
Algorithms for the Price of Optimum in Stackelberg Games

(2006; Kaporis, Spirakis)

Alexis C. Kaporis, Department of Computer Engineering and Informatics, University of Patras
http://students.ceid.upatras.gr/˜kaporis

Paul G. Spirakis, Department of Computer Engineering and Informatics, University of Patras
& RA Computer Technology Institute

http://www.cti.gr/Paul Spirakis

entry editor: Paul G. Spirakis

INDEX TERMS: Algorithms, Games, Stackelberg, Price of Optimum.

1 PROBLEM DEFINITION

Stackelberg games [15] may model the interplay amongst an authority and rational individuals that
selfishly demand resources on a large scale network. In such a game, the authority (Leader) of the
network is modeled by a distinguished player. The selfish users (Followers) are modeled by the
remaining players.

It is well known that selfish behavior may yield a Nash Equilibrium with cost arbitrarily higher
than the optimum one, yielding unbounded Coordination Ratio or Price of Anarchy (PoA) [7,
13]. Leader plays his strategy first assigning a portion of the total demand to some resources of
the network. Followers observe and react selfishly assigning their demand to the most appealing
resources. Leader aims to drive the system to an a posteriori Nash equilibrium with cost close
to the overall optimum one [4, 6, 8, 10]. Leader may also eager for his own rather than system’s
performance [2, 3].

A Stackelberg game can be seen as a special, and easy [10] to implement, case of Mechanism
Design. It avoids the complexities of either computing taxes or assigning prices, or even designing
the network at hand [9]. However, a central authority capable to control the overall demand on the
resources of a network may be unrealistic in networks which evolute and operate under the effect of
many and diversing economic entities. A realistic way [6] to act centrally even in large nets could
be via Virtual Private Networks (VPNs) [1]. Another flexible way is to combine such strategies
with Tolls [5, 14].

A dictator controlling the entire demand optimally on the resources surely yields PoA = 1. On
the other hand, rational users do prefer a liberal world to live. Thus, it is important to compute
the optimal Leader-strategy which controls the minimum of the resources (Price of Optimum) and
yields PoA = 1. What is the complexity of computing the Price of Optimum? This is not trivial
to answer, since the Price of Optimum depends crucially on computing an optimal Leader strategy.
In particular, [10] proved that computing the optimal Leader strategy is hard.

The central result of this lemma is Theorem 5. It says that on nonatomic flows and arbitrary
s-t networks & latencies, computing the minimum portion of flow and Leader’s optimal strategy
sufficient to induce PoA = 1 is easy [4].

Problem 1 (G(V, E), s, t ∈ V, r).
Input: Graph G, ∀e ∈ E latency `e, flow r, a source-destination pair (s, t) of vertices in V .

1



Output: (i) The minimum portion αG of the total flow r sufficient for an optimal Stackelberg
strategy to induce the optimum on G. (ii) The optimal Stackelberg strategy.

1.1 Models & Notations

We are given a graph G(V, E) with parallel edges allowed. A number of rational and selfish users
wish to route from a given source s to a destination node t an amount of flow r. We may also
consider a partition of users in k commodities, where user(s) in commodity i wish to route flow ri

through a source-destination pair (si, ti), for each i = 1, . . . , k. Each edge e ∈ E is associated to a
latency function `e(), positive, differentiable and nondecreasing on the flow traversing it.

Nonatomic flows. There are infinitely many users, each routing his infinitesimally small amount
of the total flow ri from a given source si to a destination vertex ti in graph G(V, E). A flow f
is an assignment of jobs fe on each edge e ∈ E. The cost of the injected flow fe (satisfying
the standard constraints of the corresponding network-flow problem) that traverses edge e ∈ E
equals ce(fe) = fe × `e(fe). It is assumed that on each edge e the cost is convex with respect
the injected flow fe. The overall system’s cost is the sum

∑
e∈E fe × `e(fe) of all edge-costs in G.

