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Abstract. We present the interpolation search tree (ISB-tree), a new
cache-aware indexing scheme that supports update operations (insertions
and deletions) in O(1) worst-case (w.c.) block transfers and search op-
erations in O(logB log n) expected block transfers, where B represents
the disk block size and n denotes the number of stored elements. The
expected search bound holds with high probability for a large class of
(unknown) input distributions. The w.c. search bound of our indexing
scheme is O(logB n) block transfers. Our update and expected search
bounds constitute a considerable improvement over the O(logB n) w.c.
block transfer bounds for search and update operations achieved by the
B-tree and its numerous variants. This is also suggested by a set of pre-
liminary experiments we have carried out. Our indexing scheme is based
on an externalization of a main memory data structure based on inter-
polation search.

1 Introduction

More than three decades after its invention, B-tree [3, 4] and its variants remain
the ubiquitous (external memory) data structure for indexing and organizing
large data sets with numerous applications, especially in database systems. Its
popularity is mainly due to the stable and guaranteed performance for search
and update (insertion and deletion) operations, which both cost O(logB n) block
transfers in the worst-case, with B and n representing the number of elements
in a disk block and the number of stored elements, respectively. The most heav-
ily used application is the efficient answering of one-dimensional range search
queries using O(logB n + r) block transfers, where R = rB is the number of
elements reported. In such a query, the elements in a range [z1, z2] can be found
by first searching the B-tree for z1 and then performing an in-order traversal
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in the tree from z1 to z2. These bounds hold for any cache-aware disk-access
model, that is, a model that accounts memory transfers in disk blocks, as these
transfers are the dominating operation w.r.t. time. In this paper, we consider one
of the most known and widely used such models, namely the two-level memory
hierarchy model introduced in [1]. In this model, the memory hierarchy consists
of an internal (main) memory and an arbitrarily large external memory (disk)
partitioned into blocks of size B. The data from the external to the main memory
and vice versa are transferred in blocks (one block at a time).

A vast number of variants of the B-tree have been proposed since its ap-
pearance — B+-trees [4] and B∗-trees [4, 11] are some representative examples;
see the excellent survey by Vitter [20] for an extended accounting of these and
other variants and their applications — in order to improve its performance in
practice for various applications, to make it parallel for use in multi-disk envi-
ronments [18], to tune it for concurrency and recovery purposes [19], to extend it
to cover other than the original field [6], etc. However, to the best of our knowl-
edge, the aforementioned search and update bounds of B-tree and its variants
remained untouched all these years. The same applies to the one-dimensional
range search query bound, although some variants (with B+-tree being the most
popular) offer a slightly different procedure, since the leaves are linked together
and hence allow for sequential access. Regarding the update operation, it should
be noted that it consists of three consecutive phases: a search phase (to locate
the element), a value-updating phase (to replace the element’s key with its new
value), and a rebalancing phase (to restore the B-tree structure). Excluding the
first phase (search operation), the dominating phase of an update operation is
the rebalancing one, since the value-updating phase takes typically O(1) block
transfers (and/or time). In the case of B-tree and its variants, the rebalancing
phase requires O(logB n) block transfers in the worst-case. This implies that the
update operation takes O(logB n) block transfers, even in the case where the
update position (block within which the update will take place) is given. Note
that there are certain applications (see e.g., [13]) which justify the exclusion of
the search phase in an update operation: once the requested element has been
found, then the next element to be searched is located “near by” and hence a
new search is redundant.

In this work, we present a new indexing scheme, called ISB-tree (Interpolation
Search B-tree), that supports search operations in O(logB log n) expected block
transfers with high probability (w.h.p.) for a large class of input distributions
(including both uniform and non-uniform classes) that are explained below, and
update operations in O(1) block transfers, provided that the update position is
given. The search bound implies that a one-dimensional range search query can
be supported in O(logB log n+r) expected block transfers w.h.p.. The worst-case
block transfers for the search operation in our indexing scheme are O(logB n).

