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ABSTRACT
Let M be a single s-t network of parallel links with load
dependent latency functions shared by an infinite number
of selfish users. This may yield a Nash equilibrium with un-
bounded Coordination Ratio [12, 26]. A Leader can decrease
the coordination ratio by assigning flow αr on M , and then
all Followers assign selfishly the (1 − α)r remaining flow.
This is a Stackelberg Scheduling Instance (M, r, α), 0 ≤ α ≤
1. It was shown [23] that it is weakly NP-hard to compute
the optimal Leader’s strategy.

For any such network M we efficiently compute the min-
imum portion βM of flow r needed by a Leader to induce
M ’s optimum cost, as well as his optimal strategy.

Unfortunately, Stackelberg routing in more general nets
can be arbitrarily hard. Roughgarden presented a modi-
fication of Braess’s Paradox graph, such that no strategy
controlling αr flow can induce ≤ 1

α
times the optimum cost.

However, we show that our main result also applies to any
s-t net G. We take care of the Braess’s graph explicitly, as
a convincing example.

Categories and Subject Descriptors
F.2 [Theory of Computation]: ANALYSIS OF ALGO-
RITHMS AND PROBLEM COMPLEXITY

General Terms
Algorithms, Economics
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1. INTRODUCTION
In large scale networks such as Internet the users/providers

have freedom on how to route their load. This allows them
to make their choices according to their own individual per-
formance objectives, bringing the network to fixed points
most times worse than the optimum one [6]. Such selfish
behavior is being studied with the notion of Nash Equilib-
rium in the mathematical framework of Game Theory [5,
10, 11, 12, 15, 18, 19, 23, 27].

As a measure of how inefficient is the Nash equilibrium
compared to the overall system’s optimum, the notion of
coordination ratio was introduced in the seminal paper of
[12]. This work has been extended (price of anarchy is an-
other equivalent term) in [4, 3, 8, 14, 21, 20, 24, 23, 26,
22].

To improve the performance of the system under selfish
behavior a great variety of methodologies have been consid-
ered so far. These methodologies intent to bring the sys-
tem to fixed points closer to its optimum performance. The
network administrator or designer can define prices, rules
or even construct the network, in such a way that induces
near optimal performance when the users selfishly use the
system. This can be achieved through pricing policies [2],
algorithmic mechanisms [7, 17, 16], network design [9, 22],
or routing small portion of the traffic centrally [13, 10, 23].

Particulary interesting is the last approach where the net-
work manager affects the non-cooperative game. The man-
ager has the ability to control centrally a part of the system
resources, while the remaining resources are used by the self-
ish users. This approach has been studied through Stackel-
berg or Leader-Follower games [13, 1, 10, 11, 23, 29]. One
player (Leader) controls a portion of the system’s jobs and
assigns them to the system (Stackelberg assignment). The
rest of the users (Followers) having in mind the assignment
of the Leader react selfishly and reach a Nash equilibrium.
The assignment of Leader and Followers is called Stackelberg
Equilibrium. The goal of the Leader is to induce an optimal
or near optimal Stackelberg Equilibrium.

1.1 Motivation
(i) Single-commodity networks with parallel links.
Consider a system M of parallel links and a total of flow r to
be scheduled on M , denoted as a Scheduling Instance (M, r).



Given an scheduling instance (M, r), there is a unique Op-
timum assignment O of flow r on system M minimizing the
total cost C(O) incurred on system M . We study the case
of an infinite number of selfish users, each assigning its in-
finitesimal small portion of total flow r on links in M of
currently minimum delay. Let the cost C(N) of the Nash
assignment N on the scheduling instance (M, r). Then,

C(N) = ε(M,r) × C(O) (1)

where ε(M,r) depends only on instance (M, r) and can be
arbitrarily larger than 1 [26], but if all links in M have lin-
ear load depended latency functions, then ε(M,r) ≤ 4/3 [12].
We try to obtain a more clear picture of this degradation
on system’s performance, measured by the factor ε(M,r), by
studying Stackelberg Scheduling Instances as in [23], and as
in [10] where we focus on the case of an infinite number
of users. According to [23, 10] there is a central authority
(Leader) that controls a portion 0 ≤ α ≤ 1 of the overall flow
r to be assigned on system M , while the rest (1−α)r of the
flow is assigned by the infinite self-optimizing users (Follow-
ers) on M . In [23] this is denoted as a Stackelberg Schedul-
ing Instance (M, r, α), 0 ≤ α ≤ 1. This means that each
scheduling instance (M, r) corresponds to a family of Stack-
elberg scheduling instances (M, r, α), parameterized with re-
spect to α ∈ [0, 1]. Given a Stackelberg scheduling instance
(M, r, α), the goal of the Leader is to find an assignment
(strategy) S of his flow αr on M , such that to induce a Fol-
lowers’s assignment T of the remaining (1 − α)r flow, with
cost C(S + T ) near to the optimum C(O) one. That is

C(S + T ) ≤ ε(M,r,α) × C(O) (2)

Let us use the name “a posteriori anarchy cost” for the
quantity ε(M,r,α). Note that the a-posteriori cost depends
on the strategy chosen by the Leader and on the portion
of the flow that she controls. More precisely, in [23] it was
proved that ε(M,r,α) ≤ 1

α
, 0 < α ≤ 1 for arbitrary latency

functions, and if restricted to instances with linear laten-
cies then ε(M,r,α) ≤ 4

3+α
. From Expression (2), we real-

ize that the portion α captured by the Leader “pays” an
upper bound on system’s degradation factor ε(M,r,α) which
is smaller than the plain one in Expression (1), see also
[13]. More precisely, [23] presented the algorithm LLF that,
on input a Stackelberg scheduling instance (M, r, α), com-
putes a Leader’s strategy S inducing Nash assignment T
with performance guarantee C(S + T ) ≤ 1

α
C(O). However,

on the same Stackelberg scheduling instance (M, r, α) there
may exist a better Leader’strategy S′ inducing T ′ such that
C(S′ + T ′) < C(S + T ), see footnote 6 in [23]. This means
that LLF cannot always compute the optimal strategy. Also,
there may exist a strategy S′′, escaping from LLF, such that
C(S′′ + T ′′) = C(O). Such limitations are depicted in the
negative result in [23] stating that the problem of comput-
ing the Optimal Stackelberg strategy on a given Stackelberg
scheduling instance (M, r, α) is weakly NP -hard.

