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Abstract— We use cellular automata for simulating topology
control algorithms in Wireless Sensor Networks (WSNs). A
cellular automaton is a decentralized computing model providing
an excellent platform for performing complex computations using
only local information. WSNs are composed of a large number of
distributed sensor nodes operating on batteries; the objective of
the topology control problem in WSNs is to select an appropriate
subset of nodes able to monitor a region at a minimum energy
consumption cost thus extending the network lifetime.

We have used cellular automata to model a randomized WSN
topology control algorithm and have experimentally evaluated its
performance.
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I. INTRODUCTION

A. Cellular Automata

Cellular automata (CA) are an idealization of a physical
system where space an time are discrete and the physical
quantities take only a finite set of values. They consist of
a regular grid of cells, each in one of a finite number of
states (like, for instance, On/Off). The grid can be in any
finite number of dimensions. For each cell, a set of cells called
its neighborhood (usually including the cell itself) is defined
relative to the specified cell. For example, the neighborhood of
a cell might be defined as the set of cells at distance 2 or less
from the cell. An initial state (t = 0) is selected by assigning
a state to each cell. A new generation is created (increasing t
by 1), according to some fixed rule (generally, a mathematical
function) that determines the new state of each cell in terms
of the current state of the cell and the states of the cells in its
neighborhood. For example, the rule might be that the cell is
“On” in the next generation if exactly two of the cells in the
neighborhood are “On” in the current generation, otherwise
the cell is “Off” in the next generation. Typically, the rule
for updating the state of cells is the same for each cell and
does not change over time, and is applied to the whole grid
simultaneously, though exceptions are known.

Formally, a CA is a 4-tuple (C,Σ, N, f), where C denotes
a d-dimensional array of cells or lattice (cells are indexed by
vectors from ZN ), Σ denotes the alphabet giving the possible
states each cell may take, N denotes the neighborhood (i.e.
N ⊂ Zd) and f denotes the transition function of type
ΣN → Σ. The state of all cells in time is called configuration.

Significant configuration is the starting configuration, since it
has to be provided with the CA.

CA is a discrete computational model, which is capable to
provide the same computational power as Turing Machine,
therefore it is Turing Complete. CA were firstly used by Jon
von Neumann in late 1940s when he was trying to describe
self-reproducing automaton. He succeeded by introducing two
dimensional Von Neumann’s cellular automata with rules and
starting configuration such that after certain amount of time
steps there were two copies of the pattern from starting config-
uration and so on. CA have received extensive academic study
into their fundamental characteristics and capabilities and been
applied successfully to the modelling of natural phenomena.
In this respect, two notable developments can be credited to
Conway and Wolfram. In the 1970, the mathematician John
Conway proposed his now famous Game of Life [8] which
received widespread interest among researchers. Conway’s CA
involves a 2-dimensional infinite grid of cells where each
cell has two possible states, dead or alive, and simulates the
evolution of a population using 4 basic transition rules. A
neighborhood consists of the middle cell and the eight cells
surround it (Moore neighborhood) [4], [8], [9] unlike the von
Neumann neighborhood [4], [9] that contains a cell together
with the four cells in the four directions attached to it. Later
on, in 1980s, Stephen Wolfram [16] defined four classes of
cellular automata depending on complexity and predictability
of their behaviour; he has also studied in much detail a family
of simple one-dimensional CA rules (known as Wolfram rules
[15]) showing that even these simplest rules are capable of
emulating complex behavior.

The simple structure of cellular automata has attracted
researchers from various disciplines. Cellular automata have
been studied in the context of several scientific areas like
computability theory, mathematics, physics, theoretical biol-
ogy and microstructure modelling. CA have been subjected to
rigorous mathematical and physical analysis and their applica-
tion has been proposed in different branches of science - both
physical and social. In particular, CA have been suggested as
appropriate models in many application contexts, like public
key cryptography [1], channel assignment in mobile networks
[2], pattern recognition [7], games like the Firing Squad [15]
etc. Furthermore, CA have been used in medical applications
regarding the growth of tumors [3], the implementation of the
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immune system [14] and the treatment of HIV [13]. Other ap-
plications of CA include the simulation of natural phenomena
[10], urban growth [6], behaviour of a population in a certain
situation [11] etc. The reason behind the popularity of CA can
be traced to their simplicity, and to the enormous potential they
hold in modeling complex systems, in spite of their simplicity
[7]. Cellular automata can be viewed as a simple model of a
spatially extended decentralized system made up of a number
of individual components (cells). The communication between
constituent cells is limited to local interaction. Each individual
cell is in a specific state which changes over time depending
on the states of its local neighbors. The overall structure
can be viewed as a parallel processing device. However,
this simple structure when iterated several times produces
complex patterns displaying the potential to simulate different
sophisticated natural phenomena.

