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Abstract. In large scale networks users often behave selfishly trying to
minimize their routing cost. Modelling this as a noncooperative game,
may yield a Nash equilibrium with unboundedly poor network perfor-
mance. To measure this inefficacy, the Coordination Ratio or Price of
Anarchy (PoA) was introduced. It equals the ratio of the cost induced
by the worst Nash equilibrium, to the corresponding one induced by the
overall optimum assignment of the jobs to the network. On improving
the PoA of a given network, a series of papers model this selfish behavior
as a Stackelberg or Leader-Followers game.

We consider random tuples of machines, with either linear or M/M/1
latency functions, and PoA at least a tuning parameter c. We validate
a variant (NLS) of the Largest Latency First (LLF) Leader’s strategy on
tuples with PoA ≥ c. NLS experimentally improves on LLF for systems
with inherently high PoA, where the Leader is constrained to control
low portion α of jobs. This suggests even better performance for systems
with arbitrary PoA. Also, we bounded experimentally the least Leader’s
portion α0 needed to induce optimum cost. Unexpectedly, as parameter
c increases the corresponding α0 decreases, for M/M/1 latency functions.
All these are implemented in an extensive Matlab toolbox.

1 Introduction

We consider the problem of system resource allocation [28]. This problem is one
of the basic problems in system management, though systems today have high
availability of bandwidth and computational power.
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Such systems are large scale networks, for example broadband [27], wireless
[8] and peer to peer networks[7] or Internet. The users have the ability to select
their own route to their destination with little or no limitation [4, 20, 9]. Since the
users are instinctively selfish, they may use the right of path selection and may
select a route that maximizes their profit. This selfish routing behavior can be
characterized by a fixed state, which in game theory is called Nash Equilibrium
[15, 18]. In this context, the interested reader can find much of theoretic work in
[15, 12, 14, 9, 11, 19, 20, 21].

However, Nash Equilibrium may lead a system to suboptimal behavior. As a
measure of how worse is the Nash equilibrium compared to the overall system’s
optimum, the notion of coordination ratio was introduced in [12, 14]. Their work
have been extended and improved (price of anarchy here is another equivalent
notion) in [14, 24, 3, 22, 23, 6, 4].

Selfish behavior can be modeled by a non-cooperative game. Such a game
could impose strategies that might induce an equilibrium closer to the over-
all optimum. These strategies are formulated through pricing mechanisms[5],
algorithmic mechanisms[16, 17] and network design[25, 10]. The network admin-
istrator or designer can define prices, rules or even construct the network, in
such a way that induces near optimal performance when the users selfishly use
the system.

Particulary interesting is the approach where the network manager takes part
to the non-cooperative game. The manager has the ability to control centrally
a part of the system resources, while the rest resources are used by the selfish
users. This approach has been studied through Stackelberg or Leader-Follower
games [2, 23, 9, 11, 26]. The advantage of this approach is that it might be easier
to be deployed in large scale networks. This can be so, since there is no need to
add extra components to the network or, to exchange information between the
users of the network.

Let us concentrate on the setting of this approach. The simplified system
consists of a set of machines with load depended latency functions and a flow
of jobs with rate r. The manager controls a fraction α of the flow, and assigns
it to machines in a way that the induced cost by the users is near or equals
the overall optimal. An interesting issue investigated in [23, 9], is how should
the manager assign the flow he controls into the system, as to induce opti-
mal cost by the selfish users. For the case of linear load functions, in [23] was
presented a polynomial algorithm (LLF) of computing a strategy with cost at
most 4

3+α times the overall optimum one, where α is the fraction of the rate
that the manager controls. Korilis et al [9] has initiated this game theoretic ap-
proach and investigated on the necessary conditions such that the manager’s
assignment induces the optimum performance on a system with M/M/1 latency
functions.

1.1 Motivation and Contribution

Our work is motivated by the work in [1, 23, 9]. We consider a simple modifica-
tion of the algorithm Largest Latency First (LLF) [23] called New Leader Strategy
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(NLS). Experiments suggest that NLS has better performance in competitive sys-
tems of machines, that is, systems with high value of price of anarchy PoA. Also,
it has good performance in cases where the Leader may be constrained to use
a small portion α of flow. Notice that PoA ≤ 4/3 for linear latency functions.
Furthermore, a highly nontrivial algorithm presented in [1] slightly improves
over LLF for the case of linear latency functions. Then, despite its simplicity, our
heuristic has comparatively good performance.

