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ABSTRACT 

We use cellular automata for simulating a series of topology control algorithms in Wireless Sensor Networks (WSNs) 
using various programming environments. A cellular automaton is a decentralized computing model providing an ex-
cellent platform for performing complex computations using only local information. WSNs are composed of a large 
number of distributed wireless sensor nodes operating on batteries. The objective of the topology control problem in 
WSNs is to select an appropriate subset of nodes able to monitor a region at a minimum energy consumption cost and, 
therefore, extend network lifetime. Herein, we present topology control algorithms based on the selection—in a deter-
ministic or randomized way—of an appropriate subset of sensor nodes that must remain active. We use cellular auto-
mata for conducting simulations in order to evaluate the performance of these algorithms and investigate the effect/role 
of the neighbourhood selection in the efficient application of our algorithms. Furthermore, we implement our simula-
tions in Matlab, Java and Python in order to investigate in which ways the selection of an appropriate programming 
environment can facilitate experimentation and can result in more efficient application of our algorithms. 
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1. Introduction 
A cellular automaton (CA) [1] is an idealization of a 
physical system in which space and time are discrete and 
the physical quantities take only a finite set of values. 
Informally, a cellular automaton is a lattice of cells, each 
of which may be in a predetermined number of discrete 
states (like, for instance, On/Off). The grid can be in any 
finite number of dimensions. A neighbourhood relation is 
defined over this lattice, indicating for each cell which 
cells are considered to be its neighbours during state up- 
dates. For example, the neighbourhood of a cell might be 
defined as the set of cells at distance two (i.e., two hops) 
or less from the cell. 

In each time step, every cell updates its state using a 
transition rule that takes as input the states of all cells in 
its neighbourhood (which usually includes the cell itself). 
All cells in the cellular automaton are synchronously 
updated. At time t = 0 the initial state of the cellular 
automaton must be defined; then, repeated synchronous 
application of the transition function to all cells in the 

lattice will lead to the deterministic evolution of the cel-  
lular automaton over time. Typically, the rule for update- 
ing the state of cells is the same for each cell and does 
not change over time, though exceptions are known. 

Formally, a CA is a 4-tuple (  where C 
denotes a d-dimensional array of cells or lattice (cells are 
indexed by vectors from ZN), Σ denotes the alphabet giv- 
ing the possible states each cell may take, N denotes the 
neighbourhood (i.e., N∈Zd) and f denotes the transition 
function of type . The state of all cells in time 
is called configuration.  

), , ,C N fΣ

NΣ → Σ

A cellular automaton is a discrete computational 
model, which is capable to provide the same computa- 
tional power as Turing Machine, therefore it is Turing 
Complete. Cellular automata were firstly used by Jon von 
Neumann [1] in late 1940s when he was trying to de- 
scribe a self-reproducing automaton. He succeeded by 
introducing two dimensional Von Neumann’s cellular 
automaton with rules and starting configuration such that 
after a certain amount of time steps there were two cop-
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ies of the pattern from starting configuration and so on. 
Cellular automata have received extensive academic 

study into their fundamental characteristics and capabili- 
ties and been applied successfully to the modeling of 
natural phenomena. In this respect, two notable devel- 
opments can be credited to Conway and Wolfram. In the 
1970, the mathematician John Conway proposed his now 
famous Game of Life [2] which received widespread 
interest among researchers. Conway’s CA involves a 
2-dimensional infinite grid of cells where each cell has 
two possible states, dead or alive, and simulates the evo- 
lution of a population using four basic transition rules. Its 
neighbourhood consists of the middle cell and the eight 
cells surround it (i.e., Moore neighbourhood) [2-4] unlike 
the von Neumann neighbourhood that contains a cell 
together with the four cells in the four directions attached 
to it [1,3,4]. Later on, in 1980s, Stephen Wolfram [5] 
defined four classes of cellular automata depending on 
complexity and predictability of their behavior; he has 
also studied in much detail a family of simple one-di- 
mensional CA rules (known as Wolfram rules [6]) 
showing that even these simplest rules are capable of 
emulating complex behavior. 

