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Abstract. Let n atomic players be routing their unsplitable flow on m resources. When each player has the option
to drop her current resource and select a better one, and this option is exercised sequentially and unilaterally, then
a Nash Equilibrium (NE) will be eventually reached. Acting sequentially, however, is unrealistic in large systems.
However, allowing concurrency, with an arbitrary number of players updating their resources at each time point,
leads to an oscillation away from NE, due to big groups of players moving simultaneously and due to non-smooth
resource cost functions. In this work, we validate experimentally simple concurrent protocols that are distributed
and myopic yet are scalable, realistic (since players migrating out of the same source resource may only go to the
same target resource at one step) and require only information local at each resource and, still, quickly reach a NE
for a range of arbitrary cost functions.
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1 Introductory motivation

Alice enters a large University library at the evening determined to copy some pages from a friend’s notes.
Miraculously, she finds a quite peaceful environment where no student opts to shift from her copier at hand.
All students know that no copier will decrease their waiting time. This operating point is a Nash equilibrium
(NE) over copiers and it is quite straightforward to think of other library’s facilities also being operated at a
NE.

Suppose, however, that Alice observes groups of students rushing to copiers when she enters the library
in the early morning. She observes student .S, currently pending on copier C, contemplating to move to
copier C' which seems more appealing.

At this critical decision-making point, there are two issues for S. The first issue is that, if a group of
students shift to C’ alongside S, then S’s waiting time is likely to increase. The second issue is that, if
printer C"’s speed decreases abruptly even due to the slightest increase in demand, then it is even more
likely that S’s waiting time will increase, and it may do so beyond any anticipation on the part of .S.

These obstacles naturally give rise to oscillations. No oscillations occur if all students shift to copiers
sequentially, one at a time. But, Alice is old enough to know that only Wonderland’s disciplined students
are determined to shift sequentially. Of course, even in Wonderland, certain side effects do persist: acting
sequentially may last long until a NE is reached.

Back in the real world, however, imposing global synchronization is unrealistic. On the other hand, it
seems realistic that students pending on copier C' will briefly discuss their options before deciding how
some of them might wisely move to C’. Their “on-the-fly” discussions are independent and not affected by
decisions taken within any other group of students currently pending on any other copier. Moreover, it is also
unrealistic that their local speculations will improve by any global (thus, expensive) information supplied
(such information might consist of all copier’s congestion and average waiting time).

The central question is thus framed as:
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Question: Is it possible to model such concurrent migrations as a simple distributed protocol within
available resources, based on local speculations and greedy decisions taken on the fly? Is it possible
to show that such a distributed protocol, despite its simplicity, is powerful enough so as to quickly
reach a NE?

Apparently, as soon as all massive and concurrent migrations to copiers have taken place, it may turn
out that many students feel tempted to subsequently shift to newly appealing copiers. This may lead to an
endless copier-oriented migration process, oscillating eternally away from a NE, and presenting formidble
obstacles in our attempt at analyzing concurrent selfish play. Note that our example is modeled as a singleton
congestion game, where each player selects one resource over the available ones. It can also be generalized
(and become more severe) if not all players’ tasks are of the same value, i.e. if weights are introduced.

The general problem identified in the above example regards all situations where selfish actors must
compete for a set of resources and can make decisions based only on information about where they are and
where they might want to go (i.e. they do not have access to what other distant actors do). Not surprisingly,
there are numerous other fields of computer science that deal with similar situations, most notably in load
balancing, scheculing and (most generally) distributed computing.

In this paper we focus on the development of decision making protocols to be used by actors who want
to decide to which resource they should migrate. We want these protocols to promote selfish behaviour and
only use information that is available to actors in their current resource (and the one they want to move to).
We experimentally show that the protocols we develop lead towards a Nash Equilibrium for a wide range of
resource cost functions, allowing both weighted and unweighted versions. Moreover, they do so in a number
of steps that scales similarly with a baseline protocol that makes quite strong assumptions on the type of
actors and the resources.

