
Int. J. Communications, Network and System Sciences, 2013, 6, 333-345
doi:10.4236/ijcns.2013.67036 Published Online July 2013 (http://www.scirp.org/journal/ijcns)

Simulation of Topology Control Algorithms in Wireless
Sensor Networks Using Cellular Automata

Stavros Athanassopoulos1,2, Christos Kaklamanis1,2, Gerasimos Kalfountzos2,
Panagiota Katsikouli2, Evi Papaioannou1,2

1Computer Technology Institute & Press “Diophantus”, Rion, Greece
2Department of Computer Engineering and Informatics, Rion, Greece

Email: athanaso@ceid.upatras.gr, kakl@ceid.upatras.gr, kalfount@ceid.upatras.gr,
katsikouli@ceid.upatras.gr, papaioan@ceid.upatras.gr

Received May 26, 2013; revised June 26, 2013; accepted July 10, 2013

Copyright © 2013 Stavros Athanassopoulos et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

We use cellular automata for simulating a series of topology control algorithms in Wireless Sensor Networks (WSNs)
using various programming environments. A cellular automaton is a decentralized computing model providing an ex-
cellent platform for performing complex computations using only local information. WSNs are composed of a large
number of distributed wireless sensor nodes operating on batteries. The objective of the topology control problem in
WSNs is to select an appropriate subset of nodes able to monitor a region at a minimum energy consumption cost and,
therefore, extend network lifetime. Herein, we present topology control algorithms based on the selection—in a deter-
ministic or randomized way—of an appropriate subset of sensor nodes that must remain active. We use cellular auto-
mata for conducting simulations in order to evaluate the performance of these algorithms and investigate the effect/role
of the neighbourhood selection in the efficient application of our algorithms. Furthermore, we implement our simula-
tions in Matlab, Java and Python in order to investigate in which ways the selection of an appropriate programming
environment can facilitate experimentation and can result in more efficient application of our algorithms.

Keywords: Cellular Automata; Neighbourhood; Topology Control; WSN; Simulation; Matlab; Java; Python

1. Introduction
A cellular automaton (CA) [1] is an idealization of a
physical system in which space and time are discrete and
the physical quantities take only a finite set of values.
Informally, a cellular automaton is a lattice of cells, each
of which may be in a predetermined number of discrete
states (like, for instance, On/Off). The grid can be in any
finite number of dimensions. A neighbourhood relation is
defined over this lattice, indicating for each cell which
cells are considered to be its neighbours during state up-
dates. For example, the neighbourhood of a cell might be
defined as the set of cells at distance two (i.e., two hops)
or less from the cell.

In each time step, every cell updates its state using a
transition rule that takes as input the states of all cells in
its neighbourhood (which usually includes the cell itself).
All cells in the cellular automaton are synchronously
updated. At time t = 0 the initial state of the cellular
automaton must be defined; then, repeated synchronous
application of the transition function to all cells in the

lattice will lead to the deterministic evolution of the cel-
lular automaton over time. Typically, the rule for update-
ing the state of cells is the same for each cell and does
not change over time, though exceptions are known.

Formally, a CA is a 4-tuple (where C
denotes a d-dimensional array of cells or lattice (cells are
indexed by vectors from ZN), Σ denotes the alphabet giv-
ing the possible states each cell may take, N denotes the
neighbourhood (i.e., N∈Zd) and f denotes the transition
function of type . The state of all cells in time
is called configuration.

), , ,C N fΣ

NΣ → Σ

A cellular automaton is a discrete computational
model, which is capable to provide the same computa-
tional power as Turing Machine, therefore it is Turing
Complete. Cellular automata were firstly used by Jon von
Neumann [1] in late 1940s when he was trying to de-
scribe a self-reproducing automaton. He succeeded by
introducing two dimensional Von Neumann’s cellular
automaton with rules and starting configuration such that
after a certain amount of time steps there were two cop-

Copyright © 2013 SciRes. IJCNS

S. ATHANASSOPOULOS ET AL. 334

ies of the pattern from starting configuration and so on.
Cellular automata have received extensive academic

study into their fundamental characteristics and capabili-
ties and been applied successfully to the modeling of
natural phenomena. In this respect, two notable devel-
opments can be credited to Conway and Wolfram. In the
1970, the mathematician John Conway proposed his now
famous Game of Life [2] which received widespread
interest among researchers. Conway’s CA involves a
2-dimensional infinite grid of cells where each cell has
two possible states, dead or alive, and simulates the evo-
lution of a population using four basic transition rules. Its
neighbourhood consists of the middle cell and the eight
cells surround it (i.e., Moore neighbourhood) [2-4] unlike
the von Neumann neighbourhood that contains a cell
together with the four cells in the four directions attached
to it [1,3,4]. Later on, in 1980s, Stephen Wolfram [5]
defined four classes of cellular automata depending on
complexity and predictability of their behavior; he has
also studied in much detail a family of simple one-di-
mensional CA rules (known as Wolfram rules [6])
showing that even these simplest rules are capable of
emulating complex behavior.

Based on the theoretical concept of universality, re-
searchers have tried to develop simpler and more practi-
cal architectures of CA that can be used to model widely
divergent application areas, including theoretical biology
[3], game theory [7] etc. In particular, CA have been
suggested in public key cryptography [8], channel as-
signment in mobile networks [9], pattern recognition [10],
games like the Firing Squad [6] etc. Furthermore, CA
have been used in medical applications regarding the
growth of tumors [11], the implementation of the im-
mune system [12] and the treatment of HIV [13]. Other
applications of CA include the simulation of natural
phenomena [14,15], urban growth [16], behavior of a
population in a certain situation [17] etc. Cellular auto-
mata have successfully been used as a means for model-
ing and simulation of topology control algorithms in
Wireless Sensor Networks (WSNs) [18-23]. A WSN is a
special kind of network composed of a large number of
autonomous sensor nodes geographically scattered on a
surface with the ability to monitor an area inside their
range and collect data about physical and environmental
conditions such as temperature, sound, vibration, pres-
sure, motion or pollutants. A source collects this data and
can be located anywhere in the network. WSNs were
initially used by the army for tactical surveillance with-
out the need of human presence; however, WSNs have
been used in a wide range of applications, such as envi-
ronmental monitoring, industrial process monitoring and
control, machine health monitoring etc.