To achieve our expected search bound we consider a rather general scenario of
µ-random insertions and random deletions, where µ is a so-called smooth proba-
bility density [2, 16]. An insertion is µ-random if the key to be inserted is drawn
randomly with density function µ; a deletion is random if every key present in
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the data structure is equally likely to be deleted (see [12]). Informally, a distri-
bution defined over an interval I is smooth if the probability density over any
subinterval of I does not exceed a specific bound, however small this subinterval
is (i.e., the distribution does not contain sharp peaks). Smooth distributions are
a superset of uniform, bounded, and several non-uniform distributions (e.g., the
class of regular distributions introduced by Willard [21]).

Our indexing scheme is a two-level data structure. The upper level is an
externalization of the static interpolation search tree presented in [9]. The lower
level is a forest of buckets, each of which is implemented by a new variant of
the classical B-tree, the Lazy B-tree, which is introduced in [10]. The lazy B-tree
supports a search operation in O(logB n) block transfers and an update operation
in O(1) block transfers, provided that the update position is given. However, a
straightforward combination of the above structures does not necessarily lead
to better bounds, since: (i) the number of elements within a bucket may grow
arbitrarily large, as insertions are performed; and (ii) we strive for creating a
robust indexing scheme, that is, a data structure that works correctly without
apriori knowledge of the particular smooth distribution µ. To overcome these
problems, we employ the combinatorial game of bins and balls introduced in
[9] that allows to upper bound the number of elements in a bucket, and to
approximate an unknown distribution by an almost uniform one.

To the best of our knowledge, this is the first work that uses the dynamic
interpolation search paradigm in the framework of indexing data in external
memory. External data structures related to our approach are those based on
hashing [11, 15, 20]. The main representatives of external memory hashing meth-
ods are: extendible hashing [5], linear hashing [14], and external perfect hashing
[7]. These hashing schemes and their variants need O(1) expected block transfers
for answering search queries, but they share various disadvantages when com-
pared to our structure: (i) they do not support range queries; (ii) their expected
case analysis usually assumes uniform input distributions (or input distributions
that produce uniform hash key values); and (iii) they exhibit poor worst case
performance.

The remainder of the paper is organized as follows. In Section 2, we discuss
preliminary notions and results that are used throughout the paper. The main
result of this paper, the ISB-tree, with the complexity analysis of its operations
is discussed in Section 3. Section 4 provides an experimental evaluation of our
theoretical findings. We conclude in Section 5. Due to space limitations the full
details of the paper can be found in [10].

2 Preliminaries

The B-tree is a Θ(B)-ary tree (with the root possibly having smaller degree)
built on top of Θ(n/B) leaves. The degree of internal nodes, as well as the
number of elements in a leaf, is typically kept in the range [B/2, B] such that
a node or leaf can be stored in one disk block. All leaves are on the same level
and the tree has height O(logB n). This guarantees that a search operation can
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be accomplished within O(logB n) block transfers. An insertion is performed
in O(logB n) block transfers by first searching down the tree for the relevant
leaf l. If there is room for the new element in l, then we simply store it there.
Otherwise, we split l into two leaves l′ and l′′ of approximately the same size
and insert the new element in the relevant leaf. The split of l results in the
insertion of a new routing element in the parent of l, and thus the split may
propagate up the tree. Propagation of splits can often be avoided by sharing
some of the (routing) elements of the full node with a non-full sibling. A new
(degree 2) root is produced when the root splits and the height of the tree grows
by one. Similarly, a deletion can be performed in O(logB n) block transfers by
first searching down the tree for the relevant leaf l and then removing the deleted
element. If this results in l containing too few elements, then we either fuse it
with one of its siblings (corresponding to deleting l and inserting its elements in
a sibling), or we perform a share operation by moving elements from a sibling to
l. Fuse operations may also propagate up the tree and eventually result in the
height of the tree decreasing by one.