The rest of this paper is structured as follows: we first review the work on sequential and concurrent
congestion games, as well as work on realistic assumptions for experimental settings. We then move on to
describe in detail the (widely used) congestion game model we employ and, based on that, we describe two
selfish protocols for making migration decisions. In the next section we validate the protocols and in the
final section we discuss the implications of our findings.

2 Related work

2.1 Sequential and Concurrent congestion games

Congestion games (CG) provide a natural model for non-cooperative resource allocation and have been the
subject of intensive research in algorithmic game theory. A congestion game is a non-cooperative game
where selfish players compete over a set of resources. The players’ strategies are subsets of resources. The
cost of each player for selecting a particular resource is given by a non-negative and non-decreasing latency
function of the load (or congestion) of the resource. The individual cost of a player is equal to the total cost
for the resources in her strategy. A natural solution concept is that of a pure Nash equilibrium (NE), a state
where no player can decrease her individual cost by unilaterally changing her strategy.

In a classical paper, Rosenthal [31] showed that pure Nash equilibria on atomic congestion games cor-
respond to local minima of a natural potential function. Given the non-cooperative nature of congestion
games, a natural question is whether the players, while trying to improve their cost and converge to a pure
NE, actually manage to do so in a reasonable number of steps. The potential function of Rosenthal [31]
decreases every time a single player changes her strategy and improves her individual cost. Hence every
sequence of improving moves will eventually converge to a pure Nash equilibrium. However, this may re-
quire an exponential number of steps, since computing a pure Nash equilibrium of a congestion game is
PLS-complete [14].

On a singleton CG each player can select only one amongst m resources. The importance of such games
was demonstrated by [23], which initiated the study of important issues on the quality of NE, such as the
Coordination Ratio, and attracted a lot of subsequent research.



There are strong reasons why sequential protocols are subject to critique. The Elementary Step System
hypothesis is assumed in the analysis of [9, 12, 18, 19, 25, 26, 29], under which at most one user performs an
improving move in each round, and convergence to a NE is guaranteed. However, sequential moves require
£2(n) rounds in the worst-case until n users reach a NE. Moreover, central control is imposed on moves. This
is not an appealing model of modern networking, where simple decentralized distributed protocols can better
reflect the reality of the net’s liberal nature. Furthermore, classical proofs of sequential convergence are
based on assumptions of unbounded rationality and global knowledge. In real-world networks it is unrealistic
to assume that any player may be capable of monitoring the entire network per round. Even if a user could
grasp the whole picture, it would be computationally demanding to decide her best move.

Uniform sampling is the cheapest way of searching the available resources. However, it typically results
in slow convergence time, since it does not amplify highly appealing resources. On the contrary, proportional
sampling highly boosts the speed of the process, since it reroutes large groups of users towards the most
appealing resources at hand.

However, unlike sequential play, concurrent play may eternally oscillate away from NE (a similar prob-
lem is also well-known in the Network and Telecommunications Community [22, 24, 30]). There are two key
obstacles here: first, players have limited global info on making decisions and, second, the cost of resources
may increase unboundedly on new demand.

The main negative effect of the first obstacle is that an exceedingly big group of players can cause bot-
tleneck phenomena on their destination resources. This can be avoided by allowing each user to sample
uniformly and independently, with appropriately small probability, for a new resource. If the resources have
(nearly) identical cost functions, this migration probability usually depends only on the departure-destination
pair of resources, eliminating any requirement for global information [4]. However, if cost functions are ar-
bitrary, we need more information to better tune this migration probability. For example, the overall average
cost [13,15] may be employed or, we may even revert to resource sampling in proportion with a global
parameter [13, 15].

