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Abstract. One of the most expensive problems in numerical linear algebra is
the computation of theε-pseudospectrum of matrices, that is, the locus of eigen-
values of all matrices of the formA + E, where the norm ofE is bounded by
ε. Several research efforts have been attempting to make the problem tractable
by means of better algorithms and utilization of all possible computational re-
sources. One common goal of these efforts is to bring to users the power to ex-
tract pseudospectrum information from their applications, on the computational
environments they generally use, at a cost that is sufficiently low to render these
computations routine. To this end, we investigate a scheme based oni) iterative
methods for computing pseudospectra via approximations of the resolvent norm,
with ii) a computational platform based on a cluster of PCs andiii) a program-
ming environment based onMATLABenhanced withMPI functionality and show
that it can achieve high performance for problems of significant size.

1 Introduction and motivation

Let A ∈ Cn×n have singular value decomposition (SVD)A = UΣV ∗, and letΛ(A) be
the set of eigenvalues ofA. Theε−pseudospectrumΛε(A) (pseudospectrum for short)
of a matrix is the locus of eigenvalues ofΛ(A+E), for all possibleE such that‖E‖ ≤ ε
for given ε and norm. WhenA is normal (i.e. satisfies the relationAA∗ = A∗A),
the pseudospectral regions are readily computed as the union of the disks of radius
ε surrounding each eigenvalue ofA. The pseudospectrum becomes of interest when
A is nonnormal see [1], references therein and [2] for a package for pseudospectra
computation usingPVM. An important barrier in providing pseudospectral information
routinely is the expense involved in their calculation. In the sequel we use the 2-norm
for matrices and vectors,R(z) = (A − zI)−1 is the resolvent ofA andek the kth

standard unit vector. Alsos(x, y) := σmin(xI + iyI −A), herein written compactly as
s(z) for z = x + iy, is the minimum singular value of matrixzI − A. Two equivalent
definitions of theε−pseudospectrum are

Λε(A) = {z ∈ C : σmin(A− zI) ≤ ε} = {z ∈ C : ‖R(z)‖ ≥ 1
ε
}. (1)



Relations (1) immediately suggest an algorithm, referred to asGRID, for the computa-
tion of Λε(A) that consists of the following steps:i) Define gridΩh on a region of the
complex plane that containsΛε(A). ii) Computes(zh) := σmin(zhI − A) or R(zh),
∀zh ∈ Ωh. iii) Plot ε-contours ofs(z) or R(z). GRID’s cost is modeled as

CGRID = |Ωh| × Cσmin , (2)

where|Ωh| is the number of nodes of the mesh andCσmin is the average cost of com-
putingσmin. GRID is simple, robust and embarassingly parallel, since the computations
of s(zh) are completely decoupled between gridpoints. As cost formula (2) reveals, its
cost increases rapidly with the size of the matrix and the number of gridpoints inΩh.
For example, usingMATLABversion 6.1, theLAPACK 3.0 basedsvd function takes
19 sec to compute the SVD of a1000 × 1000 matrix on a Pentium-III at 866 MHz.
Computing the pseudospectrum on a50 × 50 mesh would take almost 13 hours or
about 7, ifA is real and one use the fact that then, the pseudospectrum is symmetric
with respect to the real axis. Exploiting the embarassingly parallel nature of the algo-
rithm, it would take over 150 such processors to bring the time down to5min (or 2.5, in
case of realA). As an indication of the state of affairs when iterative methods are used,
MATLAB’s svds (based onARPACK) on the same machine required almost68 sec to
computes(z) for Harwell-Boeing matrixe30r0100 (ordern = 9661, nnz = 306002
non-zero elements) and random z; furthermore, iterative methods over domains entail
interesting load balancing issues; cf. [3, 4]. The above underline the fact that comput-
ing pseudospectra presents a formidable computational challenge since typical matrix
sizes in applications can reach the order of hundreds of thousands. Cost formula (2)
suggests that we can reduce the complexity of the calculation bydomain-basedmeth-
ods, that seek to reduce the number of gridpoints wheres(z) must be computed, and
matrix-basedmethods, that target at reducing the cost of evaluatings(z).