Based on the theoretical concept of universality, re- 
searchers have tried to develop simpler and more practi- 
cal architectures of CA that can be used to model widely 
divergent application areas, including theoretical biology 
[3], game theory [7] etc. In particular, CA have been 
suggested in public key cryptography [8], channel as- 
signment in mobile networks [9], pattern recognition [10], 
games like the Firing Squad [6] etc. Furthermore, CA 
have been used in medical applications regarding the 
growth of tumors [11], the implementation of the im- 
mune system [12] and the treatment of HIV [13]. Other 
applications of CA include the simulation of natural 
phenomena [14,15], urban growth [16], behavior of a 
population in a certain situation [17] etc. Cellular auto- 
mata have successfully been used as a means for model- 
ing and simulation of topology control algorithms in 
Wireless Sensor Networks (WSNs) [18-23]. A WSN is a 
special kind of network composed of a large number of 
autonomous sensor nodes geographically scattered on a 
surface with the ability to monitor an area inside their 
range and collect data about physical and environmental 
conditions such as temperature, sound, vibration, pres- 
sure, motion or pollutants. A source collects this data and 
can be located anywhere in the network. WSNs were 
initially used by the army for tactical surveillance with- 
out the need of human presence; however, WSNs have 
been used in a wide range of applications, such as envi- 
ronmental monitoring, industrial process monitoring and 
control, machine health monitoring etc.  

Important characteristics of WSNs include low com- 
putational power, low computational speed, small band- 
width, limited memory, limited energy, high failure tol- 

erance, no demand for human or artificial supervision. 
The most important performance aspect in WSNs is the 
need to be energy efficient as sensor nodes have a finite 
energy reserve offered by a battery. 

Topology control is a technique used to reduce the ini- 
tial topology of a WSN in order to save energy, avoid 
interference and extend the lifetime of the network by 
discovering a minimum configuration of nodes capable 
of monitoring a region equivalent to the monitored one 
for all nodes [24,25]. Efficient topology control tech- 
niques in WSN are very critical and essential: sensors 
operate on limited energy (i.e., batteries). Managing this 
scarce resource efficiently by controlling the network 
topology directly influences (i.e., extends) the network 
lifetime. Evaluation of topology control algorithms re- 
quires simulation since setting up a real WSN is very 
costly. There is a long literature, both theoretical and 
experimental, on topology control algorithms for WSN 
[24,26-28]. 

In this work, we focus on a subset of topology control 
algorithms (duty cycling and scheduling while maintain- 
ing connectivity and coverage) and use the cellular 
automata simulation approach suggested in [20] in order 
to experimentally investigate which type of neighbour- 
hood should be preferred for obtaining efficient simula- 
tions for topology control algorithms in WSN. Existing 
implementations of cellular automata have been devel- 
oped using Java and C/C++, Matlab or C-based spe- 
cial-purpose simulating tools like COOJA, OMNeT++, 
Casim tool that require advanced programming skills on 
behalf of the user/developer. In our work, instead of us- 
ing an existing simulator, we have used Matlab, Java and 
Python for implementing cellular automata from scratch: 
the main motivation for this approach has been to invest- 
tigate whether researchers who (do not wish to go into 
the details of an existing cellular automata simulator, but) 
prefer to build their own simple simulation environment 
using cellular automata can be assisted by very popular 
programming environments like Matlab, Java and Py- 
thon.  

The paper is organized as follows. In Section 2, we 
present the different neighbourhoods adopted in our work. 
The topology control algorithms suggested in this paper 
are presented in Section 3. We present implementation 
details and experimental results in Section 4 and we con- 
clude in Section 5. 

2. Neighbourhood Schemes 

In order to investigate how the selection of the neigh- 
bourhood in cellular automata models can affect the per- 
formance of simulations of topology control algorithms 
in WSNs, various neighbourhood schemes have been 
studied. 

In a cellular automaton, a neighbourhood relation is 
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defined over a lattice of cells and indicates the neigh- 
bours of each cell considered during state updates. For 
example, the neighbourhood of a cell can be defined as 
the set of cells at distance two (i.e., two hops) or less 
from the cell. In each time step, every cell updates its 
state using a transition function/rule that takes as input 
the states of all cells in its neighbourhood (which usually 
includes the cell itself). 

We investigate the effect that application of different 
neighbourhoods can have on the performance of a topol- 
ogy control algorithm in a WSN: for instance, assuming 
that each cell contains a sensor, the neighbourhood type 
adopted can impose limitations on the number of the ac- 
tive sensors used to cover an area.  

In what follows, we briefly describe the neighbour- 
hood schemes of the cellular automata used in our simu- 
lations.  

