, and squaring) as well as with a high precision
floating point implementation of functions such as cos(x), sin(x), exp(x), ln(x),
arctan(x) and

√
x required by other modules of the library (e.g., by the one which

implements the Complex Multiplication method) and which are not offered by
GNUMP. We implemented these functions using their Taylor series expansion,
suitably truncated for our computation needs.

To address modularity, we have built the library around a set of modules that
are organized in a bottom-up fashion. There are four major modules: the Kernel,
the EC operations module, the EC generation module, and the Applications
module. The software modules of our final design, along with the most important
components that they include and their relationships, are shown in Figure 1.
1 We had initially used the LIP library [17] for the generation and processing of large

integers mainly because it provided all these functions. However, we discovered that
the LIP implementations were a source of considerable time consumption. Our im-
plementation of these functions turned out to be much more efficient.

632 Elisavet Konstantinou et al.

Kernel

Applications module

EC operations module

EC generation module

ECDSA

random point

poly construction

Cornacchia

 addition

scalar mult

 find prime
poly root

hash function

 exp, cos, sin, arctan

Method
CM

Fig. 1. The architecture of the library

The Kernel includes several components that perform the basic algebraic
operations as well as trigonometric and exponentiation function computations
using infinite precision integer and floating point arithmetic. In addition, it in-
cludes components that implement a number of more advanced (and compli-
cated) operations, that we had to build from scratch using the primitives of the
basic operations. These advanced operations include components for the manip-
ulation of integer coefficients in polynomials (algebraic operations), and finding
roots of polynomials modulo a prime number. All the components in the kernel
form the core of our library and they are independent of components in other
modules, at a higher level, which use them. This means that they can be opti-
mized independently in order to tune the performance of the basic and advanced
arithmetic operations.

The EC operations module includes several components that implement the
elliptic curve related algebraic operations. We have a component in which the
elliptic curve data type is defined (which is an array composed of two infinite
precision numbers representing the coefficients a and b in Eq. (1)) along with
the structure of a curve point (represented as a pair of two infinite precision
integers). There are also components that generate random points on elliptic
curves, perform addition of two points of the EC, perform scalar multiplication,
and create a base point in the EC.

The EC generation module is one of the most important and algorithmically
challenging of our library. It is composed of a number of components, including
Cornacchia’s algorithm [6] for solving a special class of Diophantine equations,
that implement the Complex Multiplication (CM) method using both Hilbert
and Weber polynomials. Two main issues had to be addressed in the implemen-
tation of the CM method: (i) the implementation of complex, high precision,
floating point arithmetic as well as the use of special mathematical functions (the

A Software Library for Elliptic Curve Cryptography 633

handling of this issue was carried out by resorting to the Taylor series expansion
of these functions as was discussed in the Kernel module); (ii) the demand for
increased floating point arithmetic precision as the value of the discriminant D
increases. For example, the construction of the Hilbert polynomial H40(x) re-
quired a precision of 2 limbs (and 19 terms in the Taylor series expansion), while
the construction of the polynomial H292(x) required a precision of 5 limbs (and
90 terms in the Taylor series expansion). To determine the required precision, we
start with some initial value and then check whether the resulting polynomial is
computed correctly. If not, the precision is increased and the process is repeated.

The Applications module contains a number of cryptographic primitives and
high level protocols based on elliptic curves including the Diffie-Hellman key
exchange protocol, public/private key generation, data encryption, the Elliptic
Curve Digital Signature Algorithm (ECDSA) as well as a simple one-pad encryp-
tion scheme. One may easily build a richer set of cryptographic protocols using
the operations offered by the other modules of the library with only knowledge
the interface with these functions (calling convention and required parameters).

The modular structure reflects the distinct nature and physical separation of
the software modules of our library. It is easy to replace one method by another
(perhaps more efficient), by simply implementing the new method and plugging
it into our library; or one may discard, for example, the complex multiplication
code and produce ECs with another method, or use a concrete, precomputed set
of elliptic curves such as the ones proposed by NIST (see [7]).

5 Experiments

In this section we report on the performance of the basic components of our
library based on some preliminary experiments we conducted. The experiments
were carried out on a Pentium III (933 MHz) with 256 MB of main memory,
using the GNU multiple precision library, and the ANSI C gcc-2.95.2 compiler.
In the following, let p denote a prime, |p| its size, and let p|p| denote a prime p of
size |p|. We conducted experiments on three different fields with representative
prime sizes, namely Fp175 , Fp192 , and Fp224 . Note that Hasse’s theorem (Eq. (2))
as well as the first suitability condition (cf. Section 3), imply that |p| must be at
least 160 bits long.

We first considered the times required by the scalar multiplication operation
and by the EC cryptographic protocols included in the library. We note that
no attempt has been made for code optimization, or hard-coding (e.g., writing
parts of the library in assembly, etc) as is customary in implementations of EC
cryptographic protocols (see [18, 19]). The CPU times are shown in Table 1. As
it was expected the timings increase as the size of the field increases.

