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Abstract. We study here the effect of concurrent greedy moves of players in atomic congestion games
where n selfish agents (players) wish to select a resource each (out of m resources) so that her selfish
delay there is not much. Such games usually admit a global potential that decreases by sequential and
selfishly improving moves. However, concurrent moves may not always lead to global convergence. On the
other hand, concurrent play is desirable because it might essentially improve the system convergence time
to some balanced state. The problem of “maintaining” global progress while allowing concurrent play is
exactly what is examined and answered here. We examine two orthogonal settings : (i) A game where the
players decide their moves without global information, each acting “freely” by sampling resources randomly
and locally deciding to migrate (if the new resource is better) via a random experiment. Here, the resources
can have quite arbitrary latency that is load dependent. (ii) An “organised” setting where the players are pre-
partitioned into selfish groups (coalitions) and where each coalition does an improving coalitional move.
Here the concurrency is among the members of the coalition. In this second setting, the resources have
latency functions that are only linearly dependent on the load, since this is the only case so far where a
global potential exists.
In both cases (i), (ii) we show that the system converges to an “approximate” equilibrium very fast (in
logarithmic rounds where the logarithm is taken on the maximum value of the global potential). This is
interesting, since two quite orthogonal settings lead to the same result. Our work considers concurrent selfish
play for arbitrary latencies for the first time. Also, this is the first time where fast coalitional convergence
to an approximate equilibrium is shown. All our results refer to atomic games (ie players are finite and
distinct).
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1 Introduction

Congestion games (CG) provide a natural model for non-cooperative resource allocation and have
been the subject of intensive research in algorithmic game theory. A congestion game is a non-
cooperative game where selfish players compete over a set of resources. The players’ strategies are
subsets of resources. The cost of each player from selecting a particular resource is given by a non-
negative and non-decreasing latency function of the load (or congestion) of the resource. The indi-
vidual cost of a player is equal to the total cost for the resources in her strategy. A natural solution
concept is that of a pure Nash equilibrium (NE), a state where no player can decrease his individ-
ual cost by unilaterally changing his strategy. In a classical paper, Rosenthal [32] showed that pure
Nash equilibria on atomic congestion games correspond to local minima of a natural potential func-
tion. Twenty years later, Monderer and Shapley [29] proved that congestion games are equivalent to
potential games. Many recent contributions have provided considerable insight into the structure and
efficiency (e.g. [16, 2, 8, 18]) and tractability [13, 1] of NE in congestion games.

Given the non-cooperative nature of congestion games, a natural question is whether the players
trying to improve their cost converge to a pure NE in a reasonable number of steps. The potential
function of Rosenthal [32] decreases every time a single player changes her strategy and improves her
individual cost. Hence every sequence of improving moves will eventually converge to a pure Nash
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equilibrium. However, this may require an exponential number of steps, since computing a pure Nash
equilibrium of a congestion game is PLS-complete [13].

Nevertheless, there are many interesting classes of congestion games for which a pure Nash equi-
librium can be computed in polynomial time. For example, a pure Nash equilibrium of a symmetric
network atomic congestion game can be found by a min-cost flow computation [13]. Even better,
for singleton CG (aka CG on parallel links), for CG with independent resources, and for matroid
CG, every sequence of improving moves reaches a pure Nash equilbrium in a polynomial number
of steps [22, 1]. An alternative approach to circumvent the PLS-completeness of computing a pure
Nash equilibrium is to seek an approximate NE (formally, an ε-NE), where no player can improve her
cost by a factor more than ε by unilaterally changing her strategy. [7] considers symmetric congestion
games with a weak restriction on latency functions and proves that several natural families of ε-moves
converge to an ε-NE in time polynomial in n and ε−1.

However, every family of sequential moves takes Ω(n) steps in the worst case to reach an (ap-
proximate) NE and its implementation requires central coordination among the players. In the view of
the facts that the number of players is usually quite large and that central coordination between them
is difficult to achieve, a natural question is whether concurrent play can accelerate the convergence
to an approximate pure Nash equilibrium. In this work, we investigate the effect of concurrent moves
on the rate of convergence to approximate pure Nash equilibria. Our main results concern two natural
(and essentially orthogonal) settings where the rate of convergence is quite fast and mostly determined
by the logarithm of the initial potential value.

1.1 Singleton Games with Myopic Players.

Related Work and Motivation. The Elementary Step System hypothesis, under which at most one
user performs an improving move in each round, greatly facilitates the analysis of [9, 11, 18, 19, 26,
27, 30]. However, a significant drawback of playing sequentially is that it requires Ω(n) rounds in
the worst-case until n users reach a NE, not to mention the negative result [13] that holds on an
atomic setting. Also, central control is imposed on moves. This is not an appealing scenario to modern
networking, where simple decentralized distributed protocols can reflect better the essence of net’s
liberal nature. Furthermore, classical proofs of sequential convergence are based on assumptions of
unbounded rationality and global knowledge. In real-world networks it is unrealistic to assume any
player capable of monitoring the entire network per round. But even if a user can grasp the whole
picture, it is computationally demanding to decide her best move.

All the above manifest the importance of distributed protocols that allow an arbitrary number of
users to reroute per round, on the basis of selfish migration criteria. It is important that migration rules
are simple and myopic, while strong enough for the players to quickly reach (learn) a stable state.
Here, terms “simple” and “myopic” mean that any selfish decision is taken by easy computations
based on local info only, that is, the decision does not rely on global or expensive information about
the overall current state of resources.

This is an Evolutionary Game Theory [33] perspective, which studies conditions under which a
population of agents may (or may not) reach stable states. In this setting, the main concern is on study-
ing the replicator-dynamics, that is to model the way that users revise their strategies throughout the
process. Each user may revise her strategy by performing action sampling (a new resource is drawn)
or migration (a move to a new resource). Sampling is further categorized as uniform (all resources are
equally likely) or proportional (each resource is selected with probability proportional to a parameter
related to it, usually, but not restricted to, the number of users on it). Uniform sampling is the cheapest
way of searching the available resources. However, it typically results to slow convergence time, since
it does not amplify highly appealing resources. On the contrary, proportional sampling, highly boosts
the speed of the process, since it injects vast amounts of users into most appealing resources at hand.
A word of caution, however, is that if the only sampling available is proportional to the number of
users per resource, then the process becomes trapped only to the loaded resources up to now. A way
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out is to shift at an appropriate rate to uniform sampling, capable of exploring even currently empty
resources.