The Moore neighbourhood [2-4] of a cell includes the 
central cell and the eight cells adjacent to it (Figure 1). 
The Von Neumann neighbourhood [1,3,4], shown in 
Figure 2, includes the central cell and the four cells that 
are horizontally and vertically adjacent to it. The Mar- 
golus neighbourhood [29,30], is the basic variation of 
cellular automata block neighbourhoods. At each step, 
the neighbourhood divides the lattice into blocks of four 
cells. Each cell belongs to two blocks that alternate dur- 
ing each time step according to whether the step is an 
odd or an even number. Margolus neighbourhood is pre- 
sented in Figure 3. The Weighted Margolus neighbour- 
hood [18] is a variation of the simple Margolus 
neighbourhood which uses weights. At each time step, 
each cell decides its state for the next step not only ac- 
cording to the neighbourhood block to which it belongs 
during the current step but also according to the 
neighbourhood block in which it belonged during the 
previous step. The overall size of the neighbourhood is 7 
cells. The Block neighbourhood, shown in Figure 4, is a 
second variation of the simple Margolus neighbourhood. 
Each cell of the lattice belongs to four blocks of four 
cells each. Each block is used by the algorithm every 
four steps (in the same fashion as Margolus blocks). 

The Weighted Block neighbourhood has been de- 
signed based on the main idea of the Weighted Margolus 
neighbourhood. In particual, we use the Block neigh- 
bourhood with weights. At each step, each cell makes 
decisions about its state in the next step not only accord- 
ing to the neighbourhood block that belongs to during the 
current time step but also according to the neighbour- 
hood block to which it belonged two time steps earlier. 
That technique also results in a 7-cell neighbourhood. 
When a Slider neighbourhood is assumed, the lattice is 
divided into 3 × 3 blocks that share one common cell; 
these blocks alternate every three time steps (Figure 5). 
A Slider neighbourhood combines the advantage of a 
9-cell neighbourhood, which increases knowledge of the  

 

Figure 1. Moore neighbourhood. 
 

 

Figure 2. Von Neumann neighbourhood. 
 

 

Figure 3. Margolus neighbourhood. Red and blue blocks 
are applied at odd and even times steps respectively. 
 

 

Figure 4. Block neighbourhood. 
 

 

Figure 5. Slider neighbourhood. 
 
surrounding environment of a particular cell (like for 
instance the Moore neighbourhood) and the interchange 
of blocks (like for instance the Margolus neighbourhood). 
In the recent literature, routing algorithms for wireless 
networks are based on the assumption that each node is 
aware of its neighbors [31,32] and of its neighbors’ 
neighbors positions [33]. According to this hypothesis, 
each sensor can be aware of the state of its surrounding 
cells (as in a Moore neighbourhood) and of the state of 
its neighbors at distance 2. 
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3. Topology Control Algorithms 

Usually, in WSNs, an area is covered by redundant sen- 
sors due to their random deployment. When many re- 
dundant sensors remain active simultaneously, the global 
energy of the network is rapidly reduced and the network 
lifetime is being shortened. The main idea of a WSN 
topology control algorithm (as sketched in [34]) is that 
network nodes should remain active only if there are few 
neighbouring active nodes; otherwise they remain idle 
saving their energy. 

In our work, we have implemented two basic Topol- 
ogy Control Algorithms (TCA) (together with several 
variations of them), namely TCA-1 and TCA-2, and have 
used cellular automata for experimentally studying their 
performance. All topology control algorithms are based 
on the selection of an appropriate subset of sensor nodes 
that must remain active. In TCA-1, the decision regard- 
ing the node state (active or idle) is made by the nodes 
themselves (i.e., according to the state of the nodes in 
their neighbourhood), while in TCA-2, this decision is 
made in terms of predefined categories in which nodes 
have been classified (i.e., nodes in one of these catego- 
ries remain in their current states ignoring the state of the 
nodes in their neighbourhoods). The cellular automaton 
used for TCA-1 has been implemented in previous works 
using the Matlab [18] as well as the Java [19] program- 
ming environment. Furthermore, in this work, we have 
developed cellular automata for TCA-1 and TCA-2 using 
the Python programming environment.  

The main idea of our topology control algorithms is 
that, every alive sensor node (i.e., active or idle), in every 
step, counts its active neighbours: if there are at least l 
active neighbours, the node becomes/remains idle; oth- 
erwise, the node becomes/remains active. By l we denote 
the maximum number of sensor nodes that must remain 
active during each time step assuming a particular 
neighbourhood scheme adopted for the cellular automa- 
ton used for simulation. 

The sensor nodes of the network can be in one of three 
different states: active (i.e., the sensor monitors, trans- 
mits and wastes energy), idle (i.e., the sensor wastes a 
little energy in order to remain stand-by) and dead (i.e., 
the sensor has no energy and is turned off). Therefore, 
active and idle states imply that the sensor node is alive. 
Initially, each node has 0.8 units of energy; energy con- 
sumption is assumed to be 0.0165 units/step for active 
nodes and 0.00006 units/step for idle nodes [20,34]. A 
sensor node turns off when it runs out of energy. The 
algorithms implemented in our work terminate when 
there is no alive (active or idle) node in the network.  