Given the complexity of the problem, it also becomes necessary that we use any
advances in high performance computing at our disposal. All of the above approaches
are the subject of current research.3 Therefore, if the pseudospectrum is to become a
practical tool, we must bring it to the users on the computational environments they
generally use, at an overall cost that is sufficiently low to render these computations
routine. Here we present our efforts towards this target and contribute a strategy that
combines: Parallel computing on clusters of PCs for high performance at low cost,
communication usingMPI-like calls, and programming usingMATLAB, for rapid pro-
totyping over high quality libraries with a very popular system. Central to our strategy
is the Cornell Multitasking Toolbox forMATLAB(CMTM) ([5]) that enhancesMATLAB
with MPI functionality [6]. In the context of our efforts so far, we follow here the math-
ematical foundations of the “transfer function framework” described in [7]. Some first
results, relating the performance of the transfer function framework on an 8 processor
Origin-2000ccNUMAsystem were presented in [8]. In [3], we described the first use
of theCMTMsystem in the context of domain-based algorithms developed by our group
as well as some load balancing issues that arise in the context of domain and matrix
methods. In this paper, we extend our efforts related to the iterative computation of
pseudospectra using thetransfer function framework.

3 See also the site URL http://web.comlab.ox.ac.uk/projects/pseudospectra.



Table 1.AvailableCMTMcommands (version 0.82) (actual commands prefixed withMMPI ).

Abort, Barrier, Bcast, Comm dup, Comm free, Comm rank
Commsize, Comm split, Gather, Iprobe, Irecv, Recv
Reduce, Scatter, Scatterv, Send, Testany, Wtime

1.1 Computational environment

As a representative of the kind of computational cluster that many users will not have
much difficulty in utilizing, in this paper we employ up to 8 uniprocessor Pentium-III @
933MHz PCs, running Windows 2000, with 256KB cache and 256MB memory, con-
nected using a fast Ethernet switch. We useMATLAB(v. 6.1) due to the high quality
of its numerics and interface characteristics as well as its widespread use in the sci-
entific community. The question arises, then, how to useMATLABto solve problems
such as the pseudospectrum computation in parallel? We can, for example translate
MATLABprograms into source code for high performance compilers e.g. [9], or use
MATLABas interface for calls to distributed numerical libraries e.g. [10]. Another ap-
proach is to use multiple, independentMATLABsessions with software to coordinate
data exchange. This latter approach is followed in the “Cornell Multitasking Toolbox
for MATLAB” [5], a descendant of the MultiMATLAB package [11].CMTMenables mul-
tiple copies ofMATLABto run simultaneously and to exchange data arrays viaMPI-like
calls.CMTMprovides easy-to-useMPI-like calls of the formA = MMPIBcast(A);
EachMMPI function is aMATLAB mexfile, linked as aDLL with a commercial
version ofMPI, MPI/Pro v. 1.5, see [12]. LikeMATLAB, CMTMfunctions take as ar-
guments arrays. As the above broadcast command shows,CMTMcalls are simpler than
their MPI counterparts. The particular command is executed by all nodes; the system
automatically distinguishes whether a node is a sender or a receiver and performs the
communication. Similar are the calls to other communication procedures such as block-
ing send-receive and reduction clauses. For example, in order to compute a dot product
of two vectorsx andy that are distributed among the processors, all nodes execute the
call MMPI Reduce(x’*y, MPI ADD); Each node performs the local dot product
and then the system accumulates all local sub-products to a root node. Table 1 lists the
commands available in the current version ofCMTM. Notice the absence of theMPI
ALL type commands (e.g.Allreduce , Allgather ). Whenever these commands
are needed, we simulate them, e.g. using reduce or gather followed by broadcast.