We next turn to the evaluation of the CM method. To evaluate its efficiency
we made an experimental comparison with the point counting method (cf. Sec-
tion 3). The goal was to investigate the relationship between the time required
by repeated applications of the point counting method in order to achieve an
EC of suitable order, and the burden of constructing the polynomials in the CM

634 Elisavet Konstantinou et al.

Table 1. Timing estimates in msecs for various modules of the library

|p| 175 bits 192 bits 224 bits

Scalar multiplication 13.6 15.7 19.5

Key generation 19.6 23.9 30.8

ECDH protocol 27.2 31.4 39

ECES encryption 28.8 36.5 46

ECES decryption 13.5 16.3 19.1

Signature 19.1 22.7 30.6

Verification 24.5 28.3 36.8

method. In all experiments, we have chosen two representative values for |p|,
namely 175 and 192 bits.

We started with the point counting method for which we conducted several
experiments. For each experiment we first generated a random prime number p,
and subsequently we generated uniformly at random two integers a and b such
that 1 ≤ a, b ≤ p. These two numbers represent the coefficients in the equation
of the elliptic curve (Eq. (1)). We then used an implementation of Schoof’s algo-
rithm from [12] to find the order of the curve. In all experiments we conducted,
we observed that this is a rather time consuming method having a big variance
both w.r.t. the number of repetitions to construct a suitable curve and w.r.t. to
the time required. The fastest experiment took 1 repetition and 25 minutes to
construct a suitable EC, while the slowest took 21 repetitions and more than 3
hours.

We next experimented with the CM method. Recall that the only input to
the CM method is the discriminant D. For our experiments, we have chosen
three representative values for D, namely 40, 292, and 472, that produce Hilbert
and Weber polynomials of degree 2, 4, and 6, respectively. In Table 2, we report
on the outcomes of our experiments for |p| = 192 (similar timings were reported
for |p| = 175). It turns out that the most time consuming step concerns the con-
struction of Hilbert or Weber polynomials (Step 3 of the CM method). In the
tables, we report on the number of repetitions to find a suitable order (i.e., num-
ber of repetitions required by Steps 1 and 2), on the time required to construct
the Hilbert (T [H]), or the Weber (T [W]) polynomial, and on the time required
by all steps excluding T [H] or T [W], denoted by Ttot−T [H] and Ttot−T [W], re-
spectively. All reported times are averages over 50 experiments, while the number
of repetitions are maximum over all experiments.

We would like to make two comments: (1) The construction of the polynomi-
als may seem as a drawback in a first place. However, notice that both Hilbert
and Weber polynomials depend only on D (and not on p). This implies that one
can generate off-line the polynomials for the various values of D considered, and
have them handy for the generation of an EC using the CM method. This is
a major advantage of this method, and hence the important times are the one
appearing in the last two columns of each table. (2) Constructing Weber poly-

A Software Library for Elliptic Curve Cryptography 635

Table 2. The CM method for |p| = 192 bits. All times are in sec, unless stated
otherwise

|p| = 192 bits
#repetitions T [H] T [W] Ttot − T [H] Ttot − T [W]

D = 40 7 0.75 0.09 1.66 1.57

D = 292 7 37.97 1.00 2.04 1.98

D = 472 7 1 h 23 min 1 sec 2.20 3.19 2.56

nomials and then transform their roots to those of the corresponding Hilbert
polynomial is incredibly faster than constructing directly Hilbert polynomials.

We conclude by commenting on the efficiency of our implementation of the
CM method. We are aware of three other implementations. In [12], a (publicly
available) implementation in C++ is given that uses the MIRACL library [21].
The implementation follows the IEEE standard defined in [11]. It is different
from ours as it takes as input a prime p and then decides D. Moreover, this im-
plementation uses only Weber polynomials and proceeds with a different method
to construct the EC, by avoiding the conversion of Weber roots to Hilbert roots.
In [1] and [24] two other (non-publicly available) implementations are given
which follow a method similar to ours. The former is implemented in C++ us-
ing the LiDIA 2.0 library [16]; the latter uses the NTL library [22]. Preliminary
experiments we performed with the implementation in [12] showed that our im-
plementation was by a factor of 1.5 slower, while in some cases (e.g., D = 40)
it was slightly faster. We believe that this is acceptable, given the fact that no
effort regarding any kind of optimization has been made.

6 Concluding Remarks

We have presented the implementation of a library that supports the construc-
tion of robust elliptic curve cryptosystems based on Fp, with p a prime larger
than 3. The library includes implementations of the basic algebraic operations as
well as a variety of cryptographic protocols. One of the strengths of our library
is that it includes an implementation of the complex multiplication method for
producing elliptic curves of suitable order that ensures robustness of cryptosys-
tems based on ECDLP. We believe that the portability and modularity of the
library can be exploited in order to develop more complex protocols as well as
to address efficiency issues. The later is a target which we next plan to attack.