3.1. Topology Control Algorithm 1 (TCA-1) 

The main idea of the basic version of TCA-1 lies in the 
selection of an appropriate subset of sensor nodes that 

must remain active in order to extend network lifetime, 
maintaining best possible coverage and connectivity. 
More specifically, nodes decide whether to remain active 
or idle based on the redundancy of active nodes in their 
neighbourhood. A detailed description of the basic ver- 
sion of TCA-1 can be found in [18].  

The cellular automaton used for the simulation of 
TCA-1 and its variations uses a n × n lattice of cells. 
Each cell cij of the lattice represents a sensor node (a 
sensor of the network) and contains information about 
the sensor position in the network (determined by its co-
ordinates (i,j)), its remaining energy,  its state

{ }0,1ijSc ∈  and a timer Tci,j (i.e., a counter). Cells can 
be in one of the following two states: a cell cij is  
( )1ijSc =  when the corresponding network node con-
tains an active sensor; c tate 0 ( )0ijSc =  when 
the corresponding network node contains an idle sensor 
and cij i  2 ( )2ijSc = , when the corresponding 
network node contains a dead sensor (i.e., a sensor with 
no energy) or no s

 in state 1

i,j is in s

state

ensor at all.  

s in 

Initially, all network nodes are active (i.e., state 1). 
The timer Tcij assigned to each node is randomly initial- 
ized with an integer value in [0, 5] and decreases by one 
in each time step. When the value of the timer of a node 
decreases to zero, the node checks its neighbourhood for 
active nodes. If there are at least l active sensor nodes, 
the node is/remains deactivated (i.e., becomes idle); oth- 
erwise, the node becomes/remains active. The node 
re-initializes its timer and repeats the same procedure 
until it runs out of energy. The pseudo-code of TCA-1 is 
presented in Table 1. 

Cellular Automata Used for the Simulation of 
Topology Control Algorithm 1 (TCA-1) 
In our work, we have studied variations of the TCA-1 
algorithm resulting from the neighbourhood schemes  
 

Table 1. TCA-1 pseudo-code. 

System initialization: 

1) Deployment of active sensor nodes on the lattice, one sensor per 

cell. Each sensor node is assigned 0.8 units of energy and its timer is 

randomly initialized receiving an integer value in [0, 5]. 

2) At each step, every alive sensor node (i.e., active or idle) works as 

follows, until its runs out of energy: 

A. Decreases its energy according to rule 

B. Decreases its timer by one. If the timer is not zero, the node 

remains to its current state for the current step. If the timer is 

zero, it is randomly re-initialized receiving an integer value in [0, 

5] and: 

a) Checks the state of the nodes in its neighbourhood (in-

cluding itself). 

b) If the sum of the active nodes is greater than l, the node 

remains/becomes idle during the next step. Otherwise, it 

remains/becomes active. 
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used in the corresponding cellular automaton. In all 
variations, each alive sensor node in the WSN, counts in 
each time step the number of active sensor nodes in its 
neighbourhood in order to decide whether to remain/ 
become active or idle. l denotes the maximum necessary 
number of active sensor nodes at each time step in each 
neighbourhood and varies according to the neighbour- 
hood scheme adopted. In the following, transition func- 
tions/rules of the corresponding cellular automata are 
presented in detail. 

CAMoore is the cellular automaton used for the simula- 
tion of TCA-1 using a Moore neighbourhood (Figure 1). 
Nodes update their state based on the following rule: a 
node remains/becomes active if there are at most two (l = 
2) active sensor nodes in its neighbourhood; otherwise it 
remains/becomes idle. Typically, this transition function 
can be expressed as: 

( ) ( )
,

1 1, if  2
i j

i, j
N

Sc t +   Sc t= ≤  

( )1 0i, jSc t + = ,

)

,

− ≤

 otherwise,            (1) 

where denotes a cell, Sci.j denotes the cell state during 
each time step and Ni,j denotes the neighbourhood of cell 
cij. 

CAvonNeumann is the cellular automaton used for the 
simulation of TCA-1 using a von Neumann neighbour- 
hood (Figure 2). It uses the transition function given by 
Equation (1) presented before. Nodes update their state 
based on the following rule: a node remains/becomes 
active if there are at least two (l = 2) active sensor nodes 
in its neighbourhood; otherwise it remains/becomes idle.  

CAMargolus is the cellular automaton used for the simu- 
lation of TCA-1 using a Margolus neighbourhood (Fig- 
ure 3). The 4-cell blocks of each neighbourhood alter- 
nate during even and odd time steps. Nodes update their 
state based on the following rule: a node remains/be- 
comes active if there are at most l active sensor nodes in 
its current neighbourhood block; otherwise it re-
mains/becomes idle. Note that when CAMargolus is used, l 
can be either 1 or 2: when l = 1, at most 1 active sensor 
node can exist in each block per step. When l = 2, at most 
2 active sensor nodes can exist in each block per step. 
Typically, this transition function can be expressed as:  

( ) (
.