Let fP the amount of flow traversing the si-ti path P. The latency `P(f) of si-ti path P is the
sum

∑
e∈P `e(fe) of latencies per edge e ∈ P. The cost CP(f) of si-ti path P equals the flow fP

traversing it multiplied by path-latency `P(f). That is, CP(f) = fP ×
∑

e∈P `e(fe).
In an Nash equilibrium, all si-ti paths traversed by nonatomic users in part i have a common

latency, which is at most the latency of any untraversed si-ti path. More formally, for any part i
and any pair P1,P2 of si-ti paths, if fP1 > 0 then `P1(f) ≤ `P2(f). By the convexity of edge-costs
the Nash equilibrium is unique and computable in polynomial time given a floating-point precision.
Also computable is the unique Optimum assignment O of flow, assigning flow oe on each e ∈ E
and minimizing the overall cost

∑
e∈E oe`e(oe). However, not all optimally traversed si-ti paths

experience the same latency. In particular, users traversing paths with high latency have incentive
to reroute towards more speedy paths. Therefore the optimal assignment is unstable on selfish
behavior.

A Leader dictates a weak Stackelberg strategy if on each commodity i = 1, . . . , k controls a fixed
α portion of flow ri, α ∈ [0, 1]. A strong Stackelberg strategy is more flexible, since Leader may
control αiri flow in commodity i such that

∑k
i=1 αi = α. Let a Leader dictating flow se on edge

e ∈ E. The a posteriori latency ˜̀
e(ne) of edge e, with respect to the induced flow ne by the selfish

users, equals ˜̀
e(ne) = `e(ne + se). In the a posteriori Nash equilibrium, all si-ti paths traversed by

the free selfish users in commodity i have a common latency, which is at most the latency of any
selfishly untraversed path, and its cost is

∑
e∈E(ne + se)× ˜̀

e(ne).

Atomic splittable flows. There is a finite number of atomic users 1, . . . , k. Each user i is
responsible for routing a non-negligible flow-amount ri from a given source si to a destination
vertex ti in graph G. In turn, each flow-amount ri consists of infinitesimally small jobs.

Let flow f assigning jobs fe on each edge e ∈ E. Each edge-flow fe is the sum of partial flows
f1

e , . . . , fk
e injected by the corresponding users 1, . . . , k. That is, fe = f1

e + . . .+fk
e . As in the model

above, the latency on a given si-ti path P is the sum
∑

e∈P `e(fe) of latencies per edge e ∈ P. Let
f i
P be the flow that user i ships through an si-ti path P. The cost of user i on a given si-ti path P is

analogous to her path-flow f i
P routed via P times the total path-latency

∑
e∈P `e(fe). That is, the

path-cost equals f i
P ×

∑
e∈P `e(fe). The overall cost Ci(f) of user i is the sum of the corresponding

path-costs of all si-ti paths.
In a Nash equilibrium no user i can improve his cost Ci(f) by rerouting, given that any user

j 6= i keeps his routing fixed. Since each atomic user minimizes its cost, if the game consists of only
one user then the cost of the Nash equilibrium coincides to the optimal one.

2



In a Stackelberg game, a distinguished atomic Leader-player controls flow r0 and plays first
assigning flow se on edge e ∈ E. The a posteriori latency ˜̀

e(x) of edge e on induced flow x equals
˜̀
e(x) = `e(x+ se). Intuitively, after Leader’s move, the induced selfish play of the k atomic users is

equivalent to atomic splittable flows on a graph where each initial edge-latency `e has been mapped
to ˜̀

e. In game-parlance, each atomic user i ∈ {1, . . . , k}, having fixed Leader’s strategy, computes
his best reply against all others atomic users {1, . . . , k} \ {i}. If ne is the induced Nash flow on edge
e this yields total cost

∑
e∈E(ne + se)× ˜̀

e(ne).

Atomic unsplittable flows. The users are finite 1, . . . , k and user i is allowed to sent his non-
negligible job ri only on a single path. Despite this restriction, all definitions given in atomic
splittable model remain the same.

2 KEY RESULTS

Let us see first the case of atomic splittable flows, on parallel M/M/1 links with different speeds
connecting a given source-destination pair of vertices.