Additionally, we conducted thousands random tuples of machines, with either
linear or M/M/1 latency functions. We experimentally tried to compute an upper
bound α0 for the least possible portion of flow that a Leader needs to induce
overall optimal behavior. We have considered tuples of machines with M/M/1
latency functions such that their price of anarchy is at least a parameter c.
Surprisingly, as parameter c increases (resulting to more competitive systems of
machines), the average value of α0 decreases.

2 Improved Stackelberg Strategies

2.1 Model - Stackelberg Strategies

For this study the model and notation of [23] is used. We consider a set M of m
machines, each with a latency function �(·) ≥ 0 continuous and nondecreasing,
that measures the load depended time that is required to complete a job. Jobs
are assigned to M in a finite and positive rate r. Let the m-vector X ∈ Rm

+

denote the assignment of jobs to the machines in M such that
∑m

i=1 xi = r. The
latency of machine i with load xi is �i(xi) and incurs cost xi�i(xi), convex on xi.
This instance is annotated (M, r). The Cost of an assignment X ∈ Rm

+ on the
(M, r) instance is C(X) =

∑m
i=1 xi�i(xi), measuring system’s performance. The

minimum cost is incurred by a unique assignment O ∈ Rm
+ , called the Optimum

assignment. The assignment N ∈ Rm
+ defines a Nash equilibrium, if no user can

find a loaded machine with lower latency than any other loaded machine. That
is, all machines i with load ni > 0 have the same latency L while any machine
j with load nj = 0 has latency Lj ≥ L. According to the Definition 2.1 in [23]:

Definition 1. An assignment N ∈ Rm
+ to machines M is at Nash equilibrium

(or is a Nash assignment) if whenever i, j ∈ M with ni > 0, �i(ni) ≤ �j(nj).

The Nash assignment N causes cost C(N) commonly referred to as Social Cost
[15, 12, 14, 9, 11, 19, 20, 21]. The social cost C(N) is higher than the optimal one
C(O), leading to a degradation in system performance. The last is quantified
via the Coordination Ratio[12, 14, 3] or Price of Anarchy (PoA) [24], i.e. the
worst-possible ratio between the social cost and optimal cost: PoA = C(N)

C(O) , and
the goal is to minimize PoA 1 To do so, a hierarchical non cooperative Leader-
Follower or Stackelberg game is used [2, 23, 9, 11, 26]. In such a game, there is a

1 Notice that in a general setting may exist a set A of Nash equilibria, then PoA is
defined with respect to worst one, i.e. PoA = maxN∈A

C(N)
C(O)

.



80 A.C. Kaporis et al.

set M of machines, jobs with flow rate r and a distinguished player or Leader who
is responsible for assigning centrally an α portion of the rate r to the system
so as to decrease the total social cost of the system. The rest of the players,
called Followers are assigning selfishly the remaining (1 − α)r flow in order to
minimize their individual cost. This instance is called Stackelberg instance and
is annotated by (M, r, α). The Leader assigns S ∈ Rm

+ to M and the Followers
react, inducing an assignment in Nash equilibrium. We give the same definition
for an induced assignment at Nash Equilibrium or induced Nash assignment as
in Definition 2.7 of [23].

Definition 2. Let S ∈ Rm
+ be a Leader assignment for a Stackelberg instance

(M, r, α) where machine i ∈ M has latency function �i, and let �̃i(xi) = �i(si+xi)
for each i ∈ M . An equilibrium induced by S is an assignment T ∈ Rm

+ at Nash
equilibrium for the instance (M, (1− a)r) with respect to latency function �̃. We
then say that S + T is an assignment induced by S for (M, r, α).

The goal is achieved if C(S + T ) � C(O).
We consider here two types of latency functions: linear and M/M/1. Linear

latency functions have the form �i(xi) = aixi + bi, i ∈ M, X ∈ Rm
+ and it

holds PoA ≤ 4
3 . M/M/1 latency functions have the form �i(xi) = 1

ui−xi
, i ∈

M, X ∈ Rm
+ and it holds PoA ≤ 1

2

(
1 +

√
umin

umin−Rmax

)
, where umin is the

smallest allowable machine capacity and Rmax is the largest allowable traffic
rate.

Finally, to tune the competitiveness of a particular system M , we define the
parameter c as a lower bound of its PoA. Thus, systems with highly valued
parameter c are particularly competitive.