1 1, if
i j

i, j
N

Sc t + Sc t=   

( )1 0i, jSc t + =  otherwise.          (2) 

CAWMargolus is the cellular automaton used for the 
simulation of TCA-1 using a Weighted Margolus neigh- 
bourhood. At each time step, every sensor node which is 
alive counts the number of active nodes 1) in the 
neighbourhood block it belongs during the current time 
step, CB, and 2) in the neighbourhood block it belonged 

during the previous time step, PB. Nodes update their 
state based on the following rule: a node remains/be- 
comes active if there is at most l = 1 active sensor node 
in both blocks CB and PB; otherwise it remains/becomes 
idle. Typically, the transition function can be expressed 
as:  

( ) ( ) ( )
, ,

1 1, if 1 1 1
i j i j

ci, j
N N

S t + Sc t Sc t= ≤ ∧   

( )1 0i, jSc t + = ,

,

 otherwise.                  (3) 

CABlock is the cellular automaton used for the simula- 
tion of TCA-1 using a Block neighbourhood (Figure 4). 
It uses the transition function given by Equation (2) pre- 
sented before. Nodes update their state based on the fol- 
lowing rule: a node remains/becomes active, if there are 
at most l active sensor nodes in its neighbourhood block; 
otherwise it remains/becomes idle. Note that when 
CABlock is used, l can be either 1 or 2: when l = 1, at most 
1 active sensor node can exist in each block per step. 
When l = 2, at most 2 active sensor nodes can exist in 
each block per step. 

CAWBlock is the cellular automaton used for the simula- 
tion of TCA-1 assuming a Weighted Block neighbour- 
hood which is used in the same fashion as the Weighted 
Margolus neighbourhood in CAWMargolus. It uses transition 
function given by Equation (3) presented before. At each 
time step, every sensor node which is alive counts the 
number of active nodes 1) in the neighbourhood block it 
belongs during the current time step, CB, and 2) in the 
neighbourhood block it belonged two time steps ago, PB, 
(in order to form a 7-cell neighbourhood). Nodes update 
their state based on the following rule: a node re-
mains/becomes active if there is at most l = 1 active sen-
sor node in both blocks CB and PB; otherwise it re-
mains/becomes idle. 

CASlider is the cellular automaton used for the simula- 
tion of TCA-1 using a Slider neighbourhood (Figure 5). 
The 9-cell blocks of each neighbourhood alternate during 
even and odd time steps. Nodes update their state based 
on the following rule: a node remains/becomes active if 
there are at most l = 2 active sensor nodes in its current 
neighbourhood block; otherwise it remains/becomes idle. 
Typically, this transition function can be expressed as: 

( )
,

1 1, if ( ) 2
i j

i, j
N

Sc t + =   Sc t ≤  

( )1 0i, jSc t + =  otherwise.            (4) 

3.2. Topology Control Algorithm 2 (TCA-2) 

Like TCA-1, TCA-2 aims to select an appropriate subset 
of sensor nodes that must remain active in order to ex- 
tend network lifetime, maintaining best possible cover- 
age and connectivity. However, TCA-2 uses a simple 
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(weak) source of randomization in order to more effi- 
ciently select the subset of sensor nodes that will remain 
active. Instead of letting all nodes decide whether they 
will remain active or idle based on the redundancy of 
active nodes in their neighbourhoods, a sort of node clas- 
sification is induced and only 2/3 of the WSN nodes are 
randomly selected to make such a decision. The main 
intuition behind this trick lies in 1) uniformly selecting a 
“small”, “fixed” subset of active nodes and 2) facilitating 
nodes to make a more efficient decision on whether to 
remain active or idle by clarifying the redundancy level 
around them.  

The cellular automaton used for the simulation of 
TCA-2 follows the description of that used for the simu- 
lation of TCA-1 but it additionally contains a clock at- 
tached to each cell which determines whether the cell 
will perform a topology control algorithm. The clock is 
initially randomly initialized with an integer value in [0, 2] 
and works according to the following rule: 
• If its clock has the value 0 at step t, then the cell 

maintains its state during the current step and sets its 
clock value to 1.  

• If its clock has the value 1 at step t, then the cell up- 
dates its state (according to TCA-2) during the current 
step and sets its clock value to 2. 

• If its clock has the value 2 at step t, then the cell up- 
dates its state (according to TCA-2) during the current 
step and sets its clock value to 0. 