(ii) Arbitrary single-commodity nets. Finally, an im-
portant question of [23] that motivated us is the extension of
the above results to arbitrary network graphs, closer to the
nature of real networks. Given an arbitrary single source-
destination (s, t)-network G, can a Leader wisely assign his
αr portion on some edges, inducing a selfish s → t rout-
ing of the remaining flow with best possible cost? In [25]

Appendix B.3 Proposition B.3.1, exhibited a simple 4-nodes
graph where no strategy can guarantee cost 1

α
times the op-

timum one. Notably, this 4-node graph is reminiscent to the
one of Braess’s Paradox. To the best of our knowledge, no
performance guarantee as a function of the centrally con-
trolled portion α has been established for arbitrary (s, t)-
networks.

(iii) Arbitrary multi-commodity nets. Even less is
known for Stackelberg strategies on arbitrary networks.

1.2 Our results
(i) Single-commodity network with parallel links.
Our first main result is the polynomial-time algorithm OpTop

that on input a scheduling instance (M, r) computes the
minimum portion βM of flow r needed by a Leader to in-
duce the Optimum cost C(O) on M , as well as the Leader’s
Optimal Stackelberg strategy (see the open question in [28]
page 28). In other words, for an arbitrary scheduling in-
stance (M, r) and arbitrary continuous, differentiable and
strictly increasing latency functions we prove that for all
Stackelberg scheduling instances of the form (M, r, α ≥ βM )
a Leader can enforce the Optimum cost C(O) on M , and the
problem of computing the Optimum Stackelberg strategy is
in P . In view of Expression (2), for such instances the factor
ε(M,r,α≥βM ) is precisely 1. On the contrary, for all Stackel-
berg sceduling instances (M, r, α < βM ) it is not possible
for a Leader to enforce the Optimum cost. Then in Expres-
sion (2) we get that ε(M,r,α<βM ) > 1, which means that such
Stackelberg scheduling instances are the really hard ones and
we can try to attack these by sophisticated fully polynomial
approximation schemes as the ones presented in [13]. Such
non-optimizing behavior was presented also in [10], for the
restricted case of M/M/1 systems of distinct links. Notably,
if such M/M/1 systems contain small groups of highly ap-
pealing links or there are large groups of identical links then
βM may be significantly small.

Single-commodity network with parallel links, focus-
ing on the hard region. Trying to understand further the
underlying complexity of hard instances (M, r, α < βM ), we
started to investigate systems of links, with appropriate load
dependent latency functions that, hopefully, may admit ef-
ficient computation of the optimal strategy. Our motivation
is the case of simple followers (which is identical to an in-
finite number of followers that we consider here) studied in
Section 8 in [10]. We compute the optimal Stackelberg strat-
egy on hard instances (M, r, α < βM ) for any network with
parallel links M = {M1, . . . , Mm} where each link Mi ∈ M
has linear latency `i(x) = aix + bi satisfying the property:
b1 ≤ . . . ≤ bm and a1 = . . . = am.

(ii) Arbitrary single-commodity nets. Our second main
result is an algorithm that efficiently computes the minimum
portion βG of Leader’s flow, sufficient to induce the optimum
routing of flow r from a source-vertex s to a sink t on any
network G. Despite the negative results presented in [23,
25], we can modify OpTop to work on input an arbitrary
network G. Our algorithm also computes the associated op-
timal strategy of the Leader.

(iii) Arbitrary multi-commodity nets. We conjecture
that our results also hold for k commodities on arbitrary
nets.



1.3 Outline of the paper
In Section 1.4 we describe the model that we use for the

case of parallel links and the corresponding one for arbitrary
networks. In Section 2 we present the polynomial-time al-
gorithm OpTop for parallel links. In Section 2.2 we prove its
optimality for parallel links. In Section 2.3 we give a slightly
different algorithm for arbitrary networks. We take care of
the Braess graph as an example. We present our results in
this order for reasons of clarity. In Section 3 we focus on the
hard region (M, r, α < βM ) of parallel links.

1.4 The Model and the problem
Single source-destination parallel links: We have m
parallel links connecting a single source vertex s to a sink
vertex t. Each link i on flow xi incurs latency function
`i(xi) ≥ 0, differentiable, strictly increasing and xi`i(xi)
convex on xi. Each selfish user controls an infinitesimally
small amount of the total flow r. Let the m-vector X ∈ Rm

+

denote the assignment of jobs to the links in M such that
Pm

i=1 xi = r. This instance is annotated (M, r). The Cost
of an assignment X ∈ Rm

+ on the (M, r) instance is C(X) =
Pm

i=1 xi`i(xi) The minimum cost is incurred by a unique
assignment O ∈ Rm

+ , called the Optimum assignment. The
unique assignment N ∈ Rm

+ defines a Nash equilibrium, if
no user can find a loaded machine with < latency than any
other machine.