Baseline measurementsIn order to better appreciate the results for our main algorithm,
we provide some baseline measurements for a few indicative collective communication
operations on our computational cluster. We note that for all experiments in this work
the cluster was in single user mode. Table 2 contains the measured timings with varying
number of processors and problem sizes when usingCMTMto broadcast vectors and also
to reduce by summation. As expected,MMPI Reduce is always more time consuming
thanMMPI Bcast , while both take longer as the cluster size increases.



Table 2. Timings (in sec) for broadcasting and reducing summation of vectors of size
40000:20000:100000 usingCMTMonp = 2, 4, 8 processors.

MMPI Bcast MMPI Reduce
p 400006000080000100000400006000080000100000
2 0.03 0.05 0.06 0.08 0.05 0.05 0.06 0.081
4 0.07 0.09 0.12 0.15 0.09 0.13 0.13 0.16
8 0.09 0.13 0.17 0.22 0.13 0.15 0.19 0.24

2 The transfer function framework

An early, interesting idea for the economical approximation of the pseudospectrum, pre-
sented in [13], was to use Krylov methods and obtain approximations toσmin(zI −A),
from σmin(zI − H), whereH was either the square or the rectangular upper Hessen-
berg matrix that is obtained during the Arnoldi iteration andI is the identity matrix
or a section thereof to conform in size withH. A practical advantage of this approach
is that, whatever the number of gridpoints, it requires only one (expensive) reduction
of A to upper Hessenberg form. It still requires, however, the (independent) compu-
tations ofσmin(zhI − H), for every gridpointzh, since, unlike eigenvalues singular
values do not respect the shift property, i.e. in general,σ(zI − A) 6= z − σ(A). The
above approach was further refined in [14]. Let nowD∗, E be full rank - typically long
and thin - matrices, of row dimensionn. Matrix Gz(A,E, D) := DR(z)E is called in
the literaturetransfer function. It was shown in [7] that the transfer function provides
a useful framework for describing existing and defining new methods for computing
pseudospectra. The central method in [7] was based on the selectionD = W ∗

m and
E = Wm+1, whereWm = [w1, . . . , wm] denotes the orthonormal basis for the Krylov
subspaceKm(A,w1) constructed by the Arnoldi iteration, so that

AWm = WmHm,m + hm+1,mwm+1e>m, (3)

whereHm,m is the square upper Hessenberg matrix consisting of the firstm rows of
Hm+1,m. We note thatWm+1 = [Wm, wm+1] andHm+1,m = [Hm,m;hm+1,me>m].
We will be referring tom as the “transfer function dimension” and will be writing
Gz,m(A) for Gz(A,Wm+1,W ∗

m). With the afore-mentioned selection forD andE, for
large enoughm we have‖R(z)‖ ≈ ‖Gz(A,Wm+1,W ∗

m)‖, which provides an approxi-
mation to‖R(z)‖ that improves monotonically withm and would be used in the sequel
to construct the pseudospectrum based on relation (1); cf. [7]. Even though computa-
tion of Gz(A,Wm+1,W ∗

m) = W ∗
m(A− zI)−1Wm+1 appears to require solvingm + 1

linear systems of sizen, a trick allows us to reduce the number of (large) linear systems
to one because

Gz,m(A) = [(Ĩ − hm+1,mφze>m)(Hm,m − zI)−1, φz)], (4)

whereφz = W ∗
m(A− zI)−1wm+1; cf. [7]. Therefore, in order to compute‖Gz,m(A)‖

we have to solve a single (large) linear system of sizen for each shiftz; furthermore,



Table 3.Arnoldi performance (insec) for p = 1 to 8 processors using CGS, MGS and CGS with
reorthogonalization on random sparse matrices of sizen.

Arnoldi p \ n 400006000080000100000 p \ n 400006000080000100000
CGS 1 328 512 1716 5885 2 150 241 340 440
MGS 362 560 1453 3126 172 265 365 476
CGSo 389 606 1780 6962 181 289 405 522
CGS 4 80 126 179 235 8 53 80 113 143
MGS 129 158 209 268 92 125 188 201
CGSo 101 150 211 275 64 97 135 164

the right hand side,wm+1, remains the same for each shift, something that will be ex-
ploited by the iterative solver (cf. the next section). We also need to solvem Hessenberg
systems of sizem, and to compute the norm ofGz,m(A). We discuss the actual parallel
implementation of this approach for our cluster environment in Section 2.1.