The clock essentially implies the classification of sen- 
sor nodes into two distinct categories during a particular 
time step: nodes performing the topology control algo- 
rithm and nodes that do not.  

Nodes update their status according to the following 
rule: when its timer decreases to zero, a node checks its 
neighbourhood (which includes the node itself) for active 
nodes. If there are at most two active nodes (l = 2), the 
node remains/becomes active; otherwise, the node be- 
comes/remains idle. The node re-initializes its timer and 
repeats the same procedure until it runs out of energy. 
The pseudo-code of TCA-2 is presented in Table 2. 

4. Implementation Details and Experimental 
Results 

We have simulated algorithms TCA-1 and TCA-2 using 
cellular automata. We have also implemented variations 
of the basic version of TCA-1 using different neigh- 
bourhood schemes in the corresponding cellular auto- 
mata. Our objective has been: 1) to evaluate how the type 
of neighbourhood adopted for our cellular automata can 
affect the performance of the simulation since it can im- 
pose limitations on the number of the active sensors used 
to cover an area and 2) to investigate whether randomi- 
zation can result in more efficient topology control in 
WSN. In the following, implementation details and  

Table 2. TCA-2 pseudo-code. 

System initialization: 
1) Deployment of active sensor nodes on the lattice, one sensor per 
cell. Each sensor node is assigned with 0.8 units of energy, a timer 
randomly initialized with an integer value in [0, 5] and a clock ran-
domly initialized with an integer value in [0, 2].  
2) At each step, every alive node (i.e., active or idle) works as fol- 
lows, until it runs out of energy:  

A. Decreases its energy according to rule 
B. Checks its clock. If clock value is 0, the node remains to its 
current state (idle or alive) and sets its clock at position 1 for the 
next step. If clock value is 1 (or 2), sets its clock at value 2 (or 
0, respectively) for the next step and:  

a) Decreases its timer by one. If the timer is not zero, the 
node remains to its current state for the current step. If the 
timer is zero, it is randomly re-initialized in [0, 5] and: 
b) Checks the state of the nodes in its neighbourhood (in-
cluding itself).  
c) If the sum of the active nodes is more than l, the cell 
remains/becomes idle during the next step. Otherwise, it 
remains/becomes active 

 
experimental results are discussed.  

Simulations have been developed in three very popular 
programming environments:  

1) Matlab Version 7.0.0.19920 (R14), executed on an 
Intel Core i3 530 processor at 2.93 GHz with 6144 
MBytes DDR3 RAM running Windows 7 operating sys- 
tem. Details on the corresponding implementations of 
TCA-1 and its variations (assuming Moore, Margolus 
and Weighted Margolus neighbourhoods) can be found 
in [18].  

2) Sun Java 1.6.0.u26, executed on an AMD Athlon II 
x4 640 Processor at at 3 GHz and 3.6 GHz DDR3 RAM 
running OpenSUSE 11.4 (Linux Distribution) operating 
system. Details on the implementations of TCA-1 and its 
variation assuming a Moore neighbourhood can be found 
in [19]; we extended this work and implemented in Java 
variations of TCA-1using additional neighbouring sche- 
mes for the corresponding cellular automata.  

3) Python version 2.7, executed on an AMD Athlon II 
x4 640 Processor at 3 GHz and 3.6 GHz DDR3 RAM 
running Ubuntu 12.04 (Linux Distribution) operating 
system. We have implemented in Python cellular auto- 
mata for algorithms TCA-1 (and its variations) and 
TCA-2. Figures were plotted using the matplotlib. pyplot 
mathematical library (http://matplotlib.org/), which in- 
cludes Matlab plot functions and can be manually im- 
ported to the python environment.  

We have evaluated our algorithms using metrics 
commonly used in WSNs: 1) number of the active sen- 
sors in the network at each time step; increasing the 
number of active sensors improves network performance, 
2) coverage and connectivity: coverage reflects the per- 
centage of active sensors in the network and its value 
shows the degree to which the network is covered by 
active nodes; connectivity reflects the ability of the net- 
work nodes to communicate and increases as the number 
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of active nodes in a neighbourhood increases and 3) 
global energy of the network; the sum of the remaining 
energy of the batteries of all alive (both active and idle) 
nodes: if the global energy is slowly reduced, the net- 
work lifetime is extended. The simulation results given in 
this section are obtained on a 50 × 50 WSN. Compari- 
sons have also been made towards the case when all 
sensors are active until their energy is exhausted (i.e., 
when no topology control algorithm is used). 