Arbitrary Networks: A network is as a directed graph
G(V, E) with set of vertices V and edges E. There are k
source-destination vertex pairs (s1, t1), . . . , (sk, tk) and no
self loops are allowed. Pi is the set of all paths amongst
(si, ti), i = 1, . . . , k, and P =

S

i
Pi. A flow is a function

f : P → R+. The amount of flow fe on edge e ∈ E is
the flow it receives from all paths in P. If we focus on the
flow of a specific source-destination pair (si, ti) then we let
f i the restriction of f to Pi, i = 1, . . . , k. The total of flow
wishing to travel through source-destination pair (si, ti) is
ri and f is feasible if the flow it assigns on each path Pi

is ri. If flow fe traverses edge e it incurs latency `e(xe),
where `e(·) is increasing, differentiable and fe`e(fe) convex
on fe. The latency of a path P ∈ Pi with respect to flow f
is the sum of its edge-latencies `P (f) =

P

e∈P
`e(fe). The

cost of a flow f is C(f) =
P

e∈E `e(fe)fe =
P

P∈P `P (f)fP .
The unique Optimal flow f∗ is the one minimizing the cost
C(·) of scheduling flow r on graph G and due to convexity
properties can be efficiently computed. We have a Nash
equilibrium on a network G if an only if for every commodity
i ∈ {1, . . . , k} and paths P1, P2 ∈ Pi with fP1

> 0 we have
`P1

(f) ≤ `P2
(f). In other words, in each source-destination

pair (si, ti) no flow in a loaded path can find any other path
from si to ti experiencing less latency.

Problem: The input is a scheduling instance (M, r) where
M is either m parallel links or an s−t network. The question
is to compute efficiently the minimum portion of the flow
controlled by the Leader (and the associated strategy of the
Leader) to induce the overall optimum cost on M .

2. OUR ALGORITHM AND ITS OPTIMAL-
ITY

Single-commodity network with parallel links. In
this section we present algorithm OpTop that computes the
minimum flow that should be controlled by the Leader in

order to induce the overall optimum on a given instance
(M, r). Let O := 〈o1, . . . , om〉 the optimum assignment and
N := 〈n1, . . . , nm〉 the Nash assignment on (M, r). Intu-
itively1, OpTop initially loads si = oi to each link Mi ∈ M
with ni < oi, that is, to all links not appealing to the self-
ish users. Then it discards all these not appealing links as
soon as it loads them optimally. The remaining flow is as-
signed recursively by OpTop in exactly the same fashion to
the simplified subnetwork of links. It terminates as soon as
it encounters a simplified subnetwork with all of its links
optimally loaded.

Algorithm: OpTop (Parallel links)
(1) Set r0 = r the total flow in M . Compute the

optimum assignment O := 〈oi : Mi ∈ M〉 on
instance (M, r0). Set M ′ ≡ ∅.

(2) Compute the Nash assignment N := 〈ni : Mi ∈ M〉
on instance (M, r).

(3) For each link Mi ∈ M such that oi > ni set
M ′ = M ′ ∪ {Mi}. If M ′ ≡ ∅ go to (5).

(4) Set M = M \ M ′ and O := O \ {oi ∈ M ′} and
r = r −

P

Mi∈M′ oi. Set M ′ ≡ ∅ and go to (2).

(5) The portion of flow controlled by the Leader is
βM = (r0 − r)/r0.

In Sections 2.1 and 2.2 we prove our main Theorem 1 for
the case of a single-source, single-destination network M of
parallel links.

Theorem 1. Consider an instance (M, r) with latency
function `i(·) per link Mi ∈ M differentiable, strictly in-
creasing and x`i(x) convex on x. Algorithm OpTop computes
the minimum portion βM of total flow r that a Leader must
control to induce overall optimum cost on M , as well as
Leader’s optimal Stackelberg strategy.

In Section 2.3 we generalize Theorem 1 for arbitrary net-
work topologies and the same standard class of latency func-
tions.

2.1 Useful machinery
Single-commodity network with parallel links. We
denote the corresponding Nash and Optimum assignments
on an instance (M, r) as N = 〈n1, . . . , nm〉 with

Pm

i=1 ni =
r, and O = 〈o1, . . . , om〉 with

Pm

i=1 oi = r. We give a more
useful definition for the Nash assignment N .

Definition 1. An assignment N = 〈n1, . . . , nm〉of total
flow

Pm

i=1 ni = r on (M, r) is called Nash Equilibrium if

there exists a constant LN > 0 such that for each link
Mi ∈ M , if ni > 0 then `i(ni) = LN , otherwise `i(ni) ≥ LN .

We denote as Stackelberg strategy S an assignment S =
〈s1, . . . , sm〉 of flow

Pm

i=1 si = βr, β ∈ [0, 1], on instance
(M, r). Given S, we denote the induced Nash assignment as
T = 〈t1, . . . , tm〉 with

Pm

i=1 ti = (1 − β)r.

Definition 2. Given Stackelberg strategy S = 〈s1, . . . , sm〉
with

Pm

i=1 si = βr and β ∈ [0, 1], the assignment T =

1
OpTop finds all shortest paths (fast edges) with respect to O

and freezes the flow on all slow edges, see Section 2.3. Here
our proof methodology identifies recursively the slow-edges,
while in Section 2.3 we adopt a non-recursive argument.



〈t1, . . . , tm〉 of the remaining flow
Pm

i=1 ti = (1− β)r on in-
stance (M, r) is an Induced Nash Equilibrium if there exists
a constant LS > 0 such that for each Mi ∈ M , if ti > 0 then
`i(ti + si) = LS , otherwise `i(ti + si) = `i(0 + si) ≥ LS .

The Stackelberg Stategy S induces the Nash assignment
T . The assignment T + S is called Stackelberg Equilibrium.
The Cost of an assignment X = 〈x1, . . . , xm〉 on M equals
C(X) =

Pm

i=1 xi`i(xi). The cost of the Stackelberg Equi-
librium S + T is C(S + T ) =

Pm

i=1(si + ti)`i(si + ti).