B. Topology control in Wireless Sensor Networks

A WSN is a special kind of network composed of a large
number of autonomous sensor nodes geographically scattered
on a surface with the ability to monitor an area which is inside
their range and collect data about physical and environmental
conditions such as temperature, sound, vibration, pressure,
motion or pollutants. A source collects this data and can be
located anywhere in the network. WSNs were initially used by
the army for tactical surveillance without the need of human
presence; however, WSNs have been used in a wide range
of applications, such as environmental monitoring, industrial
process monitoring and control, machine health monitoring,
etc.

Important characteristics of WSNs include low compu-
tational power, low computational speed, small bandwidth,
limited memory, limited energy, high failure tolerance, no
demand for human or artificial supervision.

The most important performance aspect in WSNs is the
need to be energy efficient as sensor nodes have a finite
energy reserve offered by a battery. Topology control is a
technique used mainly in WSNs to reduce the initial topology
of the network in order to save energy, cut down interference
and extends the lifetime of the network [12]. The objective
of the topology control problem in WSNs is to discover a
minimum configuration of nodes capable of monitoring a
region equivalent to that one monitored for all nodes with
an aim to eventually ensure a longer lifetime for the network.
This is possible because in WSNs there is a lot redundancy
(that is, two or more nodes monitoring the same region) due to
a random node deployment. Due to this, redundancy problems
such as energy waste, packet collisions and congestion may
arise. Therefore, the network topology must be controlled to
avoid these negative effects.

Efficient topology control techniques in WSN are very
critical and essential: sensors operate on limited energy (i.e.,
batteries). Managing this scarce resource efficiently by con-
trolling the network topology directly influences (i.e., extends)
the network lifetime. Moreover, despite the existence of a rich
literature of theoretical approaches to the topology control

problem in WSN, heuristics are important since they usually
capture practical aspects of problems rather than their fun-
damental limitations and may lead to efficient techniques in
practice (which are usually adopted by industry and used in
practice since they impose a lower cost offering on average
satisfactory performance).

We have used cellular automata to model a variation
of the WSN topology control algorithm proposed in [17]
using randomization and have experimentally evaluated its
performance. In [17] experimental tests presented do not use
cellular automata and are implemented using PARSEC1. In [5],
another variation of the topology control algorithm of [17] has
been simulated using cellular automata; however, in [5], they
assume that idle nodes become active in a deterministic way. In
our work, idle nodes become active according to the outcome
of a weak random source; moreover, we assume homogenous
networks, i.e., there are no structural differences between the
nodes and all sensors have the same hardware and software
features.

In Section II, we present the topology algorithm and the
cellular automaton we used for its simulation; we present our
experimental framework and our simulation results in Section
III.

II. TOPOLOGY CONTROL ALGORITHM AND CELLULAR
AUTOMATON DESCRIPTION

The main idea of the WSN topology control algorithm (as
sketched in [17]) is that network nodes are activated only if
there are few neighboring active nodes; otherwise they remain
idle saving their energy. In particular, initially, sensors are
placed on the grid according to a sensors deployment scheme
and are all active. Every active node, in every step, counts
its active neighbors: if there are at least two active neighbors,
the node becomes idle; otherwise, the node remains active.
Every idle node, in every step, uses a weak random source
(i.e., it casts a five-sided “die”) in order to decide whether
it will remain idle or turn to active. Initially, each node has
0.8 units of energy; energy consumption is assumed to be
0.0165 units/step for active nodes and 0.00006 units/step for
idle nodes [17], [5]. A node turns off when it runs out of
energy. The algorithm terminates when there is no alive (active
or idle) node in the network.

For our cellular automaton, we have assumed Moore neigh-
borhoods [4], [8], [9]: the neighborhood of each node consists
of its 8 surrounding nodes. We developed an Outer-Totalistic
cellular automaton2 for our simulation. Transition rules of
Outer-Totalistic CA are based on the sum of the states of the
neighbors. For instance, the state of cell u at time t + 1 is
calculated based on the sum of its state together with the states
of its neighboring cells at time t [9]. In order for “sums of
states” to be defined, we have represented states by integers.
In particular, we have assigned values 1 to active cells, 0 to

1Parsec is a C-based simulation language, developed by the Parallel
Computing Laboratory at UCLA, for sequential and parallel execution of
discrete-event simulation models (http://pcl.cs.ucla.edu/projects/parsec/).