Concerning the second obstacle, suppose that user ¢ finds appealing to migrate to resource e and that
e is associated with a smooth cost function. Then, moving to e will likely not substantially affect i’s a
priori estimated migration profit, even if many other users opt for e. However, that anticipated profit may
deteriorate abysmally if e’s cost function is not smooth, and it might even take just one extra mate migrating
to e to cause this problem. A common way out is to consider cost functions that satisfy an a-bounded jump
condition [8] (or relative slope [15]) where, intuitively, on adding ¢ new players the new cost on e is at most
o' times e’s previous cost.

When speaking about atomic concurrent congestion games, a typical approach [13] considers n players
concurrently probing for a better link amongst m parallel links per round (singleton CG). Therein, link j has
linear latency s;x;, where z; is the number of players and s; is the constant speed of the link j. This is the
KP model [23]. However, this migration protocol, though concurrent, is not completely decentralized, since
it uses global information in order to allow only appropriate groups of users to migrate. More precisely,
only users with latency exceeding the overall average link latency L; at round ¢ are allowed to sample (on
parallel) for a new link 7 with an appropriate probability.

We stress here that, for the case of multiple different links, this sampling for a link 5 is proportional to
di(4) = n(j) — s;L¢, where ny(j) is the number of users on link j. Once more, this type of proportional
sampling exposes global information to amplify favorable links, in contrast to the myopic scenario of sam-
pling a random user, which in turn amplifies links proportionally to their load. All in all, these criteria highly
boost the convergence time, requiring expectedly O(loglogn + log m) rounds. Note, though, that the work
in [13] trailed [20], which first validated a series of similar concurrent protocols.

The analysis of a concurrent protocol on identical links and players was presented in [4]. Therein, the
important aspect of the analysis is that no global information was given to the migrants. In that protocol,
during round ¢, each user b on resource 7, with load X, () selects a random resource j; and if X, (t) >
X, (t) then b migrates to j, with probability 1 — X, (¢)/X;, (t). Note, again, that users act in parallel.



Despite that users perform only uniform sampling, this protocol quickly reaches an e-NE in O(log log n),
or an exact NE in O(log log n +m*) rounds, in expectation. The reason that proportional sampling turns out
to not be so crucial here, is the fact that all links are identical, so there is no need to reroute many users to
any particular speedy link. Thus, an important question is to what extent such myopic distributed protocols
can cope with links that have large differences amongst their latency functions.

The work in [28, 16] removes the assumption of perfect information, in the sense that decisions are taken
on the basis of a bulletin board which does not depict the most up-to-date state. If the information depicted on
this board is too old and not regularly updated then oscillations occur. The analysis tunes the rate of updating
the bulletin toward eventual system convergence (see also [7, 11, 1]). Though an important simplification of
the classical assumptions that up to now were used for proving convergence, the assumption of a bulletin
board implicitly makes use of global information for important characteristics of the system.

2.2 Insights from distributed computing and traffic distributions

In our work, there are quite a few points where our research draws from advances in other fields of comput-
ing, beyond that of algorithmic game theory.

A key such point is the distribution of weights of players in the weighted version of a CG. Therein,
the problem of estimating the typical workload distribution over servers of the Web has attracted a lot of
research. Knowledge of this distribution helps evaluate the performance of proxies, servers, virtual networks
and other Web related applications.

The work in [3] has influenced a lot of subsequent research. It presents experimental evidence that up to
a critical file size (the cutoff value) the distribution behaves as Lognormal, while for larger sizes as Power
Law. Also, embarking from [3], and many other important papers in that direction, [27] presented a rigorous
justification of this particular interplay amongst Power Law and Lognormal and their natural emergence as
a file-size law.