At this point we should stress that, unlike sequential moves, the lack of global info and the fact that
costs over resources may increase unboundedly on demand, it is possible that concurrent migrations
oscillate the game eternally away from NE. Intuitively, while user i finds appealing a given resource
e, simultaneously many other users may opt for e, increasing e’s latency in a cost that ruins the profit
of user i. This is a major difficulty on proving concurrent convergence. Such bad oscillation effects
are known to Network and Telecommunications Community [23, 25, 31].

Let us first focus to the discrete concurrent setting. The work in [12] considers n players concur-
rently sample for a better link amongst m parallel links per round (singleton CG). Link j has linear
latency sjxj , where xj is the number of players and sj is the constant speed of the link j. This is
the KP model [24]. This migration protocol, although concurrent, is not completely decentralized,
since it uses global info in order to allow only proper subsets of users to migrate. More precisely, on
parallel, only users with latency exceeding the overall average link latency Lt at round t are allowed
with an appropriate probability to sample for a new link j. We stress here that, for the case of multiple
different links, this sampling for a link j is proportional to dt(j) = nt(j) − sjLt, where nt(j) is
the number of users on link j. Once more, this type of proportional sampling exposes global info to
amplify favorable links, in contrast to the myopic scenario of sampling a random user, which in turn
amplifies links proportionally to their load. All in all, these criteria highly boost the convergence time,
requiring expectedly O(log log n + log m) rounds. On an experimental view, the work in [20] was
prior to [12], were a series of similar concurrent protocols were validated.

In [4] it was given the analysis of a concurrent protocol on identical links and players. Notice here
that the parallel links are identical, while the ones in [12] were related, but the important aspect of
the analysis in [4] is that no global information was given to the migrants. On parallel during round t,
each user b on resource ib with load Xib(t) selects a random resource jb and if Xib(t) > Xjb

(t) then b
migrates to jb with probability 1−Xjb

(t)/Xib(t). Despite that users perform only uniform sampling,
this protocol quickly reaches an ε-NE in O(log log n), or an exact NE in O(log log n + m4) rounds,
in expectation.

The reason that proportional sampling turns out to be not so crucial here, is the fact that all links
are identical, so there is no need to inject many users to any particular speedy link. Thus, an impor-
tant question is to what extent such myopic distributed protocols can cope with links that have large
discrepancies amongst their latency functions.

Finally, we focus on the continuous concurrent setting. Powerful concurrent protocols have been
analyzed in a continuous setting with respect to the Wardrop model (nonatomic flows) on general k
commodities nets. The fact that each agent controls an infinitesimal amount of flow facilitates the
analysis, since any concurrent migration of a lower order population of players causes almost no
oscillation effect. However, a great difficulty that in turn arises here, is when a significant order of the
population concurrently migrates. A series of important papers [5, 14] provide strong intuition on this
subject. More precisely [14] shows the significance of the relative slope parameter d for the replicator
dynamics to eventually converge to a stable state. Intuitively, a latency function ` has relative slope
d if x`′(x) ≤ d`(x). Thus, parameter d is a peak-measure of ` and convergence can not occur if a
link latency grows arbitrarily large with respect to flow fluctuations on it. The replication dynamics
studied in [14] employs both uniform and proportional sampling. On parallel each user on path P in
commodity i, either with probability β selects a uniformly random path Q in i, or with probability
1− β selects a path Q with probability proportional to its flow fQ. Then, if `Q < `P user migrates to
sampled Q with probability `P−`Q

d(`P +α) , where parameter α is arbitrary. However, probability β is rather
cumbersome to tune, since it uses extensive information that concerns all latency functions and their
corresponding first derivatives: β ≤ minP∈P `P (0)+α

L maxe∈E maxx∈[0,β] `′e(x) .
While the work in [14] studies specific replication policies designated to yield fast convergence,

in [5] it was shown a more general result. It stated that as along as all players concurrently employ
arbitrary no-regret policies, they will eventually achieve convergence. Quoting from [5]: “any no-
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regret algorithm have the property that in any online, repeated game setting, their average loss per
time step approaches that of the best fixed strategy in hindsight (or better) over time”.

The work in [28, 15] remove the assumption of perfect information. In the sense that decisions are
taken on the basis of a bulletin board which does not depict the most “fresh” state. If the info depicted
on this board is too old and not regularly updated then oscillations occur. The analysis tunes the rate of
updating the bulletin for the system eventually to convergence, see also [6, 10, 3]. More precisely, in
[15] an arbitrary k commodity network is given with edge latency functions. Each user, independently
and according to a Poisson distribution decides to revise its current strategy either performing uniform
or proportional sampling with appropriate probabilities. This was an important simplification of the
classical assumptions that up to now were used for proving convergence. However, the assumption of
a bulletin board, implicitly makes use of global info for important characteristics of the system. Such
info usually is unavailable on large scale networks as Internet. The main differences from [28] are the
following. In [28] an infinite number jobs are assigned to an infinite number of machines, while their
ratio remains constant. In [15] the resources are finite while the users are infinite. Also, in [28] agents
exit from the system as soon as they allocate their jobs.

Contribution. Our motivation is to investigate the advantages and the limitations of a simple dis-
tributed protocol for congestion games on parallel links under very general assumptions on the latency
functions. Hence we adopt a model of distributed computation allowing a limited amount of global
knowledge, where in parallel every player can only select a link uniformly at random in each round
and check its current latency. Migration decisions must be made concurrently on the basis only of the
current latency of the resource (departure-link) to which a player is assigned and the current latency
of the resource to which the player is about to move (destination-link). Thus, our replicator dynam-
ics are based solely on local information. Migration decisions take advantage of local coordination
amongst the players currently assigned to the same link, since at most one player is allowed to depart
per link. The only global information about the latency functions is that they have a bounded slope.
More precisely, we only assume that the latency functions satisfy the α-bounded jump condition (as
in [7]).

Our notion of approximate pure Nash equilibrium, see Definition 2, is dictated by the very limited
information that our model extracts, and is a bit different from similar approximate notions considered
in previous work [7, 12] in an atomic setting, while it is close in nature to the stable state defined in
[14, Def. 4] for the Wardrop model. An almost-Nash equilibrium is a state where at most o(m) links
have latency either considerably larger or considerably smaller than the current average latency. This
definition relaxes the notion of exact pure NE and introduces a meaningful notion of approximate
(bicriteria) NE for our fully myopic model of migration described above. In particular, an almost-
NE guarantees that unless a player uses an overloaded link (i.e. a link with latency considerably
larger than the average latency), the probability that she finds (by uniform sampling) a link to migrate
and significantly improve her latency is at most o(1). Furthermore, it is unlikely that the almost-
NE reached by our protocol assigns any number of players to overloaded links (even though this
possibility is allowed by the definition of an almost-NE). As it will become clear from the analysis,
the reason that users do not accumulate on overloaded links, is that the number of players on such
links is a strong super-martingale. In addition, by the fact that any bin initially has O(log n) load we
get that in O(log n) rounds the overloaded bins will drain from users.