Important characteristics of WSNs include low com-
putational power, low computational speed, small band-
width, limited memory, limited energy, high failure tol-

erance, no demand for human or artificial supervision.
The most important performance aspect in WSNs is the
need to be energy efficient as sensor nodes have a finite
energy reserve offered by a battery.

Topology control is a technique used to reduce the ini-
tial topology of a WSN in order to save energy, avoid
interference and extend the lifetime of the network by
discovering a minimum configuration of nodes capable
of monitoring a region equivalent to the monitored one
for all nodes [24,25]. Efficient topology control tech-
niques in WSN are very critical and essential: sensors
operate on limited energy (i.e., batteries). Managing this
scarce resource efficiently by controlling the network
topology directly influences (i.e., extends) the network
lifetime. Evaluation of topology control algorithms re-
quires simulation since setting up a real WSN is very
costly. There is a long literature, both theoretical and
experimental, on topology control algorithms for WSN
[24,26-28].

In this work, we focus on a subset of topology control
algorithms (duty cycling and scheduling while maintain-
ing connectivity and coverage) and use the cellular
automata simulation approach suggested in [20] in order
to experimentally investigate which type of neighbour-
hood should be preferred for obtaining efficient simula-
tions for topology control algorithms in WSN. Existing
implementations of cellular automata have been devel-
oped using Java and C/C++, Matlab or C-based spe-
cial-purpose simulating tools like COOJA, OMNeT++,
Casim tool that require advanced programming skills on
behalf of the user/developer. In our work, instead of us-
ing an existing simulator, we have used Matlab, Java and
Python for implementing cellular automata from scratch:
the main motivation for this approach has been to invest-
tigate whether researchers who (do not wish to go into
the details of an existing cellular automata simulator, but)
prefer to build their own simple simulation environment
using cellular automata can be assisted by very popular
programming environments like Matlab, Java and Py-
thon.

The paper is organized as follows. In Section 2, we
present the different neighbourhoods adopted in our work.
The topology control algorithms suggested in this paper
are presented in Section 3. We present implementation
details and experimental results in Section 4 and we con-
clude in Section 5.

2. Neighbourhood Schemes

In order to investigate how the selection of the neigh-
bourhood in cellular automata models can affect the per-
formance of simulations of topology control algorithms
in WSNs, various neighbourhood schemes have been
studied.

In a cellular automaton, a neighbourhood relation is

Copyright © 2013 SciRes. IJCNS

S. ATHANASSOPOULOS ET AL. 335

defined over a lattice of cells and indicates the neigh-
bours of each cell considered during state updates. For
example, the neighbourhood of a cell can be defined as
the set of cells at distance two (i.e., two hops) or less
from the cell. In each time step, every cell updates its
state using a transition function/rule that takes as input
the states of all cells in its neighbourhood (which usually
includes the cell itself).

We investigate the effect that application of different
neighbourhoods can have on the performance of a topol-
ogy control algorithm in a WSN: for instance, assuming
that each cell contains a sensor, the neighbourhood type
adopted can impose limitations on the number of the ac-
tive sensors used to cover an area.

In what follows, we briefly describe the neighbour-
hood schemes of the cellular automata used in our simu-
lations.

The Moore neighbourhood [2-4] of a cell includes the
central cell and the eight cells adjacent to it (Figure 1).
The Von Neumann neighbourhood [1,3,4], shown in
Figure 2, includes the central cell and the four cells that
are horizontally and vertically adjacent to it. The Mar-
golus neighbourhood [29,30], is the basic variation of
cellular automata block neighbourhoods. At each step,
the neighbourhood divides the lattice into blocks of four
cells. Each cell belongs to two blocks that alternate dur-
ing each time step according to whether the step is an
odd or an even number. Margolus neighbourhood is pre-
sented in Figure 3. The Weighted Margolus neighbour-
hood [18] is a variation of the simple Margolus
neighbourhood which uses weights. At each time step,
each cell decides its state for the next step not only ac-
cording to the neighbourhood block to which it belongs
during the current step but also according to the
neighbourhood block in which it belonged during the
previous step. The overall size of the neighbourhood is 7
cells. The Block neighbourhood, shown in Figure 4, is a
second variation of the simple Margolus neighbourhood.
Each cell of the lattice belongs to four blocks of four
cells each. Each block is used by the algorithm every
four steps (in the same fashion as Margolus blocks).

The Weighted Block neighbourhood has been de-
signed based on the main idea of the Weighted Margolus
neighbourhood. In particual, we use the Block neigh-
bourhood with weights. At each step, each cell makes
decisions about its state in the next step not only accord-
ing to the neighbourhood block that belongs to during the
current time step but also according to the neighbour-
hood block to which it belonged two time steps earlier.
That technique also results in a 7-cell neighbourhood.
When a Slider neighbourhood is assumed, the lattice is
divided into 3 × 3 blocks that share one common cell;
these blocks alternate every three time steps (Figure 5).
A Slider neighbourhood combines the advantage of a
9-cell neighbourhood, which increases knowledge of the

Figure 1. Moore neighbourhood.

Figure 2. Von Neumann neighbourhood.

Figure 3. Margolus neighbourhood. Red and blue blocks
are applied at odd and even times steps respectively.

Figure 4. Block neighbourhood.