The second such key point concerns the nature of protocols that decide who migrates between resources
and how, as well as the extent to which such migrations effectively and efficiently achieve some notion of
optimality. The field that has been most influential in that respect is that of load balancing. Drawing from [5]
we note that key results from that field recommend that migration protocols are realistic when they assume
that (now, we switch to the game nomenclature) a number of players moving from one resource at a given
time point actually move to the same target, and are not distributed amongst more than one target [10]. This
differentiation is described as the contrast between diffusion and dimension exchange methods, where the
latter impose that a resource will only communicate (sample) with one potential target resource, to determine
where to allow some of its migrants to move to (if at all). It is important to note that this assumption improves
the robustness of the migration protocol since, when considering which players to move out of a resource,
we do not need to collect expensive information (as is the case, for example, in [13]) from all available
resources but we just focus on sampling one potential target. To appreciate the robustness potential consider
what would happen in a network where we might need to sample many resources, yet find that many of the
links seem to be broken, as is quite likely of course.

The justification for our protocols can be further seen in [17], where load balancing between processors
is examined and the recommendations therein suggest that it is reasonable to expect more than one migrant
per time slot from the same resource, though all migrants from that source resource move to the same target
resource. Indeed, therein it is argued that the standard way of moving one migrant per time is an unwarranted
pessimism and that it is more realistic to assume that more than one player may move at a time out of source
resource and towards the (same) destination one. Therein, it is also argued why a resource cannot be expected
to communicate in parallel with other resources, leading to the observation that sequential communication
means that all migrants from a source will all go to the same target. Note that the above points have been
also stressed in [10].

Morever, also according to [17], we note that our protocols indeed realistically assume that only local
information is made available to the migrating candidates; note that, in stark contrast to this recommenda-
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tion, [13] assume that players have access to accurate global statistics (like average load) to compute their
next move.

A further justification for our protocols is the design pattern discussion in [2], where analogues are
drawn to several biological processes that have influenced the design of distributed computing protocols and
algorithms, and where a central recurring theme is the identification of processes that rely on strictly local
information yet manage to achieve some notion of effective global behavior.

3 An efficient selfish distributed protocol

The discussion to this point squarely manifests the importance of distributed protocols that allow an arbitrary
number of users to reroute per round, on the basis of selfish migration criteria.

It is important that migration rules are simple and myopic, while strong enough for the players to quickly
reach (learn) a stable state. Herein, terms “simple” and “myopic” mean that any selfish decision is taken by
inexpensive computations based on local information only. In other words, the decision does not rely on
global or expensive information about the overall current state of resources.

The basic idea of our protocol is that, per round, each player independently and concurrently selfishly
moves on the basis of her corresponding costs, as measured for the current and destination resources. All
players update their selection of resources without any knowledge of global information nor any tuning
probabilities: destination resources are uniform at random. Thus, our protocols grasp the real-life’s nature
of “on-the-fly” human decision making. In essence, a player decides to migrate if the anticipated cost, after
her move, to a target resource, is favourably compared to her cost at the current resource.

There are finite sets of n players N = {1,...,n} and m resources £ = {ey,...,en}, respectively.
The strategy space of player i is S; = {X C E : | X| = 1}; player i selects as her strategy s;(t) a single
edge at round ¢. The game consists of a sequence of rounds ¢ = 0, . .., t*. Initially player 7 selects a random
recourse s;(0) € S;. Next, per round ¢t = 1,...,t*, each player i updates concurrently and independently
his current strategy s;(¢) to s;(¢ + 1) according to an appropriate protocol.

The number f,(t) of players on resource e is f.(t) = |{j : € € s;(t)}|. On an unweighted CG, resource
e has a cost £.(fe(t)), which is a function of the number of players on e, f.(¢). On a weighted CG, each
player j has weight w; and the weight w(t) of players on resource e is we(t) = > ;. .c 5;(8)} Wj» Which is
the corresponding sum-weight of the players on e. On an weighted CG, that cost is £, (w(t)), a function of
the sum of weights of the players on e. The cost ¢;(t) of player 4 is the cost of the resource where this player
resides, l.. A given state is a NE, if it is not beneficial for any player to change unilaterally her strategy at
hand.