Figure 6 shows a comparison of Matlab, Java and Py- 
thon implementations based on the simulation results of 
TCA-1 via a cellular automaton with a Moore neigh- 
bourhood. It can be seen that the use of a different pro- 

gramming environment does not affect performance of 
the WSN in terms of network lifetime (Figure 6(a)), 
connectivity (Figure 6(b)), coverage (Figure 6(c)) and 
global energy (Figure 6(d)).  

However, the programming environment does affect 1) 
the size of the WSN used for simulation purposes 2) the 
visualization of simulation results and 3) how easy it is 
for a new researcher to use a programming environment 
in order to conduct simulations using cellular automata.  

Matlab can efficiently support large network sizes (e.g., 
WSN of at least 250.000 sensors). However, it is rather 
inefficient for the development of GUI-based simula- 
tions and rather hard to learn for a researcher with only  

 

   
(a)                                                               (b) 

   
(c)                                                                 (d) 

Figure 6. Simulation results: TCA-1 active nodes, connectivity, coverage and global energy (CA with a Moore neighbour-
hood). (a): Simulation results: TCA-1 active nodes (CA with Moore neighbourhood); (b): Simulation results: TCA-1 connec-
tivity (CA with Moore neighbourhood); (c): Simulation results: TCA-1 coverage (CA with a Moore neighbourhood); (d): 

imulation results: TCA-1 global energy (CA with a Moore neighbourhood). S  
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basic programming knowledge. Java can efficiently sup- 
port large enough network sizes (e.g., WSN of approxi- 
mately 22.500 sensors) and, in addition, it can simplify 
the design and development of GUI-based simulations, 
demanding, however, a sophisticated (thus costly) com- 
puting system. Java is a programming environment quite 
easy to learn and should be preferred by researchers with 
basic programming skills. Python can be a good choice 
for simulating small WSN (e.g., WSN of at most 6.500 
sensors) and a perfect choice for the development of 
user-friendly GUI-based simulations. Note that Python 
can be used for simulations involving very large WSN as 
well, but lacks efficiency when it comes to visualization. 
Python is an easy-to-learn and very flexible program-  

ming environment and certainly makes a perfect choice 
for researchers no matter how skilled they are in terms of 
programming. 

4.1. TCA-1 Simulation Results 

The following simulations have been implemented using 
the Python programming environment. 

Figure 7 shows simulation results for algorithm 
TCA-1 via cellular automata with 1) a Margolus neigh- 
bourhood with at most 1 (l = 1) active sensors in each 
neighbourhood, 2) a Margolus neighbourhood with at 
most 2 (l = 2) active sensors in each neighbourhood) and 
3) a Weighted Margolus neighbourhood. 

 

    
(a)                                                               (b) 

   
(c)                                                                 (d) 

Figure 7. Simulation results: TCA-1 active nodes, connectivity, coverage and global energy (CA with variations of Margolus 
neighbourhood). (a): Simulation results: TCA-1 active nodes (CA with variations of  Margolus neighbourhood); (b): Simu-
lation results: TCA-1 connectivity (CA with variations of Margolus neighbourhood); (c): Simulation results: TCA-1 coverage 
(CA with variations of Margolus neighbourhood); (d): Simulation results: TCA-1 global energy (CA with variations of Mar-
golus neighbourhood). 
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It is observed that a cellular automaton with a Mar- 

go
Figure 8 shows simulation results for algorithm 

TC

 Weighted  

lus neighbourhood with at most 2 (l = 2) active sensors 
in each neighbourhood results in poor performance of 
TCA-1 in terms of network lifetime (Figure 7(a)) and 
global energy (Figure 7(d)). This is reasonable since the 
increased redundancy in active nodes causes the global 
energy of the network to drop very fast; on the other 
hand, as a natural consequence, a very good connectivity 
level is obtained (Figure 7(c)). However, using a cellular 
automaton with a Weighted Margolus neighbourhood 
leads to a very good performance of TCA-1: prolonga- 
tion of the network lifetime together with good connec- 
tivity and coverage levels. 
 

A-1 via cellular automata with 1) a Block neighbour- 
hood with at most 1 (l = 1) active sensors in each 
neighbourhood, 2) a Block neighbourhood with at most 2 
(l = 2) active sensors in each neighbourhood and 3) a 
Weighted Block neighbourhood. Simulation results fol- 
low the same fashion as before (i.e., when cellular auto- 
mata with variations of a Margolus neighbourhood are 
used): using a cellular automaton with a Weighted Block 
neighbourhood leads to a very good performance of 
TCA-1: prolongation of the network lifetime together 
with good connectivity and coverage levels. 