The Arnoldi iterationAs with most modern iterative schemes, the effective implemen-
tation of the transfer function methodology uses the Arnoldi iteration, via an imple-
mentation of relation (3), as a computational kernel, to create an orthogonal basis for
the Krylov subspace [15]. We organize the iteration around a row-wise partition of the
data: Each processor is assigned a number of rows ofA andV . At stepj, we store the
entireV (:, j) that must be orthogonalized into each processor. This requires a broad-
cast, at some point during the iteration, but allows thereafter the matrix-vector multipli-
cation to take place locally on each processor. Due to lack of space we do not go into
further details but tabulate, in Table 3, results from experiments on our cluster and pro-
gramming environment with three different types of Arnoldi iteration: CGS-Arnoldi,
MGS-Arnoldi and CGSo-Arnoldi, where the first is based on classical Gram-Schmidt
(GS) orthogonalization, the next on modified GS and the last on classical GS with se-
lective reorthogonalization. Notice the superlinear speedup for the larger matrices due
to the disribution of the large Krylov bases. The random sparse matrices were created
using theMATLAB’s built-in functionsprand(n,n,p) with p equal to3e− 4.

2.1 TRGRID: GRID with transfer functions

The property that renders Krylov type linear solvers particularly suitable in the context
of the transfer function framework for pseudospectra, in particular formula (4), is the
shift invariance of Krylov subspaces, i.e. the fact thatKd(A,w1) = Kd(A − zI, w1)
for any z. This means that we can reuse the same basis that we build forKd(A, w1),
say, to solve linear systems with “shifted” matrices, e.g.A− zI; see for example [16].
Since our interest is in nonnormal matrices, we usedGMRESas the linear solver. The
pseudocode for our parallel algorithm is listed in Table 4.

Remember that after completing the (parallel) Arnoldi iterations (Table 4, line 1),
with the row distribution described earlier, the rows of the basesW andŴ are dis-
tributed among the cluster nodes. For the sake of economy in notation we use the same



Table 4.Pseudocode for the parallelTRGRIDalgorithm for theCMTMenvironment

ParallelTRGRID
(* Input *) Pointszi, i = 1, ..., M , vectorw1

with ‖w1‖ = 1, scalarsm, d.
1. All nodes work on two parallel Arnoldi iterations

[Wm+1, Hm+1,m] ← arnoldi (A, w1, m)
[Ŵd+1, Fd+1,d] ← arnoldi (A, wm+1, d)
Each node has some rows ofWm+1, Ŵd+1

Node zero distributes theM gridpoints
so that processorpr id holds points in theM/p-sized setI(pr id)

2. for i ∈ I(pr id)
3. Y (:, i) = argminy{‖(Fd+1,d − ziĨd)y − e1‖}
4. end
5. Node zero gathers matrixY and broadcasts it back
6. Each node performs local multiplicationφz,i = W ∗

mŴdY
7. Node zero collectsΦz =Reduce (φz,SUM)
8. Node zero distributes back the columns ofΦz

9. for i ∈ I(pr id)
10. Di = (Ĩ − hm+1,mΦz(:, i)e>m)(Hm,m − ziI)−1

11. ‖Gzi(A)‖ = ‖[Di, φzi ]‖
12.end
13. Node zero gathers approximations of1/s(zi)

symbolism when we deal with local computations too, while in reality we are refer-
ring only to a subset of the rows ofW andŴ . Each processor (see lines 2-4, 9-12)
works onM/p gridpoints (we have assumed thatp exactly dividesM ). In line 3, each
node computes its share of the columns of matrixY . For the next steps, in order for
the localφz to be computed, all processors must access the wholeY , hence all-to-all
type communication is needed. In lines 9-12 each processor works on its share of grid-
points and columns of matrixΦz. Finally, processor zero gathers the approximations
of {1/s(zi)}M

i=1. What remains to clarify is the computation ofφz,i andΦz (lines 6-
7). We haveφz,i = W ∗

i ŴiY , whereWi andŴi, i = 0..., P − 1 are the subsets of
contiguous rows of the basis matricesW andŴ that each node privately owns. Then,
Φz =