2A class of CA to which Life belongs.
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idle cells and 2 to dead or empty cells; in this way, we count
active cells by increasing a counter. Regarding the transition
of our CA, every active cell, at every time unit, counts its
active neighbors. An active node with at least two active
neighbors turns idle. An active node with one or no active
neighbors remains active. An active neighbor with no battery
turns off. An idle neighbor turns active at a random moment
and performs again these rules. Every idle node, in every step
uses a weak random source in order to decide whether it will
remain idle or turn to active. For the implementation of the
CA rules, we have used boundary conditions, i.e., conditions
applied to cells at the borders of the grid [4]. In particular, we
added a hidden extra raw of cells around the main grid: these
extra cells help in the formation of the neighborhoods but are
not used in calculations.

III. IMPLEMENTATION DETAILS AND SIMULATION
RESULTS

For the experimental evaluation of our algorithm, we devel-
oped a Java application that performs simulation and visual-
ization. Fig. 1 shows the GUI of our WSN topology control
application. There are two parts: the grid and the user menu.
The two-dimensional grid represents the WSN. Every cell is
a possible place for a sensor node. The user menu consists of
drop-down menus for sensor deployment scheme and network
size options as well as start and pause options.

The application receives as input the network size and
the sensor deployment scheme selection; it computes and
visualizes the evolution of the WSN when our topology control
algorithm is applied to it for its entire lifetime; it also returns
number of active and idle nodes for the WSN lifetime.

Fig. 1. The GUI of our application for a WSN of size 75× 75.

Currently, in the beginning of the application, the user is
requested to select an integer n in [5,300] in order to produce
a grid WSN of size n × n. We have implemented 5 sensor
deployments schemes: random and full, rows and circles
deployment and sparse deployment. In random deployment
2(a), active nodes are placed randomly on the grid WSN
without necessarily covering every possible cell. Full sensor
deployment implies that every cell of the grid contains an

active node 2(b). Random and full deployment offer high
connectivity among nodes. In rows deployment nodes are
placed one next to the other, as shown in Fig.3(a), each sensor
forwards information to its neighbor so that the final sensor
receives the data. In circular deployment, nodes form a circle,
as shown in Fig.3(b); such a deployment could be useful to
model the protection of an area from surrounding dangers.
Finally, sparse deployment, as shown in Fig.3(c), forces all
sensors to remain active until their energy is exhausted. Cells
are characterized by their available energy amounts (battery)
and their state at every time step.

(a) (b)
Fig. 2. Initialization of the grid WSN using random (a) and full (b)
deployment of sensors. Red cells are active nodes, yellow cells are idle nodes,
white cells are dead or no nodes.

(a)

(b) (c)
Fig. 3. Initialization of the grid WSN using rows (a), circular (b) and sparse
(c) deployment of sensors. Red cells are active nodes, yellow cells are idle
nodes, white cells are dead or no nodes.

The application was developed in Sun Java 1.6.0.u26 and
executed on a OpenSUSE 11.4 (Linux Distribution) system
with AMD Athlon II x4 640 Processor at 3GHz and 3.6 GHz
memory. Figures were plotted using the Open Source tool
Octave (http://www.gnu.org/software/octave/).

Simulation results for our algorithm in a WSN of size 300×
300 for full and random deployment are presented in Fig. 4,
5, 6, compared to the case when all sensors are active until
their energy is exhausted (i.e., no topology control algorithm
is applied).

In our simulation, we have used a cellular automaton to
model a WSN topology control algorithm; good news is
that our results are inline (and actually slightly better) with
those presented in [5]. We observe that application of our
algorithm - which uses randomness for the activation of idle
nodes - prolongs network lifetime compared to what happens
when no algorithm is used (i.e., when all sensors remain
active until their energy is exhausted): the total energy of the
WSN falls relatively slow thus extending network lifetime.
In particular (Fig. 4), when full sensor deployment is used,
network lifetime is extended 4.5 times more that when no
topology control algorithm is used; in [5], they assume full
sensor deployment and they obtain an extension in network
lifetime 4 times more that when no topology control algorithm
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Fig. 4. Simulation results for our algorithm in a WSN of size 300 × 300:
total network energy.
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Fig. 5. Simulation results for our algorithm in a WSN of size 300 × 300:
coverage.

is used. When random sensor deployment is used, network
lifetime is extended 4 times more that when no topology
control algorithm is used.

Full deployment of sensors (i.e., sensors are placed one in
every network node) improves coverage compared to random
sensor deployment or to the no topology control case; in par-
ticular (Fig. 5), our algorithm obtains a coverage of more than
80% for most of the network lifetime. Regarding connectivity
(Fig. 6), as the WSN energy decreases, there is high clustering
in the WSN (active sensors create disjoint connected groups)
resulting in low connectivity. Since WSN energy levels are not
too low, we could fix this inefficiency by letting the algorithm
check a larger neighborhood before deciding which nodes to
keep idle or active. It is worth investigating whether adopting
an alternative neighborhood pattern for our cellular automaton
(like for example a denser Margolus neighborhood) would help
in increasing connectivity.
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