Figure 5. Slider neighbourhood.

surrounding environment of a particular cell (like for
instance the Moore neighbourhood) and the interchange
of blocks (like for instance the Margolus neighbourhood).
In the recent literature, routing algorithms for wireless
networks are based on the assumption that each node is
aware of its neighbors [31,32] and of its neighbors’
neighbors positions [33]. According to this hypothesis,
each sensor can be aware of the state of its surrounding
cells (as in a Moore neighbourhood) and of the state of
its neighbors at distance 2.

Copyright © 2013 SciRes. IJCNS

S. ATHANASSOPOULOS ET AL. 336

3. Topology Control Algorithms

Usually, in WSNs, an area is covered by redundant sen-
sors due to their random deployment. When many re-
dundant sensors remain active simultaneously, the global
energy of the network is rapidly reduced and the network
lifetime is being shortened. The main idea of a WSN
topology control algorithm (as sketched in [34]) is that
network nodes should remain active only if there are few
neighbouring active nodes; otherwise they remain idle
saving their energy.

In our work, we have implemented two basic Topol-
ogy Control Algorithms (TCA) (together with several
variations of them), namely TCA-1 and TCA-2, and have
used cellular automata for experimentally studying their
performance. All topology control algorithms are based
on the selection of an appropriate subset of sensor nodes
that must remain active. In TCA-1, the decision regard-
ing the node state (active or idle) is made by the nodes
themselves (i.e., according to the state of the nodes in
their neighbourhood), while in TCA-2, this decision is
made in terms of predefined categories in which nodes
have been classified (i.e., nodes in one of these catego-
ries remain in their current states ignoring the state of the
nodes in their neighbourhoods). The cellular automaton
used for TCA-1 has been implemented in previous works
using the Matlab [18] as well as the Java [19] program-
ming environment. Furthermore, in this work, we have
developed cellular automata for TCA-1 and TCA-2 using
the Python programming environment.

The main idea of our topology control algorithms is
that, every alive sensor node (i.e., active or idle), in every
step, counts its active neighbours: if there are at least l
active neighbours, the node becomes/remains idle; oth-
erwise, the node becomes/remains active. By l we denote
the maximum number of sensor nodes that must remain
active during each time step assuming a particular
neighbourhood scheme adopted for the cellular automa-
ton used for simulation.

The sensor nodes of the network can be in one of three
different states: active (i.e., the sensor monitors, trans-
mits and wastes energy), idle (i.e., the sensor wastes a
little energy in order to remain stand-by) and dead (i.e.,
the sensor has no energy and is turned off). Therefore,
active and idle states imply that the sensor node is alive.
Initially, each node has 0.8 units of energy; energy con-
sumption is assumed to be 0.0165 units/step for active
nodes and 0.00006 units/step for idle nodes [20,34]. A
sensor node turns off when it runs out of energy. The
algorithms implemented in our work terminate when
there is no alive (active or idle) node in the network.

3.1. Topology Control Algorithm 1 (TCA-1)

The main idea of the basic version of TCA-1 lies in the
selection of an appropriate subset of sensor nodes that

must remain active in order to extend network lifetime,
maintaining best possible coverage and connectivity.
More specifically, nodes decide whether to remain active
or idle based on the redundancy of active nodes in their
neighbourhood. A detailed description of the basic ver-
sion of TCA-1 can be found in [18].

The cellular automaton used for the simulation of
TCA-1 and its variations uses a n × n lattice of cells.
Each cell cij of the lattice represents a sensor node (a
sensor of the network) and contains information about
the sensor position in the network (determined by its co-
ordinates (i,j)), its remaining energy, its state

{ }0,1ijSc ∈ and a timer Tci,j (i.e., a counter). Cells can
be in one of the following two states: a cell cij is
()1ijSc = when the corresponding network node con-
tains an active sensor; c tate 0 ()0ijSc = when
the corresponding network node contains an idle sensor
and cij i 2 ()2ijSc = , when the corresponding
network node contains a dead sensor (i.e., a sensor with
no energy) or no s

 in state 1

i,j is in s

state

ensor at all.

s in

Initially, all network nodes are active (i.e., state 1).
The timer Tcij assigned to each node is randomly initial-
ized with an integer value in [0, 5] and decreases by one
in each time step. When the value of the timer of a node
decreases to zero, the node checks its neighbourhood for
active nodes. If there are at least l active sensor nodes,
the node is/remains deactivated (i.e., becomes idle); oth-
erwise, the node becomes/remains active. The node
re-initializes its timer and repeats the same procedure
until it runs out of energy. The pseudo-code of TCA-1 is
presented in Table 1.

Cellular Automata Used for the Simulation of
Topology Control Algorithm 1 (TCA-1)
In our work, we have studied variations of the TCA-1
algorithm resulting from the neighbourhood schemes

Table 1. TCA-1 pseudo-code.

System initialization:

1) Deployment of active sensor nodes on the lattice, one sensor per

cell. Each sensor node is assigned 0.8 units of energy and its timer is

randomly initialized receiving an integer value in [0, 5].

2) At each step, every alive sensor node (i.e., active or idle) works as

follows, until its runs out of energy:

A. Decreases its energy according to rule

B. Decreases its timer by one. If the timer is not zero, the node

remains to its current state for the current step. If the timer is

zero, it is randomly re-initialized receiving an integer value in [0,

5] and:

a) Checks the state of the nodes in its neighbourhood (in-

cluding itself).

b) If the sum of the active nodes is greater than l, the node

remains/becomes idle during the next step. Otherwise, it

remains/becomes active.

Copyright © 2013 SciRes. IJCNS

S. ATHANASSOPOULOS ET AL. 337

used in the corresponding cellular automaton. In all
variations, each alive sensor node in the WSN, counts in
each time step the number of active sensor nodes in its
neighbourhood in order to decide whether to remain/
become active or idle. l denotes the maximum necessary
number of active sensor nodes at each time step in each
neighbourhood and varies according to the neighbour-
hood scheme adopted. In the following, transition func-
tions/rules of the corresponding cellular automata are
presented in detail.