Theorem 1 (Korilis, Lazar, Orda [6]). The Leader can enforce in polynomial time the network
optimum if she controls flow r0 exceeding a critical value r0.

In the sequel, we focus on nonatomic flows on s-t graphs with parallel links. In [6] primarily
were studied cases that Leader’s flow cannot induce network’s optimum and was shown that an
optimal Stackelberg strategy is easy to compute. In this vain, if s-t parallel-links instances are
restricted to ones with linear latencies of equal slope then an optimal strategy is easy [4].

Theorem 2 (Kaporis, Spirakis [4]). We can efficiently compute the optimal Leader strategy on any
instance (G, r, α) where G is an s-t graph with parallel-links and linear latencies of equal slope.

We can approximate within (1+ ε) the optimal strategy in polynomial time if link-latencies are
polynomials with non-negative coefficients.

Theorem 3 (Kumar, Marathe [8]). There is a fully polynomial approximate Stackelberg scheme
that runs in poly(m, 1

ε ) time and outputs a strategy with cost (1 + ε) within the optimum strategy.

We can do even better for parallel link s-t graphs with arbitrary latencies. Intuitively, in
polynomial time we can compute a “threshold” value αG sufficient for the Leader’s portion to
induce the optimum. The complexity of computing optimal strategies changes in a dramatic way
around the critical value αG from “hard” to “easy” (G, r, α) Stackelberg scheduling instances. We
call αG as the Price of Optimum for graph G.

Theorem 4 (Kaporis, Spirakis [4]). On input an s-t parallel link graph G with arbitrary latencies
we can efficiently compute the minimum portion αG sufficient for a Leader to induce the optimum,
as well as her optimal strategy.

We conclude that the Price of Optimum αG essentially captures the hardness of instances
(G, r, α). Since, for Stackelberg scheduling instances (G, r, α ≥ αG) the optimal Leader strategy
yields PoA = 1 and it is computed as hard as in P , while for (G, r, α < αG) the optimal strategy
yields PoA < 1 and it is as easy as NP [10].

The results above are limited to parallel-links connecting a given s-t pair of vertices. Is it
possible to efficiently compute the Price of Optimum for nonatomic flows on arbitrary graphs? This
is not trivial to settle. Not only because it relies on computing an optimal Stackelberg strategy,
which is hard to tackle [10], but also because Proposition B.3.1 in [11] ruled out previously known
performance guarantees for Stackelberg strategies on general nets.

The central result of this lemma is presented below and completely resolves this question (ex-
tending Theorem 4).

3



Theorem 5 (Kaporis, Spirakis [4]). On arbitrary s-t graphs G with arbitrary latencies we can
efficiently compute the minimum portion αG sufficient for a Leader to induce the optimum, as well
as her optimal strategy.

@
@

@
@

@
@

@
@
@R

��
��

s

�
�

�
�

�
�

�
�
�� @

@
@

@
@

@
@

@
@R

��
��

v

�
�

�
�

�
�

�
�
��

��
��

w

��
��

t

?

`(x) = 0

`(x) = 1

`(x) = 1

`(x) =











0, x ∈ [0, 3

4
− ε]

arbitrary, x ∈ (3

4
− ε, 3

4
)

1 − ε, x ∈ [3
4
,∞]

`(x) =











0, x ∈ [0, 3

4
− ε]

arbitrary, x ∈ (3

4
− ε, 3

4
)

1 − ε, x ∈ [3
4
,∞]

Figure 1: A bad example for Stackelberg routing.

Example. Consider the optimum assignment O of flow r that wishes to travel from source vertex s
to sink t. O assigns flow oe incurring latency `e(oe) per edge e ∈ G. Let Ps→t the set of all s-t paths.
We can compute in polynomial time the shortest paths in Ps→t with respect to costs `e(oe) per edge
e ∈ G. That is, the paths that given flow assignment O attain latency: minP∈Ps→t

(∑
e∈P `e(oe)

)
i.e., minimize their latency. It is crucial to observe that, if we want the induced Nash assignment by
the Stackelberg strategy to attain the optimum cost, then these shortest paths are the only choice
for selfish users that eager to travel from s to t. Furthermore, the uniqueness of the optimum
assignment O determines the minimum part of flow which can be selfishly scheduled on these
shortest paths. Observe that any flow assigned by O on a non-shortest s-t path has incentive to
opt for a shortest one. Then a Stackelberg strategy must frozen the flow on all non-shortest s-t
paths.