We present a simple oblivious protocol for this restricted model of distributed computation. Ac-
cording to our myopic protocol, in parallel each player selects a link uniformly at random in each
round and checks whether she can significantly decrease her latency by moving to the chosen link. If
this is the case, the player becomes a potential migrant. The protocol uses a simple local probabilistic
rule that selects at most one (this is a local decision amongst users on the same link) potential migrant
to defect from each link. We prove that if the number of players is Θ(m), the protocol reaches an
almost-NE in O(log(Φ0/Φ∗)) time, where Φ0 is Rosental’s potential value as the game starts and Φ∗
is the corresponding value at a NE. The proof of convergence is technically involved and interesting
and comprises the main technical merit of this work.
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Our result significantly extends the results in [4, 12] in the sense that (i) we consider arbitrary and
unknown latency functions subject only to the α-bounded jump condition [7, Section 2], (ii) it requires
no other global info. Also, the strategy space of player i may be extended to all subsets of resources of
cardinality ki such that

∑
i ki = O(m), see also independent resource CG [22]. An interesting issue

for further research is to extend its power by proportional sampling with respect to parameters that
will favor its speed.

1.2 Congestion Games with Coalitions
In many practical situations however, the competition for resources takes place among coalitions of
players instead of individuals. For a typical example, one may consider a telecommunication network
where antagonistic service providers seek to minimize their operational costs while meeting their
customers’ demands. In this and many other natural examples, the number of coalitions (e.g. service
providers) is rather small and essentially independent of the number of players (e.g. users). In addition,
the coalitions can be regarded as having a quite accurate picture of the current state of the game and
moving greedily and sequentially.

In such settings, it is important to know how the competition among coalitions affects the rate
of convergence to an (approximate) pure Nash equilibrium. Motivated by similar considerations, [21,
17] proposed congestion games with coalitions as a natural model for investigating the effects of
non-cooperative resource allocation among static coalitions. In congestion games with coalitions, the
coalitions are static and the selfish cost of each coalition is the total delay of its players. [21] mostly
considers congestion games on parallel links with identical users and convex delays. For this class of
games, [21] establishes the existence and tractability of pure NE, presents examples where coalition
formation deteriorates the efficiency of NE, and bounds the efficiency loss due to coalition formation.
[17] presents a potential function for linear congestion games with coalitions.

Contribution. In this setting, we present an upper bound on the rate of convergence to approximate
pure Nash equiliria in single-commodity linear congestion games with static coalitions. The restriction
to linear latencies is necessary because this is the only class of latency functions for which congestion
games with static coalitions is known to admit a potential function and a pure Nash equilibrium. We
consider ε-moves, i.e. deviations that improve the coalition’s total delay by a factor more than ε.
Combining the approach of [7] with the potential function of [17, Theorem 6], we show that if the
coalition with the largest improvement moves in every round, an approximate NE is reached in a small
number of steps.

More precisely, we prove that for any initial configuration s0, every sequence of largest improve-
ment ε-moves reaches an approximate NE in at most kr(r+1)

ε(1−ε) log Φ(s0) steps, where k is the number
of coalitions, r =

⌈
maxj∈[k]{nj}/minj∈[k]{nj}

⌉
denotes the ratio between the size of the largest

coalition and the size of the smallest coalition, and Φ(s0) is the initial potential. This bound holds
even for coalitions of different size, in which case the game is not symmetric. Since the recent results
of [7] hold for symmetric games only, this is the first non-trivial upper bound on the convergence rate
to approximate NE for a natural class of asymmetric congestion games.

This bound implies that in network congestion games, where a coalition’s best response can be
computed in polynomial times by a min-cost flow computation [13, Theorem 2], an ε-Nash equilib-
rium can be computed in polynomial time. Moreover, in the special case that the number of coalitions
is constant and the coalitions are almost equisized (i.e. k = Θ(1) and r = Θ(1)), the number of
ε-moves to reach an approximate NE is logarithmic in the initial potential.

2 Concurrent atomic congestion games

2.1 Model & target.
Model. There is a finite set of players {1, . . . , n} and a set of edges (or resources) E = {e1, . . . , em}.
The strategy space Si of player i is E. It is assumed that n = O(m). The game consists of a sequence
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of rounds t = 0, . . . , t∗. It starts at round t = 0, where each player i selects myopically recourse
si(0) ∈ Si. In each subsequent round t = 1, . . . , t∗, concurrently and independently, each player
updates his current strategy si(t) to si(t+1) according to the simple, oblivious and distributed protocol
Greedy presented in Section 2.2. That is, at round t the state s(t) = 〈s1(t), . . . , sn(t)〉 ∈ S1× . . .×
Sn of the game is a combination of strategies over players. The number fe(t) of players on edge e ∈ E
is fe(t) = |{j : e ∈ sj(t)}|. Edge e has a latency `e(fe(t)) measuring the common delay of players
on it at state s(t). The cost ci(t) of player i equals the sum of latencies of all edges belonging in his
current strategy si(t), that is ci(t) =

∑
e∈si(t)

`e(fe(t)) and let c(t) = 1
n

∑
i ci(t). Let the average

delay of the resources be `(t) = 1
|E|

∑
e∈E `e(fe(t)) = 1

m

∑
e∈E `e(fe(t)). Consider the value of

Rosenthal’s potential Φ(t) =
∑

e∈E

∑fe(t)
x=1 `e(x), and let Φ(t) = Φ(t)

n . Clearly, if per round t only
one player, say i, changes strategy si(t) to si(t + 1), while the rest players remain fixed to their
strategies: ∀j 6= i, sj(t) = sj(t + 1), then the profit ci(t) − ci(t + 1) of player i equals the potential
drop Φ(t)−Φ(t + 1). This unilaterally strategy-changing sequential process will eventually converge
at round t∗ to a local minimum of Φ(·).