CAMoore is the cellular automaton used for the simula-
tion of TCA-1 using a Moore neighbourhood (Figure 1).
Nodes update their state based on the following rule: a
node remains/becomes active if there are at most two (l =
2) active sensor nodes in its neighbourhood; otherwise it
remains/becomes idle. Typically, this transition function
can be expressed as:

() ()
,

1 1, if 2
i j

i, j
N

Sc t + Sc t= ≤

()1 0i, jSc t + = ,

)

,

− ≤

 otherwise, (1)

where denotes a cell, Sci.j denotes the cell state during
each time step and Ni,j denotes the neighbourhood of cell
cij.

CAvonNeumann is the cellular automaton used for the
simulation of TCA-1 using a von Neumann neighbour-
hood (Figure 2). It uses the transition function given by
Equation (1) presented before. Nodes update their state
based on the following rule: a node remains/becomes
active if there are at least two (l = 2) active sensor nodes
in its neighbourhood; otherwise it remains/becomes idle.

CAMargolus is the cellular automaton used for the simu-
lation of TCA-1 using a Margolus neighbourhood (Fig-
ure 3). The 4-cell blocks of each neighbourhood alter-
nate during even and odd time steps. Nodes update their
state based on the following rule: a node remains/be-
comes active if there are at most l active sensor nodes in
its current neighbourhood block; otherwise it re-
mains/becomes idle. Note that when CAMargolus is used, l
can be either 1 or 2: when l = 1, at most 1 active sensor
node can exist in each block per step. When l = 2, at most
2 active sensor nodes can exist in each block per step.
Typically, this transition function can be expressed as:

() (
.

1 1, if
i j

i, j
N

Sc t + Sc t= 

()1 0i, jSc t + = otherwise. (2)

CAWMargolus is the cellular automaton used for the
simulation of TCA-1 using a Weighted Margolus neigh-
bourhood. At each time step, every sensor node which is
alive counts the number of active nodes 1) in the
neighbourhood block it belongs during the current time
step, CB, and 2) in the neighbourhood block it belonged

during the previous time step, PB. Nodes update their
state based on the following rule: a node remains/be-
comes active if there is at most l = 1 active sensor node
in both blocks CB and PB; otherwise it remains/becomes
idle. Typically, the transition function can be expressed
as:

() () ()
, ,

1 1, if 1 1 1
i j i j

ci, j
N N

S t + Sc t Sc t= ≤ ∧ 

()1 0i, jSc t + = ,

,

 otherwise. (3)

CABlock is the cellular automaton used for the simula-
tion of TCA-1 using a Block neighbourhood (Figure 4).
It uses the transition function given by Equation (2) pre-
sented before. Nodes update their state based on the fol-
lowing rule: a node remains/becomes active, if there are
at most l active sensor nodes in its neighbourhood block;
otherwise it remains/becomes idle. Note that when
CABlock is used, l can be either 1 or 2: when l = 1, at most
1 active sensor node can exist in each block per step.
When l = 2, at most 2 active sensor nodes can exist in
each block per step.

CAWBlock is the cellular automaton used for the simula-
tion of TCA-1 assuming a Weighted Block neighbour-
hood which is used in the same fashion as the Weighted
Margolus neighbourhood in CAWMargolus. It uses transition
function given by Equation (3) presented before. At each
time step, every sensor node which is alive counts the
number of active nodes 1) in the neighbourhood block it
belongs during the current time step, CB, and 2) in the
neighbourhood block it belonged two time steps ago, PB,
(in order to form a 7-cell neighbourhood). Nodes update
their state based on the following rule: a node re-
mains/becomes active if there is at most l = 1 active sen-
sor node in both blocks CB and PB; otherwise it re-
mains/becomes idle.

CASlider is the cellular automaton used for the simula-
tion of TCA-1 using a Slider neighbourhood (Figure 5).
The 9-cell blocks of each neighbourhood alternate during
even and odd time steps. Nodes update their state based
on the following rule: a node remains/becomes active if
there are at most l = 2 active sensor nodes in its current
neighbourhood block; otherwise it remains/becomes idle.
Typically, this transition function can be expressed as:

()
,

1 1, if () 2
i j

i, j
N

Sc t + = Sc t ≤

()1 0i, jSc t + = otherwise. (4)

3.2. Topology Control Algorithm 2 (TCA-2)

Like TCA-1, TCA-2 aims to select an appropriate subset
of sensor nodes that must remain active in order to ex-
tend network lifetime, maintaining best possible cover-
age and connectivity. However, TCA-2 uses a simple

Copyright © 2013 SciRes. IJCNS

S. ATHANASSOPOULOS ET AL. 338

(weak) source of randomization in order to more effi-
ciently select the subset of sensor nodes that will remain
active. Instead of letting all nodes decide whether they
will remain active or idle based on the redundancy of
active nodes in their neighbourhoods, a sort of node clas-
sification is induced and only 2/3 of the WSN nodes are
randomly selected to make such a decision. The main
intuition behind this trick lies in 1) uniformly selecting a
“small”, “fixed” subset of active nodes and 2) facilitating
nodes to make a more efficient decision on whether to
remain active or idle by clarifying the redundancy level
around them.

The cellular automaton used for the simulation of
TCA-2 follows the description of that used for the simu-
lation of TCA-1 but it additionally contains a clock at-
tached to each cell which determines whether the cell
will perform a topology control algorithm. The clock is
initially randomly initialized with an integer value in [0, 2]
and works according to the following rule:
• If its clock has the value 0 at step t, then the cell

maintains its state during the current step and sets its
clock value to 1.

• If its clock has the value 1 at step t, then the cell up-
dates its state (according to TCA-2) during the current
step and sets its clock value to 2.

• If its clock has the value 2 at step t, then the cell up-
dates its state (according to TCA-2) during the current
step and sets its clock value to 0.