Based on the observation that the use of

 
(a)                                                              (b) 

  
(c)                                                               (d) 

Figure 8. Simulation results: T riations of a Block neigh- CA-1 active nodes, connectivity, coverage, global energy (CA with va
bourhood). (a): Simulation results: TCA-1 active nodes (CA with variations of Block neighbourhood); (b): Simulation results: 
TCA-1 connectivity (CA with variations of Block neighbourhood); (c): Simulation results: TCA-1 coverage (CA with varia-
tions of Block neighbourhood); (d): Simulation results: TCA-1 global energy (CA with variations of Block neighbourhood).   
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argolus or Weighted Block neighbourhoods in the cor- ment make better decisions on whether to remain activM e 

4.2. TCA-2 Simulation Results 

s have been imple- 

go- 
rit

responding cellular automata results in improved per- 
formance of algorithm TCA-1, we present simulation 
results for the performance of TCA-1 in terms of active 
sensors and global energy (Figure 9) as well as connec- 
tivity and coverage (Figure 10) obtained through simula- 
tions using cellular automata with the following 
neighbouring schemes: Moore, von Neumann, Weighted 
Margolus, Weighted Block and Slider; the case when no 
topology control algorithm is used is also depicted. It is 
observed that the use of cellular automata with a Moore, 
Weighted Margolus or Slider neighbourhood raises the 
best performance of TCA-1 algorithm. Conclusion/rec- 
ommendation: in order to obtain efficient simulations of 
topology control algorithms in WSN, cellular automata 
neighbourhoods should capture the fact that when nodes 
have increased knowledge of their surrounding environ-  
 

or idle. 

Similarly, the following simulation
mented using the Python programming environment. 

Figures 11 and 12 show simulation results for al
hm TCA-1 via cellular automata with 1) a Moore 

neighbourhood and 2) a Weighted Margolus neighbour- 
hood in comparison with algorithm TCA-2 via a cellular 
automaton with a Moore neighbourhood in terms of ac- 
tive nodes, global energy, coverage and connectivity; the 
case when no topology control algorithm is used is also 
depicted. It is observed that the (weak) randomization 
used by TCA-2 leads to (slightly) improved results 
(compares to the deterministic TCA-1) as far as network 
lifetime, coverage and connectivity are concerned. 

      
(a)                                                             (b) 

Figure 9. Simulation res ourhood schemes). 

       

ults: TCA-1 active sensors (a) and global energy (b) (CA with different neighb
 

        
(a)                                                          (b) 

Figure 10. Simulation re od schemes). 

          

sults: TCA-1 coverage (a) and connectivity (b) (CA with different neighbourho
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(a)                                                            (b) 

Figure 11. Simulation resu ighbourhood and a 

   

lts: TCA-2 (CA with a Moore neighbourhood) vs TCA-1 (CA with a Moore ne
Weighted Margolus neighbourhood) active sensors (a) and global energy (b). 
 

   
(a)                                                           (b) 

Figure 12. Simulation resu ighbourhood and a 

. Conclusions 

We have used cellular automata for simulating and 

determine how the selection of a neighbourhood in cel- 

hms; 
th

    

lts: TCA-2 (CA with a Moore neighbourhood) vs TCA-1 (CA with a Moore ne
Weighted neighbourhood) coverage (a) and connectivity (b). 
 
5

evaluating two topology control algorithms in WSN us- 
ing Matlab, Java and Python programming environments. 
Both algorithms are based on the selection of an appro- 
priate subset of sensor nodes that must remain active in 
order to increase network lifetime, maintaining adequate 
levels of connectivity and coverage; one of them deter- 
ministically selects the subset of active nodes while the 
other uses a weak random source in order to select which 
nodes should remain active. In our simulations, we have 
experimentally investigated different neighbouring sche- 
mes for the corresponding cellular automata in order to 

lular automata models can affect the performance of 
simulation of topology control algorithms in WSN. 

Even the use of weak randomization seems to improve 
the performance of simple topology control algorit

e role of more complex forms of randomization cer- 
tainly deserves further investigation. Topology can be 
more efficiently controlled when information about 
wider neighbourhoods is available; therefore, Moore, 
Weighted Margolus or Slider neighbouring schemes 
should be preferred in corresponding cellular automata 
used for simulation. Finally, regarding the question: “I 
have basic skills in programming, I don’t want to use an 
existing simulator for cellular automata and prefer to 
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experimentally evaluate my ideas from scratch: what it 
would be best to use: Matlab, Java or Python”, the an-
swer is not straightforward. Focusing on the necessary 
network size, Matlab and Java offer the best support. If 
GUI-based simulations are needed, then Java and Python 
should be considered. However, for small scale GUI- 
based simulations involving cellular automata, Python 
certainly makes a simple, cost-effective and efficient 
programming environment. 
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