2.2 Algorithm NLS

Algorithm: NLS(M, r, α)
Input: Machines M = {M1, . . . , Mm}, flow r, and portion α ∈ [0, 1]
Output: An assignment of the load αr to the machines in M.

begin:
Compute the global Optimum assignment O = 〈o1, . . . , om〉 of flow r on M;

Compute the Nash assignment N = 〈n1, . . . , nm〉 of the flow (1 − α)r on M;

Let M∗ = {Mi ∈ M | ni = 0};
If

∑
{i:Mi∈M∗} oi ≥ αr then assign local optimally the flow αr on M∗;

else assign the flow αr on M according to LLF;

end if;
end;

Notice that it is possible to heuristically compute an even larger subset M∗

unaffected by the Followers, allowing us to assign to it a even larger portion
α′ > α of flow.

In [23] it was presented the Large Latency First (LLF) Stackelberg strategy for
a Leader that controls a portion α of the total flow r of jobs, to be scheduled to
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a system of machines M . For the case of machines with linear latency functions,
it was demonstrated that the induced scheduling cost is at most 4

3+α of the
optimum one.

We present and validate experimentally the New Leader Strategy (NLS). Our
motivation was a system of machines presented in [23], end of page 17. In that
example, the set of machines is M = {M1,M2,M3} with corresponding latency
functions �1(x) = x, �2(x) = x + 1, �3(x) = x + 1. LLF at first computes the
optimum assignment O = 〈o1 = 4

6 , o2 = 1
6 , o3 = 1

6 〉, of the total flow r = 1
to the given set of machines M . On each machine i, load oi incurs latency
value �i(oi), i = 1, . . . , 3. Then, LLF indexes the machines, from lower to higher
latency values, computed at the corresponding optimum load. In this example,
the initial indexing remains unchanged, since: �1(o1) ≤ �2(o2) ≤ �3(o3). In the
sequel, it computes a Stackelberg scheduling strategy S = 〈s1, s2, s3〉 for the
Leader as follows. LLF schedules the flow αr that Leader controls, filling each
machine i up to its optimum load oi, proceeding in a “largest latency first”
fashion. At first, machine 3 is assigned a flow at most its optimum load o3.
If αr − o3 > 0, then machine 2 is assigned a flow at most its optimum load
o2. Finally, if αr − o3 − o2 > 0, then machine 1 receives at most its optimum
load o1. Notice that all selfish followers prefer the first machine, i.e the Nash
assignment is N = 〈n1 = 1, n2 = 0, n3 = 0〉, since the total flow equals r =
1. Provided that no Follower affects the load assignment S of the Leader to
the subset of machines M ′ = {2, 3}, a crucial observation is that strategy S
computed by LLF is not always optimal. It is optimal only in the case that
the portion α of Leader equals: α = o2+o3

r . In other words, the assignment of
the Leader would be optimal if its flow was enough to fill all machines 2 and
3 up to their corresponding optimal loads o2, o3. Taking advantage of this, a
better Stackelberg strategy is: S′ = 〈s′1 = 0, s′2 = o∗2, s′3 = o∗3〉, where o∗2 and
o∗3 are the corresponding local optimum loads, of the flow αr that a Leader
controls, on the subset of the machines {2, 3} which are not appealing for the
Followers.

To illustrate this, consider any α < o2 + o3 = 1
6 + 1

6 , for example let α = 1
6 .

Then LLF computes the Stackelberg strategy S = 〈0, 0, 1
6 〉, inducing the Nash

assignment N = 〈5
6 , 0, 1

6 〉 with cost CS =
(

5
6

)2 +
(
1 + 1

6

)
1
6 = 8

9 . However,
the local optimum assignment of the flow α = 1

6 to machines 2 and 3 is S′ =
〈0, 1

12 , 1
12 〉. This induces the Nash assignment N ′ = 〈 5

6 , 1
12 , 1

12 〉 with cost CS′ =
(

5
6

)2 +
(
1 + 1

12

)
1
6 = 7

8 < 8
9 .