Definition 3. Link Mi ∈ M is called over-loaded if ni >
oi, under-loaded if ni < oi, otherwise is called optimum-
loaded, i = 1, . . . , m.

Definition 4. Link Mi ∈ M (or load si ∈ S) is called
frozen if Stackelberg strategy S assigns to it load si ≥ ni, i =
1, . . . , m.

Luckily, by the Nash assignment N of the users, all links
may end up optimum-loaded. In this way, N ≡ O and
the cost C(N) of the system is minimized, that is C(N) =
C(O). In general N 6≡ O, since the selfish users prefer and
thus over-load fast links, while dislike and under-load slower
ones, increasing the cost C(N) > C(O). The crucial role
of strategy S is to wisely pre-assign load si ≥ 0 to each
link Mi ∈ M . This is successful to the extent that the
induced Nash assignment T made by the users will assign an
additional load ti ≥ 0 to each Mi, yielding the nice property
si + ti = oi for each i = 1, . . . , m. Intuitively, strategy S
biasses the initial Nash assignment N to the induced one T ,
in a way that S + T ≡ O, minimizing the induced overall
cost C(S + T ) = C(O) of system M . It is convenient to
state the following easy proposition.

Proposition 1. Consider an instance (M, r) with latency
functions `j(·) j = 1, . . . , m. Let the Nash assignment N =
〈n1, . . . , nm〉 of (M, r). If N ′ = 〈n′

1, . . . , n
′
m〉 is the Nash as-

signment of (M, r′) with r′ ≤ r, then for each link Mi ∈ M
it holds: n′

i ≤ ni.

Proof. Since N is a Nash assignment of the flow r on M ,
by Definition 1, ∃ LN > 0, such that for each link Mi ∈ M
if ni > 0 then `i(ni) = LN , otherwise `i(ni) = `i(0) ≥ LN .

Let MN+

= {Mi ∈ M : ni > 0} and MN−

= {Mi ∈ M :

ni = 0}. Similarly for N ′, let LN ′
> 0 the corresponding

constant, and MN′+

= {Mi ∈ M : n′
i > 0} and MN′−

=
{Mi ∈ M : n′

i = 0}. To reach a contradiction, suppose that

∃ Mi0 ∈ MN′+

such that n′
i0

> ni0 .

Case 1: If Mi0 ∈ MN−

then `i0(n
′
i0

) = LN ′
> `i0(ni0) =

`i0(0) ≥ LN , since each `i(·) is strictly increasing and n′
i0

>

ni0 = 0. Then, each link Mi ∈ MN+

must have load n′
i >

ni under N ′, otherwise it will experience latency `i(n
′
i) ≤

`i(ni) = LN < LN ′
which is impossible, since N ′ is a Nash

equilibrium. Therefore, we reach a contradiction since we
get r′ ≥

P

Mi∈MN+ n′
i >

P

Mi∈MN+ ni = r.

Case 2: If Mi0 ∈ MN+

then `i0(n
′
i0

) = LN ′
> `i0(ni0) =

LN . Therefore, each link Mi ∈ MN+

must receive load

n′
i > ni under N ′, otherwise each Mi ∈ MN+

will experience

latency `i(n
′
i) ≤ `i(ni) = LN < LN′

. That is, in the same
fashion, we reach a contradiction.

Theorem 2 describes each Stackelberg strategy S induc-
ing Nash assignment T with cost C(S + T ) = C(N). In
other words, Theorem 2 describes exactly all those useless
strategies that induce cost indifferent from C(N). Then, it
is useless for OpTop to employ such a strategy S when try-
ing to escape from a particular Nash equilibrium N with
C(N) >> C(O).

Theorem 2. Consider an instance (M, r) with latency
functions `j(·) j = 1, . . . , m. Let the Nash assignment N =
〈n1, . . . , nm〉 of (M, r). Suppose that for a Stackelberg strat-
egy S = 〈s1, . . . , sm〉 with

Pm

i=1 si = βr, β ∈ [0, 1], it holds
sj ≤ nj , j = 1, . . . , m. Given S, let the induced Nash as-
signment T = 〈t1, . . . , tm〉 of the remaining flow (1 − β)r.
Then it holds nj = sj + tj for each Mj ∈ M , in other words,
N ≡ S + T .

Proof. Since N is a Nash equilibrium on the links in M
with

Pm

i=1 ni = r, then there exists a constant LN > 0, such
that for each link Mj ∈ M that receives load nj > 0 it holds
`j(nj) = LN . That is, all loaded links incur the same latency
LN to the system M . Consider an arbitrary Stackelberg
strategy S, assigning load sj ≤ nj to each Mj ∈ M with
Pm

i=1 si = βr, β ∈ [0, 1]. Then, the initial system of links

M is transformed by S to the equivalent system MS , such
that each link MS

j ∈ MS with load xj now experiences

latency `S
j (xj) = `j(xj + sj). Since for each Mj ∈ M it

holds sj ≤ nj then ∃ tj ≥ 0 such that tj = nj − sj and also
Pm

i=1 ti = (1 − β)r. Let T = 〈t1, . . . , tm〉 this assignment

on MS . Obviously, for the same constant LN > 0 as above,
it holds: `S

j (tj) = `j ((nj − sj) + sj) = `j(nj) = LN , for
each Mj ∈ M with tj > 0. This means that T is a Nash
equilibrium on system MS and also S + T ≡ N .

In view of the negative result of Theorem 2, a natural
question concerns the properties that a Stackelberg strategy
must have in order to induce cost 6= C(N). We answer
this question on Theorem 3 and its generalization Lemma 1
below. Before this, we give a convenient definition.

Definition 5. Each Stackelberg strategy S that satisfies
Theorem 2 is called useless-strategy, otherwise is called useful-
strategy.