One of the first works, in the context of internal memory data structures,
that investigated non-uniform distributions regarding insertions in an update
sequence was that of Willard [21], who introduced the so-called regular distrib-
utions. A probability density µ is regular if there are constants b1, b2, b3, b4 such
that µ(x) = 0 for x < b1 or x > b2, and µ(x) ≥ b3 > 0 and |µ′(x)| ≤ b4 for
b1 ≤ x ≤ b2. This has been further pursued by Mehlhorn and Tsakalidis [16],
who introduced the smooth input distributions, a notion that was further gen-
eralized and refined in [2]. Given two functions f1 and f2, a density function
µ = µ[a, b](x) is (f1, f2)-smooth [2] if there exists a constant β, such that for all
c1, c2, c3, a ≤ c1 < c2 < c3 ≤ b, and all integers n, it holds that

∫ c2

c2− c3−c1
f1(n)

µ[c1, c3](x)dx ≤ β · f2(n)
n

where µ[c1, c3](x) = 0 for x < c1 or x > c3, and µ[c1, c3](x) = µ(x)/p for
c1 ≤ x ≤ c3 where p =

∫ c3

c1
µ(x)dx. Intuitively, function f1 partitions an arbitrary

subinterval [c1, c3] ⊆ [a, b] into f1 equal parts, each of length c3−c1
f1

= O( 1
f1

); that
is, f1 measures how fine is the partitioning of an arbitrary subinterval. Function
f2 guarantees that no part, of the f1 possible, gets more probability mass than
β·f2

n ; that is, f2 measures the sparseness of any subinterval [c2 − c3−c1
f1

, c2] ⊆
[c1, c3]. The class of (f1, f2)-smooth distributions (for appropriate choices of f1
and f2) is a superset of both regular and uniform classes of distributions, as well
as of several non-uniform classes [2, 9]. Actually, any probability distribution is
(f1, Θ(n))-smooth, for a suitable choice of β.

The static interpolation search tree [9] is a static, explicit, and refined version
of the search trees used in [2, 16]. A static interpolation search tree containing n
elements can be fully characterized by three nondecreasing functions H(n), R(n)
and I(n), where H(n) denotes the height of the tree, R(n) denotes the out-degree
of the root, and I(n) denotes how fine is the partition of the set of elements and
is defined by I(n) = n · g(H(n)), where g(n) should satisfy

∑∞
i=1 g(i) = Θ(1).
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To guarantee the height of H(n), it should hold that n/R(n) = H−1(H(n) − 1).
The children of the root have n′ = Θ(n/R(n)) leaves. Their height will be
H(n′) = H(n)−1, their out-degree is R(n′) = Θ(H−1(H(n)−1)/H−1(H(n)−2)),
and I(n′) = n′ · g(H(n′)). In general, consider an internal node v at depth i and
assume that ni leaves are stored in the subtree rooted at v. Then we have that
R(ni) = Θ(H−1(H(n)−i+1)/H−1(H(n)−i)), and I(ni) = ni ·g(H(n)−i). The
node v is associated with an array REP[1..R(ni)] of sample elements, one sample
element for each of its subtrees, and an ID[1..I(ni)] array that stores a set of
sample elements approximating the inverse distribution function. By using the
ID array, we can interpolate the REP array to determine the subtree in which
the search procedure will continue. In particular, the ID array for node v is an
array ID[1..m], where m = I(ni), with ID[i] = j iff REP[j] < � + i(u − �)/m ≤
REP[j + 1], where � and u are the minimum and the maximum element, resp.,
stored in the subtree rooted at v. Let x be the element we seek. To interpolate
REP, compute the index j = ID[�(m(x− �)/(u− �))�], and then search the REP
array from REP[j +1] until the appropriate subtree is located. For each node we
explicitly maintain parent and child pointers. The required pointer information
can be easily incorporated in the construction of the static interpolation search
tree. Throughout the paper, we say that an event E occurs with high probability
if Pr[E] = 1 − o(1).