The clock essentially implies the classification of sen-
sor nodes into two distinct categories during a particular
time step: nodes performing the topology control algo-
rithm and nodes that do not.

Nodes update their status according to the following
rule: when its timer decreases to zero, a node checks its
neighbourhood (which includes the node itself) for active
nodes. If there are at most two active nodes (l = 2), the
node remains/becomes active; otherwise, the node be-
comes/remains idle. The node re-initializes its timer and
repeats the same procedure until it runs out of energy.
The pseudo-code of TCA-2 is presented in Table 2.

4. Implementation Details and Experimental
Results

We have simulated algorithms TCA-1 and TCA-2 using
cellular automata. We have also implemented variations
of the basic version of TCA-1 using different neigh-
bourhood schemes in the corresponding cellular auto-
mata. Our objective has been: 1) to evaluate how the type
of neighbourhood adopted for our cellular automata can
affect the performance of the simulation since it can im-
pose limitations on the number of the active sensors used
to cover an area and 2) to investigate whether randomi-
zation can result in more efficient topology control in
WSN. In the following, implementation details and

Table 2. TCA-2 pseudo-code.

System initialization:
1) Deployment of active sensor nodes on the lattice, one sensor per
cell. Each sensor node is assigned with 0.8 units of energy, a timer
randomly initialized with an integer value in [0, 5] and a clock ran-
domly initialized with an integer value in [0, 2].
2) At each step, every alive node (i.e., active or idle) works as fol-
lows, until it runs out of energy:

A. Decreases its energy according to rule
B. Checks its clock. If clock value is 0, the node remains to its
current state (idle or alive) and sets its clock at position 1 for the
next step. If clock value is 1 (or 2), sets its clock at value 2 (or
0, respectively) for the next step and:

a) Decreases its timer by one. If the timer is not zero, the
node remains to its current state for the current step. If the
timer is zero, it is randomly re-initialized in [0, 5] and:
b) Checks the state of the nodes in its neighbourhood (in-
cluding itself).
c) If the sum of the active nodes is more than l, the cell
remains/becomes idle during the next step. Otherwise, it
remains/becomes active

experimental results are discussed.

Simulations have been developed in three very popular
programming environments:

1) Matlab Version 7.0.0.19920 (R14), executed on an
Intel Core i3 530 processor at 2.93 GHz with 6144
MBytes DDR3 RAM running Windows 7 operating sys-
tem. Details on the corresponding implementations of
TCA-1 and its variations (assuming Moore, Margolus
and Weighted Margolus neighbourhoods) can be found
in [18].

2) Sun Java 1.6.0.u26, executed on an AMD Athlon II
x4 640 Processor at at 3 GHz and 3.6 GHz DDR3 RAM
running OpenSUSE 11.4 (Linux Distribution) operating
system. Details on the implementations of TCA-1 and its
variation assuming a Moore neighbourhood can be found
in [19]; we extended this work and implemented in Java
variations of TCA-1using additional neighbouring sche-
mes for the corresponding cellular automata.

3) Python version 2.7, executed on an AMD Athlon II
x4 640 Processor at 3 GHz and 3.6 GHz DDR3 RAM
running Ubuntu 12.04 (Linux Distribution) operating
system. We have implemented in Python cellular auto-
mata for algorithms TCA-1 (and its variations) and
TCA-2. Figures were plotted using the matplotlib. pyplot
mathematical library (http://matplotlib.org/), which in-
cludes Matlab plot functions and can be manually im-
ported to the python environment.

We have evaluated our algorithms using metrics
commonly used in WSNs: 1) number of the active sen-
sors in the network at each time step; increasing the
number of active sensors improves network performance,
2) coverage and connectivity: coverage reflects the per-
centage of active sensors in the network and its value
shows the degree to which the network is covered by
active nodes; connectivity reflects the ability of the net-
work nodes to communicate and increases as the number

Copyright © 2013 SciRes. IJCNS

S. ATHANASSOPOULOS ET AL.

Copyright © 2013 SciRes. IJCNS

339

of active nodes in a neighbourhood increases and 3)
global energy of the network; the sum of the remaining
energy of the batteries of all alive (both active and idle)
nodes: if the global energy is slowly reduced, the net-
work lifetime is extended. The simulation results given in
this section are obtained on a 50 × 50 WSN. Compari-
sons have also been made towards the case when all
sensors are active until their energy is exhausted (i.e.,
when no topology control algorithm is used).

Figure 6 shows a comparison of Matlab, Java and Py-
thon implementations based on the simulation results of
TCA-1 via a cellular automaton with a Moore neigh-
bourhood. It can be seen that the use of a different pro-

gramming environment does not affect performance of
the WSN in terms of network lifetime (Figure 6(a)),
connectivity (Figure 6(b)), coverage (Figure 6(c)) and
global energy (Figure 6(d)).

However, the programming environment does affect 1)
the size of the WSN used for simulation purposes 2) the
visualization of simulation results and 3) how easy it is
for a new researcher to use a programming environment
in order to conduct simulations using cellular automata.

Matlab can efficiently support large network sizes (e.g.,
WSN of at least 250.000 sensors). However, it is rather
inefficient for the development of GUI-based simula-
tions and rather hard to learn for a researcher with only

(a) (b)

(c) (d)

Figure 6. Simulation results: TCA-1 active nodes, connectivity, coverage and global energy (CA with a Moore neighbour-
hood). (a): Simulation results: TCA-1 active nodes (CA with Moore neighbourhood); (b): Simulation results: TCA-1 connec-
tivity (CA with Moore neighbourhood); (c): Simulation results: TCA-1 coverage (CA with a Moore neighbourhood); (d):

imulation results: TCA-1 global energy (CA with a Moore neighbourhood). S

S. ATHANASSOPOULOS ET AL. 340

basic programming knowledge. Java can efficiently sup-
port large enough network sizes (e.g., WSN of approxi-
mately 22.500 sensors) and, in addition, it can simplify
the design and development of GUI-based simulations,
demanding, however, a sophisticated (thus costly) com-
puting system. Java is a programming environment quite
easy to learn and should be preferred by researchers with
basic programming skills. Python can be a good choice
for simulating small WSN (e.g., WSN of at most 6.500
sensors) and a perfect choice for the development of
user-friendly GUI-based simulations. Note that Python
can be used for simulations involving very large WSN as
well, but lacks efficiency when it comes to visualization.
Python is an easy-to-learn and very flexible program-

ming environment and certainly makes a perfect choice
for researchers no matter how skilled they are in terms of
programming.