In particular, the idea sketched above achieves coordination ratio 1 on the graph in Fig. 1.
On this graph Roughgarden proved that 1

α× (optimum cost) guarantee is not possible for general
(s, t)-networks, Appendix B.3 in [11]. The optimal edge-flows are (r = 1):

os→v =
3
4
− ε, os→w =

1
4

+ ε, ov→w =
1
2
− 2ε, ov→t =

1
4

+ ε, ow→t =
3
4
− ε

The shortest path P0 ∈ P with respect to the optimum O is P0 = s → v → w → t (see [11]
pp. 143, 5th-3th lines before the end) and its flow is fP0 = 1

2 − 2ε. The non shortest paths are:
P1 = s → v → t and P2 = s → w → t with corresponding optimal flows: fP1 = 1

4 + ε and
fP2 = 1

4 + ε. Thus the Price of Optimum is

fP1 + fP2 =
1
2

+ 2ε = r − fP0

3 APPLICATIONS

Stackelberg strategies are widely applicable in networking [6], see also Section 6.7 in [12].

4 OPEN PROBLEMS

It is important to extend the above results on atomic unsplittable flows.

4



5 RECOMMENDED READING

[1] K. Birman. Building Secure and Reliable Network Applications. Manning, 1996.

[2] C. Douligeris and R. Mazumdar. Multilevel flow control of queues. In Johns Hopkins Con-
ference on Information Sciences, 2006.

[3] A. Economides and J. Silvester. Priority load sharing: an approach using stackelberg games.
In 28th Annual Alletron Conference on Communications, Control and Computing, 1990.

[4] A. Kaporis and P. G. Spirakis. Stackelberg games on arbitrary networks and latency func-
tions. In 18th ACM Symposium on Parallelism in Algorithms and Architectures, 2006.

[5] G. Karakostas and G. Kolliopoulos. Stackelberg strategies for selfish routing in general multi-
commodity networks. Technical report, Advanced Optimization Laboratory, McMaster Uni-
vercity, 2006. AdvOL2006/08, 2006-06-27.

[6] Y. A. Korilis, A. A. Lazar, and A. Orda. Achieving network optima using stackelberg routing
strategies. IEEE/ACM Trans. Netw., 5(1):161–173, 1997.

[7] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In 16th Symposium on Theo-
retical Aspects in Computer Science, volume 1563, pages 404–413. LNCS, 1999.

[8] V. S. A. Kumar and M. V. Marathe. Improved results for stackelberg scheduling strategies.
In 29th International Colloquium, Automata, Languages and Programming, pages 776–787.
LNCS, 2002.

[9] T. Roughgarden. Designing networks for selfish users is hard. In 42nd IEEE Annual Sympo-
sium of Foundations of Computer Science, pages 472–481, 2001.

[10] T. Roughgarden. Stackelberg scheduling strategies. In 33rd ACM Annual Symposium on
Theory of Computing, pages 104–113, 2001.

[11] T. Roughgarden. Selfish Routing. Ph.D dissertation, Cornell University, USA, May 2002.
http://theory.stanford.edu/ tim/.

[12] T. Roughgarden. Selfish Routing and the Price of Anarchy. The MIT Press, 2005.

[13] T. Roughgarden and E. Tardos. How bad is selfish routing? In 41st IEEE Annual Symposium
of Foundations of Computer Science, pages 93–102, 2000.

[14] C. Swamy. The effectiveness of stackelberg strategies and tolls for network congestion games.
In ACM-SIAM Symposium on Discrete Algorithms, 2007.

[15] H. von Stackelberg. Marktform und Gleichgewicht. Springer-Verlag, 1934.

5