Theorem 3 states that any link Mi ∈ M receiving load
si ≥ ni by a strategy S (while there is no link Mj ∈ M
with load sj < nj) will become non appealing for the sub-
sequent selfish assignment T of the users. That is, for each
Mi ∈ M assigned load si ≥ ni, its induced load by the Nash
assignment T equals ti = 0. Intuitively, in the induced Nash
equilibrium T , the dictated load si ≥ ni by strategy S to
link Mi will remain “frozen” to si, i ∈ {1, . . . , m}.

Theorem 3. Let the Nash assignment N = 〈n1, . . . , nm〉
of on instance (M, r). Suppose that for a Stackelberg strategy
S = 〈s1, . . . , sm〉 with

Pm

i=1 si = βr we have either sj ≥
nj or sj = 0, j = 1, . . . , m. Then for the induced Nash
assignment T = 〈t1, . . . , tm〉 of the remaining load (1 − β)r
we have that tj = 0 for each Mj ∈ M such that sj ≥ nj , j =
1, . . . , m.

Proof. By Definition 1, since N is a Nash equilibrium
on M , ∃ LN > 0 such that for each Mi ∈ M , if ni > 0
then `i(ni) = LN , otherwise `i(ni) ≥ LN . Fix a Stackelberg
strategy S on M , such that for each link Mi ∈ M , either



si ≥ ni or si = 0. Let MS+

= {Mi ∈ M : si ≥ ni}

and MS−

= {Mi ∈ M : si = 0}, and notice that M =

MS+

∪ MS−

and MS+

∩ MS−

= ∅. Each Mi ∈ MS+

receiving induced load ti ≥ 0 now experiences latency

`S+

i (ti) = `i(ti + si) ≥ `i(si) ≥ `i(ni) ≥ LN . (3)

On the other hand, each Mj ∈ MS−

receiving induced
load tj ≥ 0 experiences the same (since sj = 0) as the initial
(that is, without applying strategy S) latency

`S−

j (tj) = `j(tj + sj) = `j(tj). (4)

In the sequel, the induced Nash assignment T by strategy
S assigns the remaining flow on M

r −
m

X

i=1

si = r −
X

Mj∈MS+

sj ≤
X

Mj∈MS−

nj . (5)

Having in mind (4) and (5), the crucial observation is that
even if all the remaining flow that appears in LHS of (5) is

assigned selfishly only on subsystem MS−

, it is impossible

the common latency LS−

experienced by each loaded link in

MS−

to become LS−

> LN , so that at least one link in MS+

to become appealing for the selfish players. More formally,

let T S−

be the partial Nash assignment that corresponds to
assigning the flow that appears in LHS of (5) only on to the

subsystem MS−

. By Definition 1, ∃ LS−

> 0 such that for

each loaded link Mj ∈ MS−

with load 0 < tS−

j ≤ nj (here
RHS inequality stems from Proposition 1 and the RHS of
(5)) it holds

`S−

j (tS−

j ) = `j(t
S−

j ) = LS−

≤ `j(nj) = LN . (6)

By (3) and (6) it follows that no link Mj ∈ MS+

is ap-
pealing for the overall induced Nash assignment T .

In view of the negative result of Theorem 2, a natural
question concerns the properties that a Stackelberg strategy
must have in order to induce cost 6= C(N). Lemma 1 rules
out such possibility. Intuitively, Lemma 1 states that each
assignment of load sj ≥ nj made by strategy S to each link

Mj ∈ MS+

(see its definition in Proposition 2 below, it is
the subset of frozen links) remains unaffected by its induced
Nash load (i.e. T induces load tj = 0 on Mj), irrespectively
of any assignment of load si < ni made by S to any other
link Mi 6= Mj .

Lemma 1. Let the Nash assignment N = 〈n1, . . . , nm〉
on instance (M, r). Suppose that for a Stackelberg strategy
S = 〈s1, . . . , sm〉 with

Pm

i=1 si = βr, β ∈ [0, 1], we have
either sj ≥ nj or sj < nj , j = 1, . . . , m. Then for the
induced Nash assignment T = 〈t1, . . . , tm〉 of the remaining
load (1−β)r we have that tj = 0 for each link Mj ∈ M such
that sj ≥ nj , j = 1, . . . , m.

Proof. By Definition 1, since N is a Nash equilibrium
on M , ∃ LN > 0 such that for each link Mi ∈ M , if ni > 0
then `i(ni) = LN , otherwise `i(ni) ≥ LN . Consider an

arbitrary strategy S and let MS+

= {Mi ∈ M : si ≥ ni}

and MS−

= {Mi ∈ M : si < ni}. Similarly as in (3), each

Mi ∈ MS+

receiving induced load ti ≥ 0 now experiences
latency

`S+

i (ti) = `i(ti + si) ≥ `i(si) ≥ `i(ni) ≥ LN . (7)

However, here we do not have the nice fact as in (4) for

the link latencies in MS−

(since now sj 6= 0 ). We can
circumvent this as follows. The induced Nash assignment T
assigns on system M the remaining flow that equals

rS = r −
m

X

Mi∈ MS+
∪MS−

si

≤ rS−

= r −
X

Mi∈MS+

si

≤
X

Mi∈MS−

ni, (8)

where the rightmost inequality stems from the fact that

rS+

=
X

Mi∈MS+

si ≥
X

Mi∈MS+

ni. (9)

Now, we prove that even if the flow rS−

in (8) is scheduled

selfishly only on the subsystem MS−

, then all links with load

> 0 in it, would not experience common latency LS−

> LN

so that at least one link in MS+

to become appealing for

scheduling any excess of flow. Let NS−

the partial Nash
assignment (that is, without previously assigning S on to

subsystem MS−

) when scheduling flow rS−

appearing in

(8) only on to subsystem MS−

. Also, applying strategy S

on to subsystem MS−

, let T S−

the induced partial Nash as-
signment (that is, by assigning previously S on to subsystem

MS−

) when scheduling the remaining of rS−

appearing in

(8) only on to subsystem MS−

. Let nS−

i (or tS−

i ) denote the

load assigned by NS−

(or T S−

) to each Mi ∈ MS−

. Then,
we have the following two cases.