3 The ISB-Tree

The ISB-tree is a two-level data structure. The lower level is a set of buckets
each of which contains a subset of the stored elements and is represented by a
unique representative. The representatives of the buckets are stored in the upper
level structure.

The upper level data structure is an external version of the static interpolation
search tree (SIST) described in [9] (see also Section 2), with parameters R(s) =
sδ, I(s) = s/(log log s)1+ε, where ε > 0, δ = 1 − 1

B , and s is the number of
stored elements in the tree. The specific choice of δ guarantees the desirable
O(logB log s) height of the upper level structure. For each node that stores more
than B1+ 1

B−1 elements in its subtree, we represent its REP and ID arrays as
static external sorted arrays; otherwise, we store all the elements in a constant
number of disk blocks. In particular, let v be a node and nv be the number of
stored elements in its subtree, with nv ≥ B1+ 1

B−1 . Node v is associated with
two external arrays EREPv and EIDv that represent the REPv and IDv arrays
of the original SIST structure. The EIDv array uses O( I(nv)

B ) contiguous blocks,
the EREPv array uses O(R(nv)

B ) contiguous blocks, while an arbitrary element of
the arrays can be accessed with O(1) block transfers, given its index. Moreover,
the choice of the parameter B1+ 1

B−1 guarantees that each of the EREPv and
EIDv arrays contains at least B elements, and hence we do not waste space (in
terms of underfull blocks) in the external memory representation.

On the other hand, the lower level is a set of ρ buckets. Let S0 be the set
of elements to be stored where the elements take values in [a, b]. Each bucket
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Bi, 1 ≤ i ≤ ρ, stores a subset of elements and is represented by the element
rep(i) = max{x : x ∈ Bi}. The set of elements stored in the buckets constitute
an ordered collection B1, . . . , Bρ such that max{x : x ∈ Bi} < min{y : y ∈ Bi+1}
for all 1 ≤ i < ρ − 1. In other words, Bi = {x : x ∈ (rep(i − 1), rep(i)]}, for
2 ≤ i ≤ ρ, and B1 = {x : x ∈ [rep(0), rep(1)]}, where rep(0) = a and rep(ρ) = b.

The elements of each Bi are stored in a Lazy B-tree, which is a new variant
of the classical B-tree. Due to space limitations, the details of the Lazy B-tree
are discussed in the extended version of the paper [10]. The following theorem
summarizes the properties of a Lazy B-tree.

Theorem 1. A Lazy B-Tree supports search operations with O(logB n) worst-
case block transfers and update operations with O(1) worst-case block transfers,
provided that the update position is given.

The ISB-tree is maintained by incrementally performing global reconstruc-
tions [17]. Let S0 be the set of stored elements at the latest reconstruction, and
assume that S0 = {x1, . . . , xn0} in sorted order. The reconstruction is performed
as follows. We partition S0 into two sets S1 and S2, where S1 = {xi·ln n0 : i =
1, . . . , n0

ln n0
− 1} ∪ {b}, and S2 = S0 − S1. The i-th element of S1 is the repre-

sentative rep(i) of the i-th bucket Bi, where 1 ≤ i ≤ ρ and ρ = |S1| = n0
ln n0

.
The representatives rep(i), 1 ≤ i ≤ ρ, are stored in the external SIST (note
that there is no need to store rep(0)). An element x ∈ S2 is stored in Bi, iff
rep(i−1) < x ≤ rep(i), for i ∈ {2, . . . , n0

ln n0
}; otherwise (x ≤ rep(1)), x is stored

in B1. The same condition holds for every new element inserted in the structure.
In order to insert/delete an element, given the position (block) of the update,
we simply have to insert/delete the element to/from the Lazy B-tree storing the
elements of the corresponding bucket. Each time the number of updates exceeds
cn0, where c is a predefined constant, the whole data structure is reconstructed.
Let n be the number of stored elements at this time. After the reconstruction,
the number of buckets is equal to � n