4.1. TCA-1 Simulation Results

The following simulations have been implemented using
the Python programming environment.

Figure 7 shows simulation results for algorithm
TCA-1 via cellular automata with 1) a Margolus neigh-
bourhood with at most 1 (l = 1) active sensors in each
neighbourhood, 2) a Margolus neighbourhood with at
most 2 (l = 2) active sensors in each neighbourhood) and
3) a Weighted Margolus neighbourhood.

(a) (b)

(c) (d)

Figure 7. Simulation results: TCA-1 active nodes, connectivity, coverage and global energy (CA with variations of Margolus
neighbourhood). (a): Simulation results: TCA-1 active nodes (CA with variations of Margolus neighbourhood); (b): Simu-
lation results: TCA-1 connectivity (CA with variations of Margolus neighbourhood); (c): Simulation results: TCA-1 coverage
(CA with variations of Margolus neighbourhood); (d): Simulation results: TCA-1 global energy (CA with variations of Mar-
golus neighbourhood).

Copyright © 2013 SciRes. IJCNS

S. ATHANASSOPOULOS ET AL. 341

It is observed that a cellular automaton with a Mar-

go
Figure 8 shows simulation results for algorithm

TC

 Weighted

lus neighbourhood with at most 2 (l = 2) active sensors
in each neighbourhood results in poor performance of
TCA-1 in terms of network lifetime (Figure 7(a)) and
global energy (Figure 7(d)). This is reasonable since the
increased redundancy in active nodes causes the global
energy of the network to drop very fast; on the other
hand, as a natural consequence, a very good connectivity
level is obtained (Figure 7(c)). However, using a cellular
automaton with a Weighted Margolus neighbourhood
leads to a very good performance of TCA-1: prolonga-
tion of the network lifetime together with good connec-
tivity and coverage levels.

A-1 via cellular automata with 1) a Block neighbour-
hood with at most 1 (l = 1) active sensors in each
neighbourhood, 2) a Block neighbourhood with at most 2
(l = 2) active sensors in each neighbourhood and 3) a
Weighted Block neighbourhood. Simulation results fol-
low the same fashion as before (i.e., when cellular auto-
mata with variations of a Margolus neighbourhood are
used): using a cellular automaton with a Weighted Block
neighbourhood leads to a very good performance of
TCA-1: prolongation of the network lifetime together
with good connectivity and coverage levels.

Based on the observation that the use of

(a) (b)

(c) (d)

Figure 8. Simulation results: T riations of a Block neigh- CA-1 active nodes, connectivity, coverage, global energy (CA with va
bourhood). (a): Simulation results: TCA-1 active nodes (CA with variations of Block neighbourhood); (b): Simulation results:
TCA-1 connectivity (CA with variations of Block neighbourhood); (c): Simulation results: TCA-1 coverage (CA with varia-
tions of Block neighbourhood); (d): Simulation results: TCA-1 global energy (CA with variations of Block neighbourhood).

Copyright © 2013 SciRes. IJCNS

S. ATHANASSOPOULOS ET AL. 342

argolus or Weighted Block neighbourhoods in the cor- ment make better decisions on whether to remain activM e

4.2. TCA-2 Simulation Results

s have been imple-

go-
rit

responding cellular automata results in improved per-
formance of algorithm TCA-1, we present simulation
results for the performance of TCA-1 in terms of active
sensors and global energy (Figure 9) as well as connec-
tivity and coverage (Figure 10) obtained through simula-
tions using cellular automata with the following
neighbouring schemes: Moore, von Neumann, Weighted
Margolus, Weighted Block and Slider; the case when no
topology control algorithm is used is also depicted. It is
observed that the use of cellular automata with a Moore,
Weighted Margolus or Slider neighbourhood raises the
best performance of TCA-1 algorithm. Conclusion/rec-
ommendation: in order to obtain efficient simulations of
topology control algorithms in WSN, cellular automata
neighbourhoods should capture the fact that when nodes
have increased knowledge of their surrounding environ-

or idle.

Similarly, the following simulation
mented using the Python programming environment.

Figures 11 and 12 show simulation results for al
hm TCA-1 via cellular automata with 1) a Moore

neighbourhood and 2) a Weighted Margolus neighbour-
hood in comparison with algorithm TCA-2 via a cellular
automaton with a Moore neighbourhood in terms of ac-
tive nodes, global energy, coverage and connectivity; the
case when no topology control algorithm is used is also
depicted. It is observed that the (weak) randomization
used by TCA-2 leads to (slightly) improved results
(compares to the deterministic TCA-1) as far as network
lifetime, coverage and connectivity are concerned.

(a) (b)

Figure 9. Simulation res ourhood schemes).

ults: TCA-1 active sensors (a) and global energy (b) (CA with different neighb

(a) (b)

Figure 10. Simulation re od schemes).

sults: TCA-1 coverage (a) and connectivity (b) (CA with different neighbourho

Copyright © 2013 SciRes. IJCNS

S. ATHANASSOPOULOS ET AL. 343

(a) (b)

Figure 11. Simulation resu ighbourhood and a

lts: TCA-2 (CA with a Moore neighbourhood) vs TCA-1 (CA with a Moore ne
Weighted Margolus neighbourhood) active sensors (a) and global energy (b).