First, we present our protocol for the unweighted case.

B2B: During round ¢, do in parallel on each resource e € E:

1. V player i on e, sample a random resource e;.
/* Each player samples myopically a new destination resource. This requires no global information. */
2. Vplayerione,let OUT,; = max{0,..., fe(t)} sufficient to hold /.. (f.. (t) + OUT,,) < Le(fe(t) — OUT; +1).
/* Each player on a given resource estimates the maximum number of her binmates that can follow her to her new sample
destination, in a way that the destination will remain appealing after migration. Again, no global information is required. */
3. Select a random LEADER player i, amongst those that have sampled appealing resources (OU' T,; > 0) and allow her with
all her estimated binmates to migrate to e;. Note that this does not require expensive communication amongst the players on a
given resource.

The cautious reader might observe that, based on the above decription, each player incurs the cost of
selecting a target resource and estimating the maximum number of accompanying mates. We have presented
it in that way to emphasize the distributed nature of the protocol. One could simply decide to embed all
estimate calculations into the last step. However, this is just an implementation issue and does not affect the
generality of the approach.

We now present the weighted case.

W-B2B: During round ¢, do in parallel on each resource e € E:




1. V player i on e, sample a random resource e;.

2. V player ¢ on e, select an arbitrary subset S; of 4’s mates, with their maximum corresponding weight sum WOU T, sufficient
to hold: ée; (we; )+ WOUTEQ) < Le(we(t) — WOUTEQ + w;).

3. Select a random LEADER player ¢, amongst those that have sampled appealing resources (W OU' T, > 0) and allow her with
all her estimated binmates to migrate to e;.

The above descriptions can be easily extended to consider more than one leader per resource and to more
sophisticated techniques for selecting leaders. We will defer such discussion to Section 5.1; suffice to say
that, hereafter, we shall be using the notations B2B and B2B(1) interchangeably.

4 Experimental Validation of singleton CGs

At the initialization of an unweighted CG instance I, each one of n players randomly selects one of m
resources. For each resource e € I, a random cost is assigned. Following that, we experiment with PURE
and MIX classes of cost functions as detailed below.

The m resources of each random CG instance I are associated with one of the following PURE classes of
cost functions: LIN: . (z) = a,x+b., LOG: £, (x) = b log, x,EXP:/l.(r) = b.af, MMI: {.(z) = aebiz’
where z is load and a, be coefficients characterizing resource e.

Within a given PURE cost class, coefficients are independently drawn per cost function, with each
coefficient drawn uniformly from [0 + €, A],e = 1.05, with parameter A = 10, in order to minimize
concentration of coefficients’s around any point y* € [0 + €, A], and to avoid similarity amongst the m
resource’s functions. This is motivated by the independent coefficients model in [32, Section 2.2].

To ensure that our experiments are not optimistically biased, for each instance I with costs drawn from
MM1 PURE class, we take care that the overall capacity ), a. is slightly above n players (or the overall
player’s weight, for the weighted case). This guarantees that costs increases are not c-bounded (so, they will
peak abruptly) on almost all resources within I and for almost all rounds except the final one.

Additionally, to avoid similar random costs within a game instance, we introduce MIX classes (see
details below) containing mixtures of the above PURE classes, thus inducing the highest load-dependent
cost variation.

In Figure 1 (Top) we plot our protocols’ speed scaling with n players, when the cost functions are
drawn from one of the above PURE classes of cost functions. The density r is the ratio of n players to m
resources. We fix resources at mg = 25 and set players n = rmy, with r increasing exponentially as 2Y with
y = 0,1,...,10. Let Tyg(r) be the number of rounds until a NE for a given protocol (averaged over 10
random instances).

The lower LB-plot shows the running time of the protocol in [4, Fig. 2], on an input of m, identical
resources and n = rmy identical players. This LB-plot will serve for comparison.