Now, suppose that more that one players are allowed to migrate concurrently per round. Then,
the process in not guaranteed to convergence towards to a Nash equilibrium. To see this, let player i
sample an appealing strategy with a priori cost smaller than his cost ci(t) at hand. “A priori” means
that the sampled cost is measured given that all other players do not change their strategies at hand.
However, the actual or a posteriori cost ci(t + 1) of i, i.e., when measured afterwards all concurrent
player migrations have taken place, may turn out to be even higher than i’s old cost ci(t). This may
oscillate Φ(t + 1) to a higher value than Φ(t). Such oscillations become more severe if the latency
functions are arbitrary. We assume no latency-info other than the α-bounded jump condition:

Definition 1. [7] Edge e satisfies the α-bounded jump condition if `e(fe(t)+1) ≤ α`e(fe(t)), ∀t ≥ 0.

Here α is a positive constant, α > 1, which contain a rich family of latencies, including polynomial
ones. Lemma 1 is the main tool for handling probabilistically Rosenthal’s potential and show fast
convergence in expectation.

Our main result is that, despite its simplicity, Greedy in Section 2.2 does remarkably fast:

Theorem 1. Greedy reaches an almost-NE in an expected number of 2
⌈
p−1 ln(2Φmax/Φmin)

⌉
rounds.

Theorem 1 follows easily (see Appendix A.1) from Theorem 2, see in turn its proof plan in Section
2.3. Here Φmax, (Φmin) denote the initial (final) value of the potential (value of the potential at an
exact NE). Also p = Θ(1) is defined in Theorem 2. Our bicriterial equilibria (see [14, Def. 4]) follow.

Definition 2. An almost-NE is a state where o(m) edges have latency > α`(t) and ∀ε > 0, 6 ∃S ⊆
E : |S| ≥ εm with edges in S of latency < 1

αS
`(t), where αS is the jump-parameter with respect to

edges in S.

Taking into account the very limited info that our protocol extracts per round, our analysis suggests
that an almost-NE of this kind is a meaningful notion of a stable state that can be reached quickly. In
particular, the almost-NE reached by our protocol is a relaxation of an exact NE where the probability
that a significant number of players can find (by uniform sampling) links to migrate and significantly
improve their cost is small.

More precisely, in an exact NE, no link has latency greater than α`(t) and no link with positive
load has latency less than `(t)/α, while the definition of an almost-NE imposes the same requirements
on all but o(m) links. Hence the notion of an almost-NE is a relaxation of the notion of an exact NE.
In addition, a player not assigned to an overloaded link (i.e. a link with latency greater than α`(t)) can
significantly decrease her cost (i.e. by a factor greater than α2) only if she samples an underloaded
link (i.e. a link with latency less than `(t)/α). Therefore, in an almost-NE, the probability that a player
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not assigned to an overloaded link samples a link where she can migrate and significantly decrease
her cost is o(1). Furthermore, it is unlikely that the almost-NE reached by our protocol assigns a large
number of players to overloaded links4.

The idea on proving our main Theorem 1 is to show that each round which is not an almost-NE
induces a potential drop of order of potential’s current value and therefore at most logarithmical many
rounds suffice. This is proved in our key Theorem 2.

Theorem 2. If round t is not an almost-NE then IE[Φ(t + 1)] ≤ (1 − p)IE[Φ(t)], with p bounded
bellow by a positive constant.

The proof plan of this theorem is presented in Section 2.3. Its proof will be given in Section 2.7 which
combines results proved in Section 2.4, 2.5 and 2.6.

2.2 Concurrent protocol Greedy

Initialization: Each player i ∈ {1, . . . , n} selects one random resource e ∈ {1, . . . ,m}.

During round t, do in parallel ∀e ∈ E:

1. Select 1 player i from e at random.
2. Let player i sample for a destination edge e′ u.a.r. over E.
3. If `e′(fe′(t))(α + δϑ) < `e(fe(t)) then allow player i migrate to e′ with probability ϑ = Ω(1).

Note: For constants ϑ, δϑ see Section 2.4 Lemma 2, Corollary 1 and also in Section 2.6 Case 1 and 2.

2.3 Convergence of Greedy - Overview

The idea behind main Theorem 1 is to show that, starting from Φ(0) = Φmax, per round t of Greedy
not in an almost-NE, the expected potential drop IE[∆Φ(t)] is a positive portion of the potential Φ(t)
at hand. Since the minimum potential Φmin is a positive value, the total number of round is at most
logarithmic in Φmax

Φmin
. We present below how Sections 2.4, 2.5 and 2.6 will be combined together

towards showing that Greedy gives a large “bite” to the potential IE[Φ(t)] at hand, per round not in
an almost-NE, and prove key Theorem 2.

Section 2.4 shows that IE[∆Φ(t)] is at most the total expected cost-drop
∑

i IE[∆ci(t)] of users
allowed by Greedy to migrate and proves that

∑
i IE[∆ci(t)] < 0, i.e. super-martingale. Hence,

showing large potential drop per round not in an almost-NE reduces to showing that
∑

i IE[∆ci(t)] is
a positive number times −IE[Φ(t)].

This is achieved in Sections 2.5 and 2.6 which show that |∑i IE[∆ci(t)]| and IE[Φ(t)] are both
closely related to IE[`(t)]×m, i.e. both are a corresponding positive number times IE[`(t)]×m. First,
Section 2.5 shows that IE[Φ(t)] is a portion of IE[`(t)]×m. Having this, fast convergence reduces to
showing that

∑
i IE[∆ci(t)] is a positive number times −IE[`(t)] ×m which is left to Section 2.6 &

2.7. At the end, Section 2.7 puts together Sections 2.4, 2.5 and 2.6 and completes the proof of our key
Theorem 2.

2.4 Showing that
∑

i∈A(t) IE[∆ci(t)] upper bounds IE[∆Φ(t)]

Let A(t) the migrants allowed in step (3) of Greedy in Section 2.2. Linearity of expectation by
Lemma 1 yields

∑
i∈A(t) IE[∆ci(t)] ≥ IE[∆Φ(t)].

∑
i∈A(t) IE[∆ci(t)] < 0 follows by Lemma 2 and

Corollary 1 below: user i ∈ A(t), by selfish criterion in step (3) of Greedy, decreases expectedly its
cost if the latency on i’s departure link is > (α + δϑ) times the latency on its destination. Here ϑ is
the migration probability in step (3) of Greedy.

4 Due to the initial random allocation of the players to the links, the overloaded links (if any) receive O(log n) players
with high probability. Lemma 3 and Corollary 2 show that the number of players on any overloaded link is a strong
super-martingale during each round. Thus, such overloaded links will drain from users in expectedly O(log n) rounds.
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Lemma 1.
∑

i∈A(t) ∆[ci(t)] ≥ ∆[Φ(t)]. We get equality if it holds ∆fe(t) ≤ 1, ∀e.