Case 1: Suppose that for each link Mi ∈ MS−

it holds

si ≤ nS−

i . Then we can apply Theorem 2 when assigning

the remaining of rS−

on subsystem MS−

. In this way, for

each link Mi ∈ MS−

it holds si + tS−

i = nS−

i . Furthermore,
from Inequality (8) we realize that

rS−

=
X

Mi∈MS−

nS−

i ≤
X

Mi∈MS−

ni. (10)

Applying Proposition 1, we conclude that for each loaded

link Mi ∈ MS−

it holds `i(n
S−

i ) ≤ `i(ni) = LN and using
(7) the lemma is proved.

Case 2: Suppose that there exists at least one link Mi ∈

MS−

such that si > nS−

i . Then we can construct T S−

as

follows. For each link Mi ∈ MS−

such that si ≤ nS−

i we set

tS−

i ≤ nS−

i − si (11)



(see its validity below) otherwise we set tS−

i = 0. Clearly,

each link Mi ∈ MS−

with tS−

i > 0 experiences a common
latency

LS−

= `S−

i (tS−

i )

≤ `i((n
S−

i − si) + si) = `i(n
S−

i )

≤ `i(ni) = LN , (12)

and the lemma follows. On the other hand, each link Mi ∈

MS−

with tS−

i = 0 already has load sj due to S such that

nS−

j < sj < nj . Therefore,

LS−

≤ `S−

j (tS−

j ) = `S−

j (0) = `j(sj) < `j(nj) = LN ,

and the lemma follows. The Inequality (11) can be proved

as follows. Given strategy S, let the subsystem MS−

0 ⊆

MS−

containing all links Mi ∈ MS−

such that si > nS−

i .

Consider strategy S′ such that on each Mi ∈ MS−

\MS−

0 it

assigns load s′i = si and for each MS−

0 it assigns load s′i =

si − (si −nS−

i ) = nS−

i (that is, it subtracts load (si −nS−

i )).
In this way we get

X

Mi∈MS−

s′i <
X

Mi∈MS−

si. (13)

Given strategy S′, Theorem 2 applies on assigning selfishly
the flow that appears on the RHS of (14) onto subsystem

MS−

, and let T S′−

the corresponding induced Nash assign-

ment. Then, for each link Mi ∈ MS−

it holds tS′−

i =

nS−

i − s′i, and most importantly, each Mi ∈ MS−

0 gets in-

duced load tS′−

i = 0. The crucial observation is that if we

add back the subtracted load (si −nS−

i ) on each Mi ∈ MS−

0

then (i) strategy S′ becomes S and (ii) each Mi ∈ MS−

0

becomes even less appealing (recall tS′−

i = 0 under S′).

Furthermore, given strategy S, let T S−

the induced Nash
assignment of the flow that appears in the LHS of (14)

X

Mi∈MS−

tS−

i = rS−

−
X

Mi∈MS−

si

<
X

Mi∈MS−

tS′−

i

= rS−

−
X

Mi∈MS−

s′i, (14)

on subsystem MS−

. From Proposition 1, on selfisly assign-

ing the flow in LHS of (14) onto subsystem MS−

\MS−

0 , we

conclude that each Mi ∈ MS−

\ MS−

0 now receives flow

tS−

i ≤ tS′−

i = nS−

i − s′i = nS−

i − si,

while each Mi ∈ MS−

0 now receives tS−

i = 0.

In Section 2.2 we apply Theorem 3, Lemma 1 and Propo-
sition 2 to discard the links with frozen load sj = oj ≥ nj

and simplify the initial game. Clearly, such links will never
be affected by the induced selfish play of the users on the
rest of links. Therefore, using Proposition 2, we focus on
the remaining links with load under S that equals si < ni,
which may be affected by the selfish users, trying to find a

subsequent partial Stackelberg strategy on them that will
induce the optimum cost.

Proposition 2. Let the system M = {M1, . . . , Mm} and
the Nash assignment N = 〈n1, . . . , nm〉 on (M, r). Fix a
Stackelberg strategy S = 〈s1, . . . , sm〉 such that either sj ≥
nj or sj < nj , j = 1, . . . , m. Let the subset of frozen links

MS+

= {Mj ∈ M : sj ≥ nj}, j = 1, . . . , m, and their

frozen load rS+

=
P

Mj∈MS+ sj . Then the initial Stackelberg

game of flow r on M can be simplified to scheduling the

remaining unfrozen flow rS−

= r − rS+

to the remaining

unfrozen subsystem of links MS−

= M \ MS+

.

2.2 The optimal evolution of OpTop

2.2.1 Phase 1: OpTop loads optimally all initially
under-loaded links.

During Phase i ≥ 1, let N i = 〈ni
1, . . . , n

i
m〉 denote the

Nash assignment of flow ri (where r1 equals the initial total
flow r) on to subsystem of links M i (where M1 is the initial
system M). Also, let O = 〈o1, . . . , om〉 denote the overall
optimum assignment of flow r onto system M (notice that
O is not parameterized with respect to the ith Phase). We
introduce the following partition (according to Definition 3)
of the system M1 ≡ M of links, during Phase 1

M1− = {Mj ∈ M1 : n1
j < oj}

M1+

= {Mj ∈ M1 : n1
j ≥ oj}. (15)

According to Theorem 3 and Lemma 1, if during Phase

1 a Stackelberg strategy S1 = 〈s1
1, . . . , s

1
m〉 assigns load s1

j

such that oj < n1
j < s1

j to at least one over-loaded link

Mj ∈ M1+

(see Definition 3) then Mj will remain frozen
to an unfavorably high value s1

j > oj , irrespectively of any

load s1
i strategy S1 may assign to any other link Mi 6= Mj .