(a) (b)

Figure 12. Simulation resu ighbourhood and a

. Conclusions

We have used cellular automata for simulating and

determine how the selection of a neighbourhood in cel-

hms;
th

lts: TCA-2 (CA with a Moore neighbourhood) vs TCA-1 (CA with a Moore ne
Weighted neighbourhood) coverage (a) and connectivity (b).

5

evaluating two topology control algorithms in WSN us-
ing Matlab, Java and Python programming environments.
Both algorithms are based on the selection of an appro-
priate subset of sensor nodes that must remain active in
order to increase network lifetime, maintaining adequate
levels of connectivity and coverage; one of them deter-
ministically selects the subset of active nodes while the
other uses a weak random source in order to select which
nodes should remain active. In our simulations, we have
experimentally investigated different neighbouring sche-
mes for the corresponding cellular automata in order to

lular automata models can affect the performance of
simulation of topology control algorithms in WSN.

Even the use of weak randomization seems to improve
the performance of simple topology control algorit

e role of more complex forms of randomization cer-
tainly deserves further investigation. Topology can be
more efficiently controlled when information about
wider neighbourhoods is available; therefore, Moore,
Weighted Margolus or Slider neighbouring schemes
should be preferred in corresponding cellular automata
used for simulation. Finally, regarding the question: “I
have basic skills in programming, I don’t want to use an
existing simulator for cellular automata and prefer to

Copyright © 2013 SciRes. IJCNS

S. ATHANASSOPOULOS ET AL. 344

experimentally evaluate my ideas from scratch: what it
would be best to use: Matlab, Java or Python”, the an-
swer is not straightforward. Focusing on the necessary
network size, Matlab and Java offer the best support. If
GUI-based simulations are needed, then Java and Python
should be considered. However, for small scale GUI-
based simulations involving cellular automata, Python
certainly makes a simple, cost-effective and efficient
programming environment.

REFERENCES
[1] J. V. Neum oducing

Automata,” (E by A. W. Burks),

i

dge University Press, Cam-

ic Publishing Co. Pte. Ltd, London, 2001.

Singapore City, 1986.

26-829.

ann, “The Theory of Self-Repr
dited and Completed

University of Illinois Press, Urbana and London, 1966.

[2] M. Gardner, “The Fantastic Combinations of John
Conway’s New Solitaire Game ‘Life’,” Sc entific

American, Vol. 223, 1970, pp. 120-123.

[3] B. Chopard and M. Droz, “Cellular Automata Modeling
of Physical Systems,” Cambri
bridge, 1998.

[4] A. Ilachinski, “Cellular Automata: A Discrete Universe,”
World Scientif

[5] S. Wolfram, “A New Kind of Science,” Wolfram Media,
Inc., Champaign, 2002.

[6] S. Wolfram, “Theory and Applications of Cellular Auto-
mata,” World Scientific,

[7] M. Nowak and R. May, “Evolutionary Games and Spatial
Chaos,” Nature, Vol. 359, No. 6398, 1992, pp. 8
doi:10.1038/359826a0

[8] B. Applebaum, Y. Ishai and E. Kushilevitz, “Crypto-
graphy by Cellular Automata or How Fast Can Complex-

A Cellular Learning

a,”

escribing a Biological Immune System,”

ity Emerge in Nature?” Proceedings of the 1st Symposium
on Innovations in Computer Science (ICS 10), Beijing,
5-7 January 2010, pp. 1-19.

[9] H. Beigy and M. R. Meybodi, “A Self-Organizing Chan-
nel Assignment Algorithm: Auto-
mata Approach,” Intelligent Data Engineering and Auto-
mated Learning, Vol. 2690, 2003, pp. 119-126.

[10] N. Ganguly, B. K. Sikdar, A. Deutsch, G. Canright and P.
Pal Chaudhuri, “A Survey on Cellular Automat Tech-
nical Report, Centre for High Performance Computing,
Dresden University of Technology, Dresden, 2003.

[11] A. Boondirek, W. Triampo and N. Nuttavut, “A Review
of Cellular Automata Models of Tumor Growth,” Inter-
national Mathematical Forum, Vol. 5, No. 61, 2010, pp.
3023-3029.

[12] T. Tome and J. R. D. De Felicio, “Probabilistic Cellular
Automata D
Physical Review E, Vol. 53, No. 4, 1996, pp. 3976-3981.
doi:10.1103/PhysRevE.53.3976

[13] P. Sloot, F. Chen and C. Boucher, “Cellular Automaton
Model of Drug Therapy for HIV Infection,” Proceedings

t through Cellular Automaton

of the 5th International Conference on Cellular Automata
for Research and Industry (ACRI 02), Geneva, 9-11 Oc-
tober 2002, pp. 282-293.

[14] G. Iovine, S. Di Gregorio and V. Lupiano, “Debris-Flow
Susceptibility Assessmen
Modeling: An Example from 15-16 December 1999 Dis-
aster at Cervinara and San Martino Valle Caudina (Cam-
pania, Southern Italy),” Natural Hazards and Earth Sys-
tem Sciences, Vol. 3, 2003, pp. 457-468.
doi:10.5194/nhess-3-457-2003

[15] M. Mitchell, P. T. Hraber and J. P. Crutche
the Edge of Chaos: Evolving C

ld, “Revisiting
ellular Automata to Per-

ata,” Proceedings of the 7th AGILE

an Movement Model

ta for Topology Con-

r Topology Control

g

ed Models of Wireless Sensor Networks,”

sing Cell-DEVS,” Pro-

ology Control

rence through Topology Control,” Algo-

form Computations,” Complex Systems, Vol. 7, No. 2,
1993, pp. 89-130.

[16] H. Demirel and M. Cetin, “Modelling Urban Dynamics
via Cellular Autom
Conference on Geographic Information Science, Haifa,
15-17 March2010, pp. 313-323.