We propose algorithm NLS that takes advantage all these issues discussed
above. Intuitively, it tries to compute a maximal subset M∗ ⊆ M = {1, . . . , m}
of machines not appealing to the selfish users. This subset M∗ ⊆ M consists
of exactly those machines that receive no flow by the Nash assignment of (1 −
α)r flow on M . Then it assigns the portion αr of a Leader local optimally on
M∗. The empirical performance of NLS is presented in Section 4, in Figures 2
and 4.
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3 Algorithm OpTop

3.1 Description

In [23] (also see the important results in [9] for the case of M/M/1 latency
functions) it was possed the important question:

“Compute the minimum flow of jobs that a Leader may play according to
a Stackelberg scheduling strategy to a system of machines, in a way that
the selfish play of the Followers leads the system to its optimum cost.”

In this section, we investigate this issue experimentally for the case of machines
with linear latency functions. Algorithm OpTop below (based on features of LLF),
tries to control a minimal portion α of the total flow r of jobs. It schedules this
flow to a system of m machines, in a way that the selfish play of the Followers
drives the system to its optimum cost. Intuitively, OpTop tries to find a small
subset of machines that have the following stabilizing properties:

– The selfish play of the Followers will not affect the flow αr assigned by the
Leader optimally to these machines.

– The selfish play of the Followers of the remaining (1 − α)r flow on the re-
maining machines will drive the system to its optimum cost.

Algorithm: OpTop (M, r, r0)
Input: Machines M = {M1, . . . , Mm}, flow r, initial flow r0

Output: A portion α of flow rate r0

begin:
Compute the Nash assignment N := 〈n1, . . . , nm〉 of flow r on machines M;

Compute the Optimum assignment O := 〈o1, . . . , om〉 of flow r on machines M;

If (N ≡ O) return (r0 − r)/r0;

else (M, r) ← Simplify(M, r, N, O);
return OpTop(M, r, r0);

end if;
end;
Procedure: Simplify(M, r, N, O)
Input: Machines M = {M1, . . . , Mm}, flow r

Nash assignment N := 〈n1, . . . , nm〉
Optimum assignment O := 〈o1, . . . , om〉

Output: Set of machines M, Flow r
begin:

for i = 1 to size(M) do:
If oi ≥ ni then

r ← r − oi;

M ← M\{Mi};
end if;

end for;
end;

The key features of OpTop are presented with the help of Figures 1a, 1b, 1c.
The corresponding Nash and Optimum assignments to these machines are de-
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noted as: N = 〈n1, . . . , n5〉, such that
∑5

i=1 ni = r, O = 〈o1, . . . , o5〉, such
that

∑5
i=1 oi = r.

Definition 3. Machine i is called over-loaded (or under-loaded) if ni > oi (or
ni < oi). Machine i is called optimum-loaded if ni = oi, i = 1, . . . ,m.

Initially, the algorithm assigns to all under-loaded machines in Figure 1a their
optimum load. That is, it assigns optimum load o4 and o5 to machines 4 and 5 in
Figure 1b. Then the players selfishly assign the remaining r− o4 − o5 flow to the
system of 5 machines. Observe that in the induced Nash assignment, none of the
machines 4 and 5 receives flow. That is, machines 4 and 5 have been stabilized
to their optimum load, irrespectively of the selfish behavior of the Followers, see
also Theorem 1.

A crucial point is that we can remove machines 4 and 5 from consideration
and run recursively OpTop on the simplified system of machines. In other words,
the induced game now is equivalent to scheduling the remaining r− o4 − o5 flow
to the remaining machines 1, 2 and 3, see also Lemma 1.

In the sequel, in the simplified game, now machine 3 has become under-loaded
and 2 optimum-loaded, while 1 remains over-loaded, see Figure 1b. In the same
fashion as in the original game, OpTop assigns load o3 to machine 3. Happily, the
induced selfish scheduling of the remaining r−o3−o4−o5 flow yields the overall
optimum assignment for the system. That is, the remaining r−o3−o4−o5 flow,
when scheduled selfishly by the Followers, ignores machines 3, 4 and 5 (they
assign no load to these machines) while their selfish behavior assigns induced
Nash load n′

i = oi to each machine i = 1, 2, see Figure 1c.
In this example, algorithm OpTop needed to control a portion α0 = o3+o4+o5

r ,
of the total flow r of jobs, in a way that the final induced load to each machine
i equals its optimum value oi, i = 1, . . . , 5. OpTop’s objective is to impose the
overall optimum by controlling the least possible portion α0. The cornerstone
for the stability of the load assigned by OpTop to any machine is Theorem 1.
Intuitively, this theorem says that OpTop raises the latency of proper machines