Therefore, Mj will never reduce its load to the optimum
value oj , and thus the system M will never converge to its
overall optimum assignment O.

In the same fashion, applying Lemma 1, if during Phase

1 strategy S1 assigns load s1
j such that n1

j < s1
j < oj to at

least one under-loaded link Mj ∈ M1− then Mj will remain
frozen to an unfavorably low load s1

j < oj .

Then OpTop must assign load s1
j = oj > n1

j to each initially

under-loaded link Mj ∈ M1− , otherwise under-loaded links
will never attain their overall optimum load. Furthermore,
by Theorems 2, 3 and Lemma 1, it is wasteful any assign-
ment of flow s1

i < n1
i to any other link Mi ∈ M1. Clearly,

no such assignment oi < s1
i < n1

i can affect favorably any
load assignment s1

j = oj > n1
j to any initially under-loaded

link Mj ∈ M1− . We conclude that at the end of Phase

1 algorithm OpTop constructs the Stackelberg strategy S1

such that in each Mj ∈ M1− it assigns load s1
j = oj , while

in each Mj ∈ M1+

it assigns s1
j = 0.

Simplification of the initial game: Each initially under-

loaded link Mj ∈ M1− will remain frozen to its induced by
S1 optimum load s1

j = oj > n1
j . Applying Proposition 2,

we can simplify the game by discarding each initially under-

loaded link Mj ∈ M1− that becomes frozen by S1. During

Phase 1 algorithm OpTop needs a portion r1− to frozen the



links in M1− r1− =
P

Mj∈M1− oj . Then the initial Stackel-

berg game of flow r1 on M1 can be simplified to scheduling

the remaining flow r2 = r1 − r1− to the remaining links

M2 = M1 \ M1− .

2.2.2 Phase i ≥ 2: the recursive nature of OpTop.
During Phase 2, we consider the Nash assignment N 2 =

〈n2
j : Mj ∈ M2〉 when scheduling the remaining flow r2 =

r1 − r1− on the simplified system M2 = M1 \ M1− and,
similarly as in Phase 1 let,

M2− = {Mj ∈ M2 : n2
j < oj}

M2+

= {Mj ∈ M2 : n2
j ≥ oj}. (16)

Then, applying similarly as in Section 2.2.1 Theorem 2 and
3, Lemma 1 and Proposition 1, OpTop constructs the subse-
quent Stackelberg strategy S2 onto subsystem M2 such that

in each Mj ∈ M2− it assigns s2
j = oj , while in each Mj ∈

M2+

it assigns s2
j = 0. Then, once more, OpTop simplifies

the game, scheduling flow r3 = r2−r2− = r2−
P

Mj∈M2− oj

onto subsystem M3 = M2 \M2− . Finally, OpTop terminates
as soon as it reaches a Phase i0 where the simplified sub-
system M i0 has the property

M i0
−

= {Mj ∈ M i0 : ni0
j < oj} ≡ ∅, (17)

and outputs the minimum possible flow βM needed to im-
pose the overall optimum on system M that equals

βM =

Pi0−1
k=1 rk−

r1
=

r1 − ri0

r1
, i0 ≥ 1.

2.3 Modified OpTop for arbitrary networks (Al-
gorithm MOP)

We consider an arbitrary network G with single-source
vertex s and sink t such that the latency function `e(·) per
edge e is strictly increasing on flow xe, differentiable and
xe`e(xe) is convex (i.e. standard latencies). There is a total
of flow r to be routed from s to t. The unique optimum
routing O of total flow r from vertex s to t can be computed
in polynomial time, on any such network G, see in [25] Sec-
tion 2.3 Fact 2.3.6. This also holds for the Nash assignment
N on G, selfishly routed from vertex s to t, see [25] Section
2.5, Remark 2.5.2 (d).

The approach: Consider the optimum assignment O of
flow r that wishes to travel from source vertex s to sink t.
O assigns flow oe incurring latency `e(oe) per edge e ∈ G.
Let Ps→t the set of all s → t paths. We can compute in poly-
nomial time the shortest paths in Ps→t with respect to costs
`e(oe) per edge e ∈ G. That is, the paths that given flow
assignment O attain latency: minP∈Ps→t

`
P

e∈P `e(oe)
´

i.e.,
minimize their latency. It is crucial to observe that, if we
want the induced Nash assignment by the Stackelberg strat-
egy to attain the optimum cost, then these shortest paths are
the only choice for selfish users that eager to travel from s to
t. Furthermore, the uniqueness of the optimum assignment
O determines the minimum part of flow which can be self-
ishly scheduled on these shortest paths. More precisely, let
As→t = {e ∈ G : e belongs in at least one shortest path from,
s → t} the set of all “fast” edges in paths from s to t. Ob-
serve that the flow oe′ assigned by the optimum assignment

O on any “slow” edge e′ 6∈ As→t has incentive to change
its path (since it is not a shortest one). Then, for each
e′ 6∈ As→t, a Stackelberg strategy must freeze its flow oe′ on
it. Otherwise, selfish users traversing e′ will opt for a short-
est path and eventually ruin the overall optimum assignment
O. However, for each fast edge e ∈ As→t the flow oe assigned
by O has no incentive to change path (it currently is on a
shortest one). Therefore, it is useless to employ any Stack-
elberg strategy on any e ∈ As→t. We conclude that the
minimum flow sufficient by a Leader to induce the optimum
cost equals

P

e′ 6∈As→t
oe′ . It is easy, but tedious, to extend

our proof methodology of Sections 2.1 and 2.2 in order to
fully justify our argument of correctness as stated above.