[17] L. Z. Yang, W. F. Fang, J. Li, R. Huang and W. C. Fan,
“Cellular Automaton Pedestri
Considering Human Behavior,” Chinese Science Bulletin,
Vol. 48, No. 16, 2003, pp. 1695-1699.

[18] S. Athanassopoulos, C. Kaklamanis, G. Kalfountzos and
E. Papaioannou, “Cellular Automa
trol in Wireless Sensor Networks using Matlab,” Pro-
ceedings of the 7th FTRA International Conference on
Future Information Technology (FutureTech 12),
Vancouver, 26-28 June2012, pp. 13-21.

[19] S. Athanassopoulos, C. Kaklamanis, P. Katsikouli and E.
Papaioannou, “Cellular Automata fo
in Wireless Sensor Networks,” Proceedings of the 16th
Mediterranean Electrotechnical Conference (Melecon 12),
Yasmine Hammamet, 25-28 March 2012, pp. 212-215.

[20] R. O. Cunha, A. P. Silva, A. A. F. Loureiro and L. B.
Ruiz, “Simulating Large Wireless Sensor Networks usin
Cellular Automata,” Proceedings of the 38th Annual
Simulation Symposium, Washington DC, 4-6 April 2005,
pp. 323-330.

[21] W. Li, A. Y. Zomaya, and A. Al-Jumaily, “Cellular
Automata Bas
Proceedings of the 7th ACM International Symposium on
Mobility Management and Wireless Access (MobiWAC
09), New York, 2009, pp. 1-6.

[22] B. Qela, G. Wainer and H. Mouftah, “Simulation of Large
Wireless Sensor Networks u
ceedings of the 2009 Winter Simulation Conference, Aus-
tin, 13-16 December 2009, pp. 3189-3200.

[23] W. Zhang, L. Zhang, J. Yuan, X. Yu and X. Shan,
“Demonstration of Non-Cluster Based Top
Method for Wireless Sensor Networks,” Proceedings of
the 6th IEEE Consumer Communications and Networking
Conference (CCNC 2009), Las Vegas, 10-13 January
2009, pp. 1-2.

[24] T. Lou, H. Tan, Y. Wang and F. C. M. Lau, “Minimizing
Average Interfe
rithms for Sensor Systems, Vol. 7111, 2012, pp. 115-129.

[25] P. Santi, “Topology Control in Wireless Ad-Hoc and
Sensor Networks,” ACM Computing Surveys, Vol. 37, No.
2, 2005, pp. 164-194. doi:10.1145/1089733.1089736

[26] M. Burkhart, M., P. von Rickenbach, R. Wattenhofer and
A. Zollinger, “Does Topology Control Reduce Interfer-

Copyright © 2013 SciRes. IJCNS

http://dx.doi.org/10.1038%2F359826a0
http://link.aps.org/doi/10.1103/PhysRevE.53.3976
http://link.aps.org/doi/10.1103/PhysRevE.53.3976
http://link.aps.org/doi/10.1103/PhysRevE.53.3976
http://www.nat-hazards-earth-syst-sci.net/3/457/2003/nhess-3-457-2003.html
http://www.nat-hazards-earth-syst-sci.net/3/457/2003/nhess-3-457-2003.html
http://www.nat-hazards-earth-syst-sci.net/3/457/2003/nhess-3-457-2003.html
http://dx.doi.org/10.1145%2F1089733.1089736
http://dx.doi.org/10.1145%2F1089733.1089736
http://dx.doi.org/10.1145%2F1089733.1089736

S. ATHANASSOPOULOS ET AL.

Copyright © 2013 SciRes. IJCNS

345

ence?” Proceedings of the 5th ACM International Sympo-
sium on Mobile ad hoc Networking and Computing (Mo-
biHoc 2004), New York, ACM, 2004, pp. 9-19.
doi:10.1145/989459.989462

[27] T. Johansson and L. Carr-Motyckova, “Reducin
ference in Ad Hoc Networks

g Inter-
through Topology Control,”

With Companion Simula-

 Cellular Automata: A Discrete View of the World

g, “Greedy Perimeter Stateless

er,

a,

ong, S. Lu and L. Zhang, “Energy Efficient

Rout

Proceedings of the 2005 Joint Workshop on Foundations
of Mobile Computing (DIALM-POMC 2005), New York,
2005, pp. 17-23.

[28] M. A. Labrador and P. M. Wightman, “Topology Control
in Wireless Sensor Networks:

“Geo

tion Tool for Teaching and Research,” Springer, Berlin,
2009.

[29] J. L. Schiff, “Partitioning Cellular Automata,” In: J. L.
Schiff, ,

“G

John Wiley and Sons, Inc., Hoboken, 2008, pp. 115-116.

[30] T. Toffoli and N. Margolus, “The Margolus Neighbour-
hood,” In: Cellular Automata Machines: A New Envi-

ronment for Modeling, MIT Press in Scientific Computa-
tion, 1987, pp. 119-138.

[31] B. Karp and H. T. Kun

ing for Wireless Networks,” Proceedings of the 6th
Annual International Conference on Mobile Computing
and Networking, New York, 2005, pp. 243-254.

[32] F. Kuhn, R. Wattenhofer, Y. Zhang and A. Zolling
metric Ad-Hoc Routing: Of Theory and Practice,”

Proceedings of the 22nd Annual Symposium on Principles
of Distributed Computing, New York, 2003, pp. 63-72.

[33] A. Rao, Ch. Papadimitriou, S. Shenker and I. Stoic
eographical Routing without Location Information,”

Proceedings of the 9th Annual International Conference
on Mobile Computing and Networking, New York, 2003,
pp. 96-108.

[34] F. Ye, G. Zh
Robust Sensing Coverage in Large Sensor Networks,”
UCLA Technical Report, 2002.

http://dx.doi.org/10.1145/989459.989462
http://dx.doi.org/10.1145/989459.989462
http://dx.doi.org/10.1145/989459.989462