Each plot labeled “C” shows the running time T g (r) of our protocol B2B(1) on an input of m re-
sources, each drawn from a fixed PURE class C € {LIN, LOG, EXP, MM1} and on n = rmy identical
players. Since each C plot (with mg fixed) is almost parallel to the LB-plot, B2B(1) scales similarly to the
protocol in [4, Fig. 2] with respect to n.

T |1 2 4 8 16 32 64 128 326 512 1024
EXP 16 19 31 38 87 139 257 509 880 1701 3607
MIX 8 8 1022 48 226 254 1198 1346 2427 4439

MIX(EXP) [ 16 21 24 42 67 126 248 467 880 1784 3570
Table 1. This table shows the logarithm of Rosenthal’s initial potential value In(€(0)) at round ¢ = 0, before the protocol starts.
Resources are fixed at mo = 64, rows correspond to cost classes and columns correspond to density r.
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Fig. 1. Unweighted CGs and PURE cost classes. Top: B2B(1)’s speed scaling with n players. Resources are fixed at mo = 25.
Players are n = n(r) = rmo with r increasing exponentially as r = 2, = 0,1, ..., 10. Bottom: B2B(1)’s speed scaling with m
resources.

Note that, for class EXP, in Table 1 (Row 1) there appear the values of In(®,.(0)) with respect to r, to
compare them with the speed [nas ! log(nC')] of the sequential protocol in [8, Th. 1.3]. Observe here that
for a sufficiently high r, Tn g (r) < In(®,(0)), showing B2B(1)’s speed compared to [8, Th. 1.3].

MM1 instances seem to be the most difficult for protocol B2B(1), when density really increases. For
class MM, such In(€(0)) values do not appear in Table 1 since many resources have infinite cost in almost

all rounds (but, this is exactly how those experiments were designed to avoid optimistic bias).

In Figure 1 (Bottom) we illustrate how B2B(1) scales with m resources. Players are fixed at ng = 28

and m = ng/r decrease exponentially as m = ny/2Y wheny = 0,1,...,5. We get the corresponding C
plots, which are almost parallel to the LB-plot of the protocol in [4, Fig. 2].

A main concern of ours was to use a quite wide window of rate of cost growth with respect to the cost
classes within instance I, ranging from DLOG*, with a very smooth rate, to EXP and MM1 classes, the
most peaky ones. Towards this, we tried to illustrate more accurately the ability of our protocols to handle
resources with fierce behavior on the slightest change of load, by considering classes MIX, MIX(C).

A random CG instance I belongs to class MIX, if each resource e € I has a cost function formed
randomly according to a random PURE class. On such instances, see how B2B(1) scales with n in Figure 2
(Top). A CG instance I belongs to class MIX(C)? if exactly 1 resource belongs to DLOG, while the remain-
ing m — 1 resources belong to a fixed PURE class C. One can observer how B2B(1) scales with n in Figure
2 (Top). In doing so, we essentially tried to mislead our protocols, by hiding 1 precious resource amongst
m — 1 costly ones. The corresponding scaling, as regards m, of B2B(1) appears in Figure 2 (Bottom).

*DLOG: £.(z) = b log,,. Inz, the functions therein are exponentially slower than in LOG.
5 In class MIX(MM1%*) 1 precious resource has MM1 cost function of high capacity and m — 1 resources belong to MM,



Note that MIX(EXP) instances seem to be the most difficult for protocol B2B(1). For classes MIX &
MIX(EXP), in Table 1 (Rows 2 and 3) there appear In(®(0)) values with respect to r to compare them with
[nae ™! log(nC)] of the sequential protocol in [8, Th. 1.3], observing that B2B(1) does remarkably fast.
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Fig. 2. Unweighted CGs & MIX cost classes. Top: B2B(1)’s speed scaling with n players. Bottom: B2B(1)’s speed scaling with
m resources.