Fig. 1. A dashed (or solid) line indicates the Nash (or Optimum) load ni (or oi)

assigned to each machine i = 1, . . . , 5. (a) Machines 1 and 2 (4 and 5) are over(under)-

loaded while 3 is optimum-loaded. Then OpTop will assign load o4 and o5 to machines

4 and 5. (b) Now machines 4 and 5 received load o4 and o5 by OpTop. In the induced

Nash assignment, machines 1 (3) become over(under)-loaded while 2 becomes optimum-

loaded.(c) Finally, OpTop assigns load o3 to machine 2. In the induced Nash assignment,

machines 1 and 2 become optimum-loaded
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sufficiently high, making them not appealing to selfish players, while retaining
their respective optimum load.

Theorem 1. Consider m machines with latency functions �j(x) = ajx+bj , j =
1, . . . ,m. Let the Nash assignment N = 〈n1, . . . , nm〉 of the total load r on the
m machines. Suppose that for a Stackelberg strategy S = 〈s1, . . . , sm〉 we have
either sj ≥ nj or sj = 0, j = 1, . . . , m. Then for the induced Nash assignment
T = 〈t1, . . . , tm〉 of the remaining load r − ∑m

i=1 si we have that tj = 0 for each
machine j such that sj ≥ nj , j = 1, . . . , m.

Proof. By assigning load sj ≥ nj to machine j then for any induced load tj ≥
0 to it, its latency is now increased up to �̃j(tj) = ajtj + �j(sj) ≥ �j(sj) ≥
�j(nj), j = 1, . . . ,m. Since the induced Nash assignment T assigns total load
r−∑m

i=1 si ≤
∑

{i:si=0} ni, its is not now possible for any machine j with sj ≥ nj

to become appealing to the selfish users, j = 1, . . . ,m.

Theorem 1 is valid for arbitrary increasing latency functions. Interestingly, a
similar (monotonicity) argument can be found in [13]. Another difficulty for the
evolution of the algorithm, is to describe the selfish play of the users in the
remaining machines. To this end, Lemma 1 is helpful.

Lemma 1. Let a set of machines M = {M1, . . . ,Mm} and the Nash assignment
N = 〈n1, . . . , nm〉 of the total load r on these machines. Fix a Stackelberg strategy
S = 〈s1, . . . , sm〉 such that either sj ≥ nj or sj = 0, j = 1, . . . , m. Then the
initial game is equivalent to scheduling total flow: r − ∑m

i=1 si, to the subset
M ′ ⊆ M of machines: M ′ = M\{Mi : si ≥ ni}, i = 1, . . . ,m.

Proof. It follows from Theorem 1.

Lemma 1 allows us to run recursively OpTop on the simplified game on the
remaining machines. The empirical performance of OpTop is presented in Section
4, in Figures 3 and 5.

4 Experimental Validation of the Algorithms

All experiments presented in this section are performed using the package Mat-
lab [29]. An extensive toolbox was created for manipulating large systems of
machines for both linear and M/M/1 latency functions. All the routines of com-
puting the Optimum and Nash assignments, the LLF and NLS strategies are also
implemented in the same Toolbox [30].

Here we present results for 5-tuples of random machines for both linear and
M/M/1 latency functions. Similar results were observed for k-tuples with k ≥ 5.
For total flow r, machine i receives a portion or flow xi which incurs latency
�(xi) = aixi + bi, i = 1, . . . , 5, where ai, bi are random numbers in [0, r] and
∑5

i=1 xi = r. The corresponding random M/M/1 latency functions are �(xi) =
1

ui−xi
, i = 1, . . . , 5. We created many large collections of 5 tuples of machines,
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where each such collection satisfies a predetermined value of the parameter c ≤ 4
3

(recall c is a lower bound of the price of anarchy value PoA). That is, for each
generated random 5-tuple of machines, we compute the ratio of the cost of the
Nash assignment to corresponding optimum one, and we store the 5-tuple to the
appropriate c-valued collection of tuples. Intutively, a collection of tuples with
particularly high value of c consists of highly competitive machines and the role
of the Leader is important.