Proof. See Appendix A.2. ut
Lemma 2. For every positive constant δ, if migration probability ϑ in step (3) of Greedy is ϑ ≤
min{ δ

α(α−1) , 1}, the expected latency of a destination link e in the next round t + 1 is:

IE[`e(fe(t + 1))] ≤ (1 + δ/α)`e(fe(t) + 1) ≤ (α + δ)`e(fe(t))

Proof. See Appendix A.3 ut
Corollary 1. ∀i ∈ A(t) migrating e → e′ it holds: IE[∆ci(t)| ci(t)] ≤ `e′(fe′(t))(α+δϑ)−ci(t) < 0.

Proof. See Appendix A.4 ut

2.5 Showing that IE[Φ(t)] is at most a portion of IE[`(t)] × m

It is easy to see this at round t = 0, since from the initialization of Greedy in Section 2.2 we get that
the load of a bin is Binomially distributed:

IE[`(0)] ≤
n∑

i=0

(
n

i

) (
1
m

)i (
1− 1

m

)n−i

× αi ≤ eα n
m−1 e−

n
m = O(1), and

IE[Φ(0)] ≤ IE


∑

e∈E

fe(0)∑

x=1

`e(x)


 ≤

∑
e

IE[fe(0)`e(fe(0))] ≤ IE[fe(0)`e(fe(0))]×m

≤
[

n∑

i=0

(
n

i

)(
1
m

)i (
1− 1

m

)n−i

× iαi

]
×m ≤

[
eα n

m−1 e−
n
m α

n

m− 1 + a

]
×m

= IE[`(0)]α
n

m− 1 + a
×m = O(IE[`(0)]×m) (1)

However, Greedy may affect badly the initial distribution of bins, thus making (1) invalid for each
t > 0. We shall show that similar to round 0 strong tails will make (1) true for each round t > 0.
To see this, consider the concurrent random process Blind (a simplification of Greedy in Section
2.2). At t = 0 throw randomly n = O(m) balls to m bins (Blind’s and Greedy’s initializa-
tions are identical). Initially, the load distribution has Binomial tails from deviating from expectation
O(n/m) = O(1). During round t > 0, Blind draws exactly 1 random ball from each loaded bin
(as Step 1 of Greedy). Let n(t) the subset of drawn balls during round t. Round t ends by throwing
at random these |n(t)| drawn balls back into the m bins (then |n(t)| allowed by Blind to migrate is
at least the migrants allowed by Greedy, since no selfish criterion is required). Any bin is equally
likely to receive any ball, thus, Blind preserves per round t > 0 strong Binomial tails from deviating
from the constant expectation O(n/m) = O(1) reminiscent to ones for t = 0. The above make true
(1) for each round t > 0 of Blind.

Towards showing that Greedy also behaves, on a proper subset of bins, similarly to Blind it is
useful the following lemma. Lemma 3 and Corollary 2 prove a super-martingale property on the load
of bins with latency greater than a critical constant. This will help us to identify this subset of critical
bins that will preserve similar bounds to (1) for each round t > 0 of Greedy.

Lemma 3. Let ν be any integer no less than d2n/me+1. For any round t ≥ 0, every link e with
`e(fe(t)) ≥ αν has IE[fe(t + 1)] ≤ fe(t).

Proof. See Appendix A.5. ut
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Corollary 2. Consider the corresponding numbers ν’s defined in Lemma 3. We can find a constant
L∗ : ∀t ≥ 0 on each edge with latency ≥ L∗ the load is super-martingale.

Let the constant L∗ be as in Corollary 2 and define AL∗(t) = {e ∈ E : `e(fe(t)) < L∗} and
BL∗(t) = E \ AL∗(t). The target of Lemma 4 is to show that BL∗(t) is the subset of critical bins that
will preserve similar bounds to (1) for each round t > 0 of Greedy.

Lemma 4. 1
m

∑
e∈BL∗ (t) IE[`e(fe(t))] = O(1) and 1

m

∑
e∈BL∗ (t) IE[fe(t)`e(fe(t))] = O(1)IE[`(t)]

Proof. Let i` = min{i : αi ≥ `}. Recall E≥ν(t) = {j ∈ E : fj(t) ≥ ν} defined in the proof of
Lemma 3. Then:

1
m

∑

e∈BL∗ (t)

IE[`e(fe(t))] ≤
∑

i

Pr[fe(t) = i ∧ `e(fe(t)) ≥ L∗]× αi

≤ |E≥iL∗ (t)|
m

×
n∑

i=iL∗

Pr[fe(t) = i |`e(fe(t)) ≥ L∗]× αi (2)

also

1
m

∑

e∈BL∗ (t)

IE[fe(t)`e(fe(t))] ≤
∑

i

Pr[fe(t) = i ∧ `e(fe(t)) ≥ L∗]× iαi

=
|E≥iL∗ (t)|

m
×

n∑

i=iL∗

Pr[fe(t) = i |`e(fe(t)) ≥ L∗]× iαi (3)

Intuitively, we shall show that constant L∗ is sufficiently high as to make edges in BL∗(t) unlikely to
receive so many balls as to deviate significantly from latency L∗ per round t > 0 of Greedy. Also
the remaining edges in AL∗(t) are highly appealing, and balls accumulate in them per round, as long
as their latency remains < L∗.

Under Greedy, we will show that Expressions (2) and (3) preserve similar bounds to the cor-
responding Expressions in (1), ∀t > 0. More precisely, ∀t > 0 Greedy draws 1 random ball per
loaded bin (exactly as Blind does) and n(t) totally. However, loaded critical bins with latency≥ L∗,
are more unlikely, as it would be during Blind’s corresponding round, to receive random balls back.
This is due to the super-martingale property in Corollary 2, that holds ∀t > 0 for all critical bins with
latency ≥ L∗. Intuitively, while the n(t) drawn balls select random destinations, random destinations
of latency ≥ L∗ are “embargoed” by Greedy. Such a bias5 towards random destinations of latency
< L∗, induces Binomial tails for random destinations of latency ≥ L∗.