As far as weighted singleton CGs are concerned, we assign a random weight X to each player, according
to the distribution in Section 2.2. So, for z < 133000 (cutoff value) a random weight X has Lognormal
density f(z) = (v2roz) te02=1?/(20%) with parameters u = 9.357,0 = 1.318. If z > 133000 a
random weight X obeys Pareto g(z) = ak®z 2! with parameters k = 133000 and a = 1.1.

Figure 3 (Top) shows, for the case of PURE classes, the corresponding speed scaling of protocol W-
B2B(1) with respect to n, as compared to the LB plot of protocol [4, Fig. 2]. Figure 3 (Bottom) shows the
corresponding plot with respect to m. Figure 4 shows the corresponding scalings for classes MIX, MIX(C).

S On the validity and the implications of the results

Besides being competitive at-large, our protocols avoid oscillations for a-bounded jump cost functions, with
experimentally tested @ < 10. Such cost functions include polynomials of bounded degree and exponentials
that scale up to 107 (see section 4 for details). Remarkably, our protocols remain fast for MM 1 cost functions
(widely met in real word applications) that do not satisfy any a-bounded condition.

Our protocols’s speed is compared to O(loglogn + m*) achieved in [4] and to O(loglogn + logm)
in [13]. Both protocols [4, 13] scale (as loglogn) with n players (thus, they remain robust when adding
players to the system), while [13] outperforms (log m vs m?*) [4] on m resources (therefore [13] remains
more robust than [4] when extending the system’s resources). Using global information one may scale as
log m, by performing proportional sampling amongst m resources, guiding the migration of players towards
appealing resources [13]. When just uniform sampling amongst m resources is employed, however, scaling
deteriorates to m? [4].

Briefly reviewing the properties of the protocols we have developed, we note that:

— Our protocols are as simple and myopic as in [4], requiring no tuning of migration probability and
exhibiting a similar speed scaling with n players as in [4, 13]. They, also, scale with m resources as in
[4], but they are not as fast as O(logm) in [13] (therein, proportional sampling amplifies fast resources).
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— Our protocols employ a realistic amount of parallelism. Specifically, they assume that during a migration
step, players moving out of one resource may only go to the same target resource [17, 10].

— On any symmetric CG with a-bounded latencies the sequential protocol in [8, Th. 1.3] reaches an® e-NE
in [nas~!log(nC)] rounds’, which is > poly(n) on the number of players. Our concurrent protocols
reach a NE in O(log #(0)), with #(0) being Rosenthal’s potential value at round ¢ = 0, where it is well
known that #(0) < nC (see the open problem in [8, Sec 7: Case 4]).

— Our protocols apply to a wide class of costs. The protocol in [4] balances load (number of players) over
identical resources, with each cost being equal to load. The protocol in [13] is limited to linear cost
functions with no constant term.

— Our protocols do apply to independent-resource CGs (but, see, Section 5.2 for details).

— Our protocols can also handle weighted players, unlike [4]. This property is also shared by [13], how-
everm therein this is done with the use of global information and just for linear costs with no constant
terms. Note that, with weighted players, an arbitrary weight assignment requires 2(y/n) rounds till a
NE [13]. We experimentally improve this lower bound by considering a realistic weight distribution
described in Section 2.2.

5.1 Sensitivity experiments

We now summarize two further types of experiments, to estimate the sensitivity of our protocols to some
build-in parameters of the experimentation (figures were omitted due to space limitations).

First, we experimented with the running time of B2B on instances within a particular cost class with
coefficients a.,b. € [1.05, A] for A = 10,100, 1000, 10000. These experiments were carried out with
mp = 64 resources and density ro = 32. We observed that the corresponding average running time of B2B
was almost the same or even better for values A > 10, which suggests that all our previous results are
pessimistic and even better speed-ups should be expected.