References

[1] H. Baier, and J. Buchmann, Efficient construction of cryptographically strong
elliptic curves, in Progress in Cryptology – INDOCRYPT 2000, LNCS 1977
(Springer, 2000), pp. 191-202. 635

[2] E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24,
111 (1970), pp. 713-735. 630

636 Elisavet Konstantinou et al.

[3] Ian Blake, Gadiel Seroussi, and Nigel Smart, Elliptic curves in cryptography ,
London Math. Society Lecture Note Series 265, Cambridge University Press, 1999.
626, 627, 628, 629

[4] M. Brown, D. Hankerson, J. Lopez, and A. Menezes, Software Implementation of
the NIST Elliptic Curves over Prime Fields, in Topics in Cryptology – CT-RSA
2001, LNCS 2020 (Springer, 2001), pp. 250-265. 626

[5] D. Burton, Elementary Number Theory, McGraw Hill, 4th edition, 1998. 627
[6] G. Cornacchia, Su di un metodo per la risoluzione in numeri interi dell’ equazionePn

h=0 Chxn−hyh = P , Giornale di Matematiche di Battaglini 46 (1908), 33–90.
629, 632

[7] CSRC, Recommended elliptic curves for federal government use, July 1999.
Available at: http://csrc.nist.gov/csrc/fedstandards.html. 633

[8] S. Galbraith, Limitations of constructive Weil descent, in Public-Key Cryptography
and Computational Number Theory, (Alster and Kazimierz eds.) 2001, pp. 59-70.
626, 629

[9] GNU Multiple Precision library, ed. 3.1.1, Sept 2000, http://www.swox.com/gmp.
626, 631

[10] D. Hankerson, J. Lopez, and A. Menezes, Software Implementation of Elliptic
Curve Cryptography over Binary Fields, in Cryptographic Hardware and Embedded
Systems – CHES 2000, LNCS 1965 (Springer, 2000), pp. 1-24. 626

[11] IEEE P1363/D13, Standard Specifications for Public-Key Cryptography, ballot
draft, 1999. http://grouper.ieee.org/groups/1363/tradPK/draft.html. 635

[12] Implementations of Portions of the P1363 Draft.
http://grouper.ieee.org/groups/1363/P1363/implementations.html. 629,
634, 635

[13] Don Johnson, and Alfred Menezes, The Elliptic Curve Digital Signature Algorithm
(ECDSA), Tech. Report CORR 99-06, Dept of Combinatorics and Optimization,
Univ. of Waterloo, 1999. Available at: http://www.cacr.math.uwaterloo.ca/.

[14] D.W. Kravitz, Digital Signature Algorithm, U. S. Patent #5,231,668, 27 July
1993. 625

[15] N. Koblitz, Elliptic curve cryptosystems, Math. of Comp., 48 (1987), pp.203-209.
625

[16] LiDIA. A library for computational number theory, Technical University of Darm-
stadt, Germany. Available from
http://www.informatik.tudarmstadt.de/TI/LiDIA/Welcome.html. 627, 635

[17] LIP (Large Integer Package). Available through ftp at the directory
texttt/usr/spool/ftp/pub/lenstra at server flash.bellcore.com. 631

[18] J. López and R. Dahab, Performance of Elliptic Curve Cryptosystems, Tech. Re-
port, IC-00-08, May 2000.
Available at: http://www.dcc.unicamp.br/ic-main/publications-e.html. 626,
633

[19] J. López and R. Dahab, An Overview of Elliptic Curve Cryptography, Tech. Re-
port, IC-00-10, May 2000.
Available at: http://www.dcc.unicamp.br/ic-main/publications-e.html. 626,
633

[20] V. Miller, Uses of elliptic curves in cryptography, in Advances in Cryptology –
Crypto ’85, LNCS 218 (Springer, 1986), pp. 417-426. 625

[21] Multiprecision Integer and Rational Arithmetic C/C++ Library,
http://indigo.ie/ mscott/. 627, 635

[22] NTL: A Library for doing Number Theory, http://shoup.net/ntl/. 635

A Software Library for Elliptic Curve Cryptography 637

[23] R. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems, Comm. of the ACM, 21(1978), pp.120-126. 625

[24] Erkay Savas, Thomas A. Schmidt, and Cetin K. Koc, Generating Elliptic Curves
of Prime Order, Cryptographic Hardware and Embedded Systems – CHES 2001,
LNCS 2162 (Springer, 2001), pp. 145-161. 635

[25] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, GTM 106, 1986.
627, 628

[26] Thomas Valente, A distributed approach to proving large numbers prime, Rensse-
laer Polytechnic Institute Troy, New York, Thesis, August 1992. 631

	A Software Library for Elliptic Curve Cryptography
	Introduction
	Basic Concepts of Elliptic Curve Algebra
	Generation of Elliptic Curves and the Complex Multiplication Method
	A High-Level Description of the CM Method
	The Hilbert and Weber Polynomials

	Implementation Considerations
	Experiments
	Concluding Remarks