From the above discussion we conclude that ∀t it holds:

1
m

∑

e∈BL∗ (t)

IE[`e(fe(t))] ≤ IE[`(t)] = O(1) (4)

also

1
m

∑

e∈BL∗ (t)

IE[fe(t)`e(fe(t))] ≤ IE[`(t)]×O(1) (5)

ut
5 Observe that random destinations of latency < L∗ may become flooded by balls as the rounds evolute. However, as soon

as any flooded destination e0 becomes a critical one, its expected latency becomes ≤ L∗(α + δθ) = O(1) by Lemma 2.
And despite that e0 has just become critical, the sparse way (sparser than Blind’s corresponding distribution of balls)
that Greedy distributes balls on all critical destinations of latency ≥ L∗ will keep e0’s expected latency constant in a
way that similar expressions to the ones in (1) will remain true for all critical bins with latency ≥ L∗, ∀t > 0.
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Now, Fact 3 proves that IE[Φ(t)] is at most a portion of IE[`(t)]×m.

Fact 3 If round t is not an almost-NE then IE[`(t)]m ≥ IE[Φ(t)]
r(1+yt)+1+xt

, r = n/m and r, yt, xt = Θ(1).

Proof. See Appendix A.8. ut

2.6 Showing that
∑

i∈A(t) IE[∆ci(t)] is a portion of −`(t) × m

Sketch of Case 1 and 2 below. According to Definition 2, a round is not at an almost-NE if≥ εm links
are either overloaded (of latency ≥ α× `(t)) or underloaded (of latency ≤ 1

α × `(t)) ones. We study
separately each of these options in Cases 1 and 2 below. In both cases we relate

∑
i∈A(t) IE[∆ci(t)]

to −`(t) × m. The idea beyond both Case 1 and 2 is simple: each migrant from O(t) to U(t) will
contribute to

∑
i∈A(t) IE[∆ci(t)] her little portion of −`(t) at hand (by the martingale property on

the expected gain per user i ∈ A(t) proved in Corollary 1 Section 2.4). It remains to show that such
migrations have as high impact as to boost the tiny atomic gain of order `(t), when considered in the
overall population of migrants A(t), up to a portion of `(t) ×m . Towards this, Fact 4 and 5 below
show that, as long as the state is not an almost-NE, it induces imbalance amongst link-costs, which in
turn influences a sufficient amount of migrations as to get cost-drop of order −`(t)×m.

Case 1. Here we define underloaded links in round t be U(t) = {e ∈ E : `e(fe(t)) < (1− δ)`(t)},
while overloaded ones are O(t) = {e ∈ E : `e(fe(t)) ≥ α`(t)}. Let us assume that we are not at an
almost-NE because |O(t)| ≥ εm, with constant ε ∈ (0, 1).

Fact 4 For every α > 1 if |O(t)| ≥ εm, then |U(t)| ≥ δm, with δ = ε
2(α− 1).

Proof. See Appendix A.9. ut
Therefore, for every e ∈ O(t), a player migrates from e to a link in U(t) with probability at least

θδ (see step (3) of Greedy, Section 2.2). Using Lemma 2 with θ = ε/4, we obtain that the expected
decrease in its cost is at least δ

2α`(t) (see Appendix A.6).
Given that k migrants switch from a link in O(t) to a link in U(t) we obtain that their ex-

pected cost-drop is at least δ
2α`(t) times their number k. Let pO→U (k) the probability to have k

such migrants. The expected number
∑

k kpO→U (k) of such migrants is at least εθδm, since for ev-
ery e ∈ O(t) with |O(t)| ≥ εm, exactly 1 player migrates from e to a link in U(t) with probability
at least ϑδ (see Fact 4 and step (3) of Greedy, Section 2.2). Now, the unconditional on k expected
cost-drop due to migrants switching from links in O(t) to links in U(t) is at least

∑

k

(
δ
2α`(t)k × pO→U (k)

)
= δ

2α`(t)×
∑

k

kpO→U (k) ≥ δ
2α`(t)× εθδm = εθ δ2

2 αm`(t) (6)

By (6) we finally prove (for Case 1) the result of this section:
∑

i∈A(t)

IE[∆ci(t)] ≤ −εθ δ2

2 α× `(t)m (7)

Case 2. Here we define as underloaded links in round t be U(t) = {e ∈ E : `e(fe(t)) < 1
α`(t)} and

overloaded ones in O(t) = {e ∈ E : `e(fe(t)) ≥ (1 + δ)`(t)}. Let us assume that we are not at an
almost-NE because |U(t)| ≥ εm.

Fact 5 If |U(t)| ≥ εm, then
∑

e∈O(t) `e(fe(t)) > δ`(t)m, with δ = ε(α−1)
2α .
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Proof. See Appendix A.10. ut
Since |U(t)| ≥ εm, a player migrates from each e ∈ O(t) to a link in U(t) with probability at least
θε (see step (3) of Greedy, Section 2.2). Using Lemma 2 with θ = ε

4α , we obtain that the expected
decrease in the cost of such a player is at least δ

2(1+δ)`e(fe(t)) ≥ δ
4`e(fe(t)) (see Appendix A.7).

Using Fact 5, we obtain that the expected cost-drop due to migrants leaving overloaded links O(t)
and entering U(t) in round t is at least:

θε× δ

4

∑

e∈O(t)

`e(fe(t)) > θε× δ

4
× δ `(t)m >

θεδ2

4
`(t)m (8)

By (8) we finally prove (for Case2) the result of this section:
∑

i∈A(t)

IE[∆ci(t)] ≤ − θεδ2

4 ×m`(t) (9)

2.7 Proof of key Theorem 2.

Here we combine the results in Section 2.4, 2.5 and 2.6 and prove Theorem 2. From Section 2.4 we
get IE[∆Φ(t)] ≤ ∑

i∈A(t) IE[∆ci(t)] < 0. As long as Greedy does not reach an almost-NE because:
(1) The overloaded links, with respect to the realization `(t), are |O(t)| ≥ εm. Then, we get from
Expression (7) in Section 2.6 that IE[∆Φ(t)|`(t)] ≤ ∑

i∈A(t) IE[∆ci(t)|`(t)] < −εθ δ2

2 α × `(t)m.
(2) The underloaded links, with respect to the realization `(t), are |U(t)| ≥ εm. Then, we get from
Expression (9) in Section 2.6 that IE[∆Φ(t)|`(t)] ≤ ∑

i∈A(t) IE[∆ci(t)|`(t)] < −θεδ2

4 × `(t)m In
either Case 1 or 2 such that an almost-NE is not reached by realization `(t), we conclude from the
above:

IE[∆Φ(t)|`(t)] ≤
∑

i∈A(t)

IE[∆ci(t)|`(t)] < − θεδ2

4 × `(t)m (10)

Consider the space of all realizations `(t) not in an almost-NE due to≥ εm overloaded or underloaded
links in round t. Let p`(t) the probability to obtain a realization `(t) in this space. Removing the
conditional on `(t), Expression (10) becomes:

IE[∆Φ(t)] =
∑

`(t)

IE[∆Φ(t)|`(t)]p`(t) ≤
∑

`(t)


 ∑

i∈A(t)

IE[∆ci(t)|`(t)]

 p`(t)

≤
∑

`(t)

[
− θεδ2

4 × `(t)m
]
p`(t) = − θεδ2

4 × IE[`(t)]m

From Fact 3 the above becomes: IE[∆Φ(t)] ≤ − θεδ2

4 × IE[Φ(t)]
r(1+yt)+1+xt

, r = n/m and r, xt, yt = Θ(1).