lnn	.
The search procedure for locating a query element x can be decomposed into

two phases: (i) the traversal of internal nodes of the external SIST locating a
bucket Bi, and (ii) the search for x in the Lazy B-tree storing the elements of
Bi. Phase (i) starts from the root of the external SIST. It checks the external
arrays on the root and by interpolating it decides into which child the search
procedure will continue. More specifically, let v be a node in the search path for
query element x, nv be the number of leaves in its subtree, and let lv and uv

be the minimum and the maximum element, resp., stored in the subtree rooted
at v. As we have already mentioned, node v is associated with two external
arrays EREPv and EIDv that implement the REPv and IDv arrays of the SIST
definition. To interpolate, we compute the value i = � x−lv

uv−lv
R(nv)� and find

the index j = EIDv[i], by retrieving the � i
B 	-th block of the EIDv array. We

then scan the blocks of the EREPv array, starting from its � j
B 	-th block, until

locating an index l such that EREPv[l] ≤ x < EREPv[l + 1]. If the l-th son of v
is not a bucket, then we continue recursively in the same manner in the l-th son
of v, until we locate the representative of a bucket Bi. In this case, the search



324 A. Kaporis et al.

procedure is concluded by entering phase (ii) and by searching further in the
Lazy B-tree of the bucket Bi.

In the following, we will analyze the bounds of the search and update opera-
tions. Our result holds for the very broad class of (n/(log log n)1+ε, n1−δ)-smooth
densities, where δ = 1− 1

B and includes the uniform, regular, bounded as well as
several non-uniform distributions [2, 9], and is stated by the following theorem.

Theorem 2. Suppose that the upper level of the ISB-tree is an external static
interpolation search tree with parameters R(s0) = sδ

0, I(s0) = s0/(log log s0)1+ε,
where ε > 0, δ = 1 − 1

B , s0 = n0
ln n0

and n0 is the number of elements in the
latest reconstruction, and that the lower level is implemented as a forest of Lazy
B-trees. Then, the ISB-tree supports search operations in O(logB log n) expected
block transfers with high probability, where n denotes the current number of el-
ements, and update operations in O(1) worst-case block transfers, if the update
position is given. The worst-case update bound is O(logB n) block transfers, and
the structure occupies O(n/B) blocks.

Proof. (sketch) As we have already mentioned, the search operation in the ISB-
tree can be decomposed into two basic steps: (i) the traversal of internal nodes
of the external SIST, and (ii) the search for x in the Lazy B-tree in the bucket
that we located from step (i).

We can prove (in a way similar to that in the proof of [9–Theorem 1]) that
the expected number of block transfers for step (i) is O(h) w.h.p, where h is the
height of the external SIST. The main point of the proof is that the expected
number of blocks in the EREPv array, which we need to linearly scan when
interpolating at a node v, is O(1) w.h.p. Since in our case, the height of the
tree is h = O(logB log s0), where s0 is the number of stored elements at the
latest reconstruction and s0 = O(n), we get that the expected number of block
transfers for step (i) is O(logB log n) w.h.p.

Regarding the complexity of step (ii), we can use the same combinatorial
game of balls and bins introduced in [9] and prove (similarly to [9–Theorem 6])
that w.h.p. the expected number of elements in each bucket is O(log n), when
elements are µ-randomly inserted and randomly deleted, and µ is an unknown
smooth probability density. Since we store the elements of each bucket in a
lazy B-tree, we get from Theorem 1 that the block transfers of step (ii) are
also O(logB log n). Consequently, the total expected complexity of the search
procedure is bounded by O(logB log n) block transfers w.h.p.

Let us now consider the update bound. Between reconstructions the block
transfers for an update are clearly O(1), since we only have to update the appro-
priate Lazy B-tree which can be done in O(1) block transfers (cf. Theorem 1).
The reconstructions can be easily handled by using the technique of global re-
building [13]. With this technique the linear work spent during a global recon-
struction of the upper level structure may be spread out on the updates in such
a way that a rebuilding cost of O(1) block transfers is spent at each update.