Algorithm: MOP (Arbitrary s-t Nets)
(1) Initialize Stackelberg strategy

S = 〈s1 = 0, . . . , sm = 0〉 and
centrally captured flow rS = 0.

(2) Compute the optimum assignment
O := 〈oe : e ∈ G〉 on instance (G, r).

(3) Set cost `e(oe) on each edge e ∈ G, oe ∈ O.
(4) Compute the shortest paths in G with

edge-costs `e(oe), ∀e ∈ G.
Let As→t the set of edges in shortest paths.

(5) For each edge ei 6∈ As→t

set si = oi and rS = rS + oi.
(6) Return the Leader’s portion βG = rS

r

and his strategy S.

MOP achieves coordination ratio 1 on the graph in Fig. 1,
used by Roughgarden to argue that 1

α
×O guarantee is not

possible for general (s, t)-networks, see Appendix B.3 in [25].
We first compute the path P0 ∈ P of minimum latency:
P

e∈P0
`e(oe) = minP∈P

P

e∈P
`e(oe), with respect to the

optimum O that on each edge e ∈ E assigns flow oe. The
optimal flows per edge are:

os→v =
3

4
− ε, os→w =

1

4
+ ε, ov→w =

1

2
− 2ε,

ov→t =
1

4
+ ε, ow→t =

3

4
− ε (18)

Then P0 = s → v → w → t (see [25] pp. 143, 5th-3th
lines before the end), irrespectively of the flow traversing it.
∀ e ∈ E such that e 6∈ P0 MOP assigns flow oe. Therefore
edge s → w gets flow os→w and edge v → t flow ov→t,
according to (18). The selfish routing starts. On starting-
node s all flow r = 1 will opt to travel trough most wanted
path P0. However, on node s the Leader (according to his
strategy dictated by the MOP) forces os→w of r = 1 to travel
via s → w 6∈ P0 (which is an ugly edge and no one wants
it). The remaining selfish r− os→w flow will still opt for the
most preferred path P0 and will traverse through edge s → v
(this flow is optimal for s → v). The Leader comes up as
soon this flow arrives at node v. He pursues (according to
his strategy dictated by MOP) another ov→t flow to traverse
the ugly v → t 6∈ P0 edge, and finally reach the precious
destination t. Now, the remaining r − os→w − ov→t is free
to opt for edge v → w ∈ P0 which is still highly appealing
(this flow is optimal for v → w). A great surprise arises as
soon as these r − os→w − ov→t liberians reach node w: they
meet their os→w fellows. Now the r − ov→t flow will keep
on walking via w → t (this is optimal for w → t) and reach
destination t, where they meet their ov→t friends. Thus the



coordination ratio equals to 1, since all edges get the optimal
flows depicted in (18).
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Figure 1: A bad example for Stackelberg routing.

3. SINGLE-COMMODITY NETWORKS
WITH PARALLEL LINKS, FOCUSING
ON HARD INSTANCES (M, R, α < βM )

Consider an instance (M, r) with latency functions `i(x) =
aix + bi, with a1 = . . . , am, i = 1, . . . , m, i.e. parallel lin-
ear latency functions, ordered from faster to slower, that is
bi < bi+1, i = 1, . . . , m−1. In Lemma 2 we show that on any
instance (M, r, α < βM ) there is a Leader’s optimal strategy
that partitions M = {M1, . . . , Mi0 , . . . , Mm} around some
link Mi0 such that subsystem M>0(i0) (containing links ap-
pealing to Followers) is M>0(i0) = {M1, . . . , Mi0} and sub-
system M=0(i0) (containing links that Followers dislike) is
M=0(i0) = {Mi0+1, . . . , Mm} .

Lemma 2. There exists an optimal strategy of S of the
leader, such that all links in M=0 have indices greater than
ones of the links in M>0. This strategy can be computed in
polynomial time.

Proof. Let S be an optimal strategy for the Leader and
T is the induced Nash Assignment. With no loss of gen-
erality, assume that M1 ∈ M=0 (which means t1 = 0) and
M2 ∈ M>0 (which means t2 > 0), see Fig. 2. The partial
cost of S + T on subsystem {M1, M2} equals:

s1`1(s1) + (s2 + t2)`2(s2 + t2) =

s1`
1 + (s2 + t2)`

2 = A (19)

with `1 ≥ `2

Our purpose is to reassign the Leader’s flow s1 + s2 on sub-
system {M1, M2}, in a way that t1 > 0, inducing partial
cost ≤ A and latency ≤ `2 on the most appealing link. In
this way, we get another Leader strategy, with cost ≤ A,
that satisfies the property described in Lemma 2. We start
by interchanging the loads between M1 and M2, i.e. load
s1 goes from M1 to M2 and load s2 + t2 goes from M2 to

M1, see Fig. 3. This decreases the latency on M1 to `1
′

< `2

and increases it on M2 to `2
′

> `1. Since we have parallel
linear load functions, we can remove load ε from M2 till the

latency it experiences drops from `2′ to `1 and place it to

M2 raising its latency from `1′ to `2, see Fig. 4. The new
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Figure 2: Representation of assignments and laten-
cies on M1 and M2 links. The s1 assignment gives la-
tency `1 while s2+t2 assignment gives latency `2 ≤ `1.

cost on {M1, M2} is:

(s2 + t2 + ε)`1(s2 + t2 + ε) + (s1 − ε)`2(s1 − ε) =

(s2 + ε + t2)`
2 + (s1 − ε)`1 = A + ε(`2 − `1) ≤ A,

since `2 ≤ `1
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