3 Approximate Equilibria in Congestion Games with Coalitions

3.1 Model and Preliminaries

A congestion game with coalitions consists of a set of identical players N = [n]6 partitioned into k
coalitions {C1, . . . , Ck}, a set of resources E = {e1, . . . , em}, a strategy space Σi ⊆ 2E for each

6 For every integer n ≥ 1, [n] ≡ {1, . . . , n}.
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player i ∈ N , and a non-negative and non-decreasing latency function `e : IN 7→ IN associated
with every resource e. In the following, we restrict our attention to games with linear latencies of
the form `e(x) = aex + be, ae, be ≥ 0, and symmetric strategies (or single-commodity congestion
games), where all players share the same strategy space, denoted Σ. The congestion game is played
among the coalitions instead of the individual players. We let nj denote the number of players in
coalition Cj . The strategy space of coalition Cj is Σnj and the strategy space of the game is Σn1 ×
· · · × Σnk . A pure strategy sj ∈ Σnj determines a (pure) strategy si

j ∈ Σ for every player i ∈ Cj .
We should highlight that if the coalitions have different sizes, the game is not symmetric. We let
r ≡⌈

maxj∈[k]{|Cj |}/minj∈[k]{|Cj |}
⌉

denote the ratio between the size of the largest coalition to the
size of the smallest coalition. Clearly, 1 ≤ r < n. For every resource e ∈ E, the load (or congestion)
of e due to Cj in sj is fe(sj) = |{i ∈ Cj : e ∈ si

j}|. A tuple s = (s1, . . . , sk) consisting of a pure
strategy sj ∈ Σnj for every coalition Cj is a state of the game. For every resource e ∈ E, the load of
e in s is fe(s) =

∑k
j=1 fe(sj). The delay of a strategy α ∈ Σ in state s is `α(s) =

∑
e∈α `e(fe(s)).

The selfish cost of each coalition Cj in state s is given by the total delay of its players, denoted τj(s).
Formally, τj(s) ≡

∑
i∈Cj

`si
j
(s) =

∑
e∈E fe(sj)`e(fe(s)) Computing a coalition’s best response in

a network congestion game can be performed by first applying a transformation similar to that in
[13, Theorem 2] and then computing a min-cost flow. A state s is a Nash equilibrium if for every
coalition Cj and every strategy s′j ∈ Σnj , τj(s) ≤ τj(s−j , s

′
j), i.e. the total delay of coalition Cj

cannot decrease by Cj’s unilaterally changing its strategy7. For every ε ∈ (0, 1), a state s is an ε-Nash
equilibrium if for every coalition Cj and every strategy s′j ∈ Σnj , (1 − ε)τj(s) ≤ τj(s−j , s

′
j). An

ε-move of coalition Cj is a deviation from sj to s′j that decreases the total delay of Cj by more than
ετj(s). Clearly, a state s is an ε-Nash equilibrium iff no coalition has an ε-move available.

3.2 Convergence to Approximate Equilibria

To bound the convergence time to ε-Nash equilibria, we use the following potential function: Φ(s) =
1
2

∑
e∈E [fe(s)`e(fe(s)) +

∑k
j=1 fe(sj)`e(fe(sj))], where [17, Theorem 6] proves that Φ is an ex-

act potential function for (even multi-commodity) congestion games with static coalitions and linear
latencies. For sake of completeness, we include a proof sketch of [17, Theorem 6] in the Appendix,
Section A.11. We prove that for single-commodity linear congestion games with coalitions, the largest
improvement ε-Nash dynamics converges to an ε-Nash equilibrium in a polynomial number of steps.
Hence in network congestion games, where a coalition’s best response can be computed in polynomial
times by a min-cost flow computation, an ε-Nash equilibrium can be computed in polynomial time. If
the current strategies profile is not an ε-Nash equilibrium, there may be many coalitions with ε-moves
available. In the largest improvement ε-Nash dynamics, the coalition that moves is the one whose best
response is an ε-move and results in the largest improvement in its total delay (and consequently in
the potential).

Theorem 6. In a single-commodity linear congestion game with n players divided into k coalitions,
the largest improvement ε-Nash dynamics starting from s0 reaches an ε-Nash equilibrium in at most
kr(r+1)
ε(1−ε) log Φ(s0) steps, where r =

⌈
maxj∈[k]{nj}/minj∈[k]{nj}

⌉
denotes the ratio between the size

of the largest coalition and the size of the smallest coalition.

Proof. See Appendix A.12. ut

7 For a vector x = (x1, . . . , xn), x−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn) and (x−i, x
′
i) ≡

(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).
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A Appendix

A.1 Expected Time to Reach an Almost-NE

Assuming Theorem 2, we prove Theorem 1. Let Φmax denote the maximum value of the potential, and let Φmin denote the
minimum value of the potential8.
Notation. Let Φ(0) denote the potential of the initial state. For every round t = 0, 1, . . ., we introduce a 0/1 random variable
Zt defined as:

Zt =


0 if GREEDY has not reached an almost-NE until round t
1 if GREEDY has reached an almost-NE no later than round t

By definition, if Zτ = 0 for some round τ , then Zτ ′ = 0 for all rounds τ ′ ≤ τ , and if Zτ = 1 for some round τ , then
Zτ ′ = 1 for all rounds τ ′ ≥ τ . We assume that Z0 = 0, i.e. the initial state is not an almost-NE.

For a round τ ≥ 1, let zτ ≡ IPr[Zτ = 1|Zτ−1 = 0] denote the probability that GREEDY reaches an almost-NE in round
τ given that it has not reached an almost-NE until round τ−1. Let qt ≡ IPr[Zt = 1] denote the probability that GREEDY has
reached an almost-NE no later than round t. Applying Bayes’ formula inductively, we obtain that qt = 1−Qt

τ=1(1− zτ ).