Finally, the worst-case search complexity of O(logB n) block transfers can
be achieved by using two data structures, an ISB-tree and a Lazy B-Tree, and
hence storing each element twice. A search for a query element is performed
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by searching simultaneously both structures and terminating the search when
locating for the first time the sought element. The worst-case update and space
complexity remain asymptotically unaffected and so the theorem is proven. 
�

4 Experimental Evaluation

In this section, we investigate the practical merits of the ISB-tree. We have con-
ducted an experimental study making the customary assumption that the page
size is 4096 bytes, the length of each key is 8 bytes, and the length of each pointer
is 4 bytes. Consequently, each block contains B = 341 elements. We considered
data sets of size n0 ∈ [106, 1012] elements generated by a variety of smooth dis-
tributions, namely uniform, regular, normal and Gaussian. We compared the
implementation of the ISB-tree with that of a B-tree on the same data sets (im-
plementations were carried out in C++). Our main concern was to measure the
performance, in simulated block transfers (I/Os), of the search and update op-
erations. The experimental results regarding the search operations are reported
in Fig. 1. The sequence σ of search operations had length equal to its corre-
sponding data set and the reported values are averages over the whole sequence.
Our experiments revealed that the expected number of block transfers in the
ISB-tree remains constant even for gigantic data sets (Terabytes - TB). More-
over, for data sets larger than 100 GB, the expected number of block transfers
is reduced by a factor ranging from 1/3 (for normal and Gaussian distributions)
to 1/2 (for uniform and regular distributions) compared with the B-tree. This
behaviour is justified by the time complexity of the search operation and by the
fact that for data sets up to 1 TB and block size of 341 elements, the ISB-tree is
a two level structure, where the first level (SIST structure) consists of only one
node equipped with the appropriate EID and EREP arrays, while the second
level (lazy B-tree) consists of only one block of elements. Thus, we need 2 block
transfers in the first level (one for each array) and 1 block transfer in the second
level. Our experiments also show that for uniform and regular distributions, the
position of EREP array (which has been located by its corresponding entry in
EID) points in almost all cases to the correct subset within which the search
has to be continued in the second level. For the case of normal and Gaussian
distributions, we often had to move to the immediately next block and this adds
one additional block transfer to the search operation. Naturally, for small data
sets (smaller than 10 MB), our data structure becomes less efficient than B-trees,
due to the overhead of the two-level structure.

As a final remark, we note that there are applications with uniform key sizes
larger than 8 bytes, resulting in a smaller value of B. The main example of such
applications involve manipulation of strings. In this case, the size of the block
may be as small as 2. Consequently, we expect that in such cases the ISB-tree
will have a much better performance.

Regarding the number of block transfers required for rebalancing after an
update operation to the data structure, we again considered the above values
of n0 ∈ [106, 1012] for our initial data sets upon which we performed update
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Fig. 1. Search performance for uniform and regular distributions (upper left) and nor-
mal and Gaussian distributions (upper right). Block transfers of rebalancing operations
after an update (bottom).

sequences of length n0/2 and 2n0. The data structure is reconstructed every
n0 operations (i.e., we chose c = 1). Our experimental results are reported in
Fig. 1. The values represent averages over the smaller update sequence (where no
reconstruction occurs) and the larger one (where a reconstruction indeed occurs).
We have observed that both numbers of rebalancing operations are independent
of the distribution.

5 Conclusions

We presented a new indexing scheme, the ISB-tree, that supports update oper-
ations in O(1) worst-case block transfers and search operations in O(logB log n)
expected block transfers w.h.p. for a large class of input distributions. The ISB-
tree is innovative in the sense that it shoots down for the first time the optimal
O(logB n) block transfer bound of B-tree and its variants when the updates are
drawn from a large class of input distributions. Its analysis is based on the tra-
ditional I/O model of [1], but we feel that it can also be implemented in the
cache-oblivious model [8] with the same complexities.
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