∑P−1
i=0 φz,i and we use reducing summation to computeΦz in parallel, since

CMTMallows reduction processes to work on matrices as well as scalars. It is worth
noting that the preferred order used when applying to implement the two matrix-matrix
multiplications of line 6 depends on the dimensions of the local matricesWi, Ŵi and on
the column dimension ofY and could be decided at run time. In our experiments, we
assumed that the Krylov dimensionsm, d were much smaller than the size of the ma-
trix, n, and the grid,M . TRGRIDconsists of two parts. The first part (line 1) consists of
the Arnoldi iterations used to obtain orthogonal bases for the Krylov subspaces used for
the transfer function and for the solution of the sizen system. In forthcoming work we
detail techniques that exploit the common information present in the two bases ([8]). An
important advantage of the method is that after the first part is completed and basis ma-



Table 5.Performance of parallelTRGRID

gre 1107 pores 2 sprand(2000) sprand(4000)
p 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Time (sec) 174 76.236.218.7 340 155 76.338.1 244 118.859.3 31 501 245 123 63.9
Speedup - 2.3 4.8 9.3 - 2.2 4.5 8.9 - 2.1 4.1 7.87 - 2.04 4.1 7.84
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Fig. 1.Pseudospectrum contour∂Λε(A), ε = 1e− 1 for gre 1107 (left) andpores 2 (right).

tricesW andŴ become available, we only need to repeat the second part, from line 2
onwards to compute the pseudospectrum. Based on this property and given the previous
results for Arnoldi we measure the performance of only the second part ofTRGRID.
A second observation is that the secondTRGRID involves only dense linear algebra.
Remember also that at the end of the first part, each processor has a copy of the upper
Hessenberg matrices. Hence, we can useBLAS-3 to exploit the memory hierarchy of
each processor. Furthermore, assuming thatM ≥ p, the workload would be evenly di-
vided amongst processors. Of course, the method is always subject to load imbalances
due to systemic effects. However, since the second part of parallelTRGRID requires
only limited communication, increased network traffic is not expected to have a signif-
icant effect on performance. Let us now investigate the performance of the main body
of parallel TRGRID on our cluster’s nodes. We experimented with the HB-matrices
gre 1107 (n = 1107, nnz = 5664) andpores 2 (n = 1124, nnz = 9613) scaled
by 1e − 7, as well as with two random sparse matrices of sizen = 2000 and4000
with densityp = 1e − 2. On the domain[−1.8, 1.8] × [−1.8, 1.8], we employed a
50× 50 grid for the HB matrices and a30× 40 grid for the random matrices. Figure 1
illustrates theε = 0.1 contours for the two HB matrices. The Krylov dimensions were
m = d = 75, 100, 120 and150 respectively. Table 5 illustrates the performance results.
In all cases, except forp = 8 for the random matrices we observe excellent, superlinear
in most cases, (absolute) speedups due to the fact that the Krylov bases are distributed.

3 Conclusions

The widespread availability of the high quality numerics and interface ofMATLABto-
gether with anMPI-based parallel processing toolbox and the results shown in this



paper for matrix-based methods and in [3] for domain based methods, indicate that the
computation of pseudospectra of large matrices is rapidly becoming accessible to every-
day users who prefer to program inMATLABand whose only hardware infrastructure is
a PC cluster. Further work in progress includes the incorporation of these methods into
a toolbox as well as the exploitation of multithreading, testing different forms of par-
allelism for MATLABas well as the enhancement of the numerical infrastructure with
lower level parallel computational kernels, e.g.SCALAPACK-like. We are also working
on several numerical issues that arise during the combination of the transfer function
approach with domain based methods so as to permit even more effective and robust
implementations [8].
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