For the second type of experiments, we have developed a variant, named B2B(2), where we select 2
random players %1, 15 amongst the players on resource e such that OUTe; > 0. We then select the most in-

fluential i* between those two such that OUT,, = max{OUT,, ,OUT, } and then allow exactly OUT,:_
% i1 io i

players to migrate to €’.
Furthemore, we have also developed Hint, another variant, where each leader player j migrating out of
e additionally transmits her OU Te; -value as a token to exactly 1 other random player amongst all available

players. Essentially, this is as if she drops a hint and the first passer-by picks it up. Then, the LEADER player
takes the best choice amongst her own-sampled one and the most recent OUT-token she may have received
from another migrant.

So, motivated by the hardness of class MIX(EXP) for protocol B2B, as illustrated in Figure 2 (Top),
we compared B2B(1), B2B(2) and Hint on this class. The findings for B2B(2) and Hint were just slightly
better throughout, suggesting that this problem class is indeed a tough nut to crack.

5.2 Independent Resource congestion games

Let us now generalize the introductory example. Suppose our student also has to consider her best choice
amongst many groups of University resources (for example, the fasted public bus from town to campus, the
most efficient pc in the lab, the least crowded studying room). Suppose that the University has & such groups
of resources. Then, this process amounts to a concurrent congestion game, where the strategy of player ¢ is
a k;-tuple of resources, each drawn from a group of similar resources.

Such CGs are Independent Resource ones.

Now, extending our intruductory discussion to nonatomic concurrent congestion games, we note that
powerful concurrent protocols have been analyzed in a continuous setting with respect to the Wardrop model

® At an e-NE bicriteria state, no player unilaterally changing her strategy can decrease the cost at hand by more than an e-portion.
7 C upper bounds any player’s cost. It is well known that if #(0) is Rosenthal’s potential value at round ¢ = 0 then $(0) < nC.
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(nonatomic flows) on general £ commodities nets. The fact that each agent controls an infinitesimal amount
of flow facilitates the analysis, since any concurrent migration of a lower order population of players causes
almost no oscillation effect. However, again, a great difficulty arises when a significant subset of the popu-
lation concurrently migrates.

A series of important papers [6, 15] provide strong intuition on this subject, with [15] studying specific
policies designated to yield fast convergence and [6] concluding that as long as all players concurrently
employ arbitrary no-regret policies, they will eventually achieve convergence.

We now note (using the nomenclature introduced in Section 3) that the strategy space of player 1 is
S; ={X C E: |X| = ki,1 < k; < m}; player i selects as her strategy s;(t), a k;-tuple of edges at
round ¢. Essentially, the set £ of all resources is partitioned into % parts (or colors) Ey, ..., Ej, each part
E; containing all resources of the same kind (color). The cost of resource e is defined as for singleton CGs
above.The cost of player 7 is the sum of the corresponding costs of the resources in her strategy.

There is a convenient transparency amongst independent-resource and singleton congestion games [21].
More precisely, each player 7+ competing over k; kinds of resources can be interpreted as k; clones, each
acting independently and selfishly in his corresponding group of resources. Now, let 2; the number of clones
in the subset F;, containing all resources of a given kind. Then, it is convenient to view the overall game
G as k independent congestion sub-games G'1, . . . , G In particular, sub-game G/ is a singleton CG on n;
players over |E;| resources, j = 1,..., k. This method will raise up to at most & times the corresponding
singleton protocol’s running time (actually, the experimental results for the independent-resource CGs are
even better than k times the corresponding ones for singleton CGs as shown in Section 4, but we omit them
due to space limitations.)

6 Conclusions

We have presented a protocol for leading concurrent congestion games to Nash Equilibrium in a number
of steps that is competitive to a baseline protocol [4]. We stress that the competitive quality of our protocol
is underlined by the unrealistic assumption of the baseline protocol (as pointed out by the load balancing
literature [17] [10]), that players currently at one resource may arbitrarily migrate to more than one target
resource. In contrast to that, our protocol follows the “realistic assumption” recommendation of [10].
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