4.1 Linear Latency Functions

Comparing NLS to LLF. We know that LLF strategy induce a Follower assign-
ment that drives the PoA to 4

3+α . We are interested in finding out how much
better the NLS strategy does in comparison to LLF strategy. In other words we
are interested in measuring the ratio CostNLS

CostLLF . The worst case would be when this
ratio is 1, which means that the NLS strategy is the same as the LLF strategy.
This phenomenon is expected since NLS is based on LLF but we are interested in
finding out the how much similar is NLS to LLF. Based on intuition, we expected
that in instances with higher values of PoA our strategy will do better than LLF.
This will be the case with even lower α, since we may manipulate more machines
in the subset M∗ which is described in the pseudo code of NLS. This intuition
was confirmed by the experiments, as it is shown in Figure 2. Both diagrams
present the percentage of machines that had CostNLS

CostLLF < 1. What is remarkable is
that NLS does better when the parameter c of the machine instances is increased
from 1 up to 1.2. Then the corresponding portion of machines that had better
performance using NLS is increased from 33% up to 62% of the instances.
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Fig. 2. Linear load functions: CostNLS
CostLLF

for PoA ≥ 1.2 and for PoA ≥ 1

We conjecture that the reason for this phenomenon is that systems with
high PoA usually overload 1 or 2 machines, while the rest ones remain idle.
Therefore, the αr flow assigned local optimally by the Leader to the subset of
the idle machines remains unaffected.

Another interesting observation was that NLS does better than LLF for small
α. For the instances with PoA ≥ 1 the NLS strategy is better than LLF strategy
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Fig. 3. Linear latency functions: The α0 computed by OpTop to reach the overall opti-

mum for PoA ≥ 1.2 and for PoA ≥ 1

for average α = 0.132 while for instances with PoA ≥ 1.2 the average α is higher
and has the value α=0.313.

Finally, the average CostNLS
CostLLF for PoA ≥ 1 is 0.995 while the CostNLS

CostLLF for PoA ≥
1.2 is 0.991.

Results for OpTop. The algorithm OpTop that we presented in Section 3, com-
putes an upper bound to the amount αr of flow that the Leader must posses in
order to induce optimal assignment. That is, we are interested in computing an
upper bound to the minimum flow α0 that the Leader must control to guaran-
tee overall optimum performance induced by the Followers selfish play. In Figure
3, x-axis presents the portion α0 needed to induce the overall optimum, while
y-axis presents the corresponding percentage of 5-tuples of machines.

The results of our experiments on the set of machine instances are presented
in Figure 3 below. In instances where PoA ≥ 1 the portion α0 of load flow the
Leader has to control ranges in α0 ∈ [0, 0.9] and its average value is α0 = 0.5.

Also in Figure 3, as PoA’s lower bound increases up to 1.2, the range of α0

the Leader has to control also increases, that is α0 ∈ [0.4, 0.9]. In this case its
average value is α0 = 0.6.

4.2 Results for M/M/1 Latency Functions

For M/M/1 latency functions, (i.e. of the form 1
u−x ) the results are similar. The

PoA of the systems with such load functions is not that different from the linear
load functions. As we can see the NLS strategy does better for systems with an
increased lower bound (parameter c) of PoA.

Once more, in Figure 4 we can see that NLS does better when the parameter
c of the machine instances is increased from 1 up to 1.2. Then the corresponding
portion of machines that had better performance using NLS is increased from
19% up to 43% of the instances. Furthermore, in the same figure, we see that
the average CostNLS

CostLLF for PoA ≥ 1 is 0.992 while the CostNLS
CostLLF for PoA ≥ 1.2 is 0.988.

The results of our experiments for OpTop on the set of machine instances are
presented in Figure 5 below. In instances where PoA ≥ 1 the portion α0 of flow
the Leader has to control to induce the overall optimum ranges in α0 ∈ [0.2, 0.9]
and its average value is α0 = 0.57. Also in this figure, as PoA’s lower bound
increases up to 1.2, the range of α0 the Leader has to control is in α0 ∈ [0.2, 1].
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Fig. 4. M/M/1 latency functions: CostNLS
CostLLF

for PoA ≥ 1.2 and for PoA ≥ 1
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Fig. 5. M/M/1 latency functions: The α0 computed by OpTop to reach the overall

optimum for PoA ≥ 1.2 and for PoA ≥ 1

Rather unexpectedly, in this case its average value has been reduced to α0 = 0.44.
Further work will focus on machine instances with arbitrary latency functions,
where the PoA is greater or even unbounded and the results are expected to be
more interesting than those of the linear load functions and M/M/1 functions.
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