The Proof of Theorem 1. We start with a proposition bounding the conditional expectation of the potential at round t given
that GREEDY has yet to reach an almost-NE.

Proposition 1. For every round t ≥ 0, IE[Φ(t)|Zt = 0] ≤ (1−p)t

1−qt
Φ(0).

Proof. The proof uses induction on t. The proposition holds for t = 0 since Z0 = 0, q0 = 0, and IE[Φ(0)|Z0 = 0] = Φ(0).

We inductively assume that IE[Φ(t)|Zt = 0] ≤ (1−p)t

1−qt
Φ(0). Then Theorem 2 implies that

IE[Φ(t + 1)|Zt = 0] ≤ (1− p) IE[Φ(t)|Zt = 0] ≤ (1− p)t+1

1− qt
Φ(0) (11)

On the other hand,

IE[Φ(t + 1)|Zt = 0] ≥ IPr[Zt+1 = 0|Zt = 0] IE[Φ(t + 1)|Zt+1 = 0]

= (1− zt+1) IE[Φ(t + 1)|Zt+1 = 0] , (12)

where we use that the potential is non-negative and that Zt+1 = 0 implies that Zt = 0.
Combining (11) with (12), we obtain that

IE[Φ(t + 1)|Zt+1 = 0] ≤ (1− p)t+1

(1− qt)(1− zt+1)
Φ(0)

Observing that 1− qt+1 = (1− qt)(1− zt+1) concludes the proof of the proposition. ut

We proceed to bound from below the probability that GREEDY reaches an almost-NE in a sufficiently large number of
rounds.

Proposition 2. GREEDY reaches an almost-NE in
˚
p−1 ln(β−1Φ(0)/Φmin)

ˇ
rounds with probability at least 1− β.

Proof. Let t =
˚
p−1 ln(β−1Φ(0)/Φmin)

ˇ
. Assuming that qt < 1− β and using Proposition 1, we obtain that

IE[Φ(t)|Zt = 0] < (1−p)t

β
Φ(0) ≤ Φmin ,

a contradiction. For the last inequality, we use that 1− p ≤ e−p and that t ≥ p−1 ln(β−1Φ(0)/Φmin). ut

For β = 1/2, Proposition 2 implies that GREEDY reaches an almost-NE after an expected number of 2 phases, each
consisting of

˚
p−1 ln(2Φmax/Φmin)

ˇ
rounds.

8 Notice that Φmin > 0 because the α-bounded jump assumption is meaningful only if `e(1) > 0 for all links e (otherwise,
there is some link e with `e(k) = 0 for all k and every player is bound to use e).
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A.2 Proof of Lemma 1
It is helpful to construct the following directed graph G(t) = (V (t), E(t)) during round t + 1. The vertices of G(t) are the
resources V (t) = {e1, . . . , em} and has |A(t)| directed edges. The directed edge ej → ek appears if a player moves from
resource ej to ek during round t + 1. According to Greedy each vertex has out-degree 1. That is, the edges E(t) of G(t)
are the transactions made by players inA(t) per round. The in(out)-degree of a vertex is its number of in(out)coming edges,
while its degree equals in-degree+out-degree. On each vertex v ∈ V (t) with degree ≥ 1 we assign a color ∈ {green, red,
black} per round t + 1 such that:

– Red are all vertices with in-degree 0 and out-degree 1.Ar(t) contains the players inA(t) that depart from a red vertex.
– Black are all vertices with in-degree ≥ 1 and out-degree 0.
– Green are all vertices with in-degree ≥ 1 out-degree 1. Ag(t) contains the players in A(t) that depart from a green

vertex.

Observe that the contribution of terms in 4[Φ(t)] is only due to the colored vertices in G(t). Specifically, red-vertices
contribute to 4[Φ(t)] only negative terms, black-vertices contribute to 4[Φ(t)] only positive terms, green-vertices may
contribute to 4[Φ(t)] only positive terms.

The negative terms in 4[Φ(t)] sum to:
X

i∈A(t)

(−ci(t)) (13)

To see this, first observe that each red-vertex ej in G(t) contributes to 4[Φ(t)] the negative term −`ej (fej (t)) = −ci(t),
where i is the player migrating from resource ej during round t + 1. Therefore, the transactions currently depicted in G(t)
only contribute to 4[Φ(t)] the following negative terms:

X

i∈Ar(t)

(−ci(t)) =
X

i∈A(t)

(−ci(t))−
X

i∈Ag(t)

(−ci(t)) (14)

The crucial observation is that we can get our target (13) by plugging the missing terms
P

i∈Ag(t)(−ci(t)) in (14) without
affecting 4[Φ(t)] by the following trick: On each green resource we both add and subtract the corresponding term −ci(t)
of the player i ∈ Ag(t) migrating from it, that is:

4[Φ(t)] = 4[Φ(t)] +
X

i∈Ag(t)

(−ci(t)) +
X

i∈Ag(t)

ci(t) (15)

We conclude that we have shown our target (13) without changing 4[Φ(t)].

The positive terms in 4[Φ(t)] sum to at most:
X

i∈A(t)

ci(t + 1) (16)

This in turn can be shown as it follows. Each black vertex ej with in-degree k contributes to 4[Φ(t)]:

kX
x=1

`ej

`
fej (t) + x

´ ≤ k`ej

`
fej (t) + k

´
=

X

i∈A(t):si(t+1)=ej

ci(t + 1) (17)

Each green vertex ej with in-degree k contributes to 4[Φ(t)]:

k−1X
x=1

`ej

`
fej (t) + x

´
(18)

plus the corresponding term `ej

`
fej (t)

´
(added by trick) that appears in the rightmost summand in (15). Then (18) becomes:

k−1X
x=0

`ej

`
fej (t) + x

´ ≤ k`ej

`
fej (t) + k − 1

´
=

X

i∈A(t):si(t+1)=ej

ci(t + 1) (19)

Inequalities (17) and (19) show that (16) upper bounds the sum of positive terms in 4[Φ(t)] which proves our lemma when
combined with (13).
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A.3 Proof of Lemma 2
For every edge, GREEDY allows at most one player to migrate to a random link with probability ϑ. Hence, there are at most
m candidate migrants and a link receives a migrant independently with probability ϑ/m. The distribution of the number of
migrants in every link e is dominated by the binomial distribution B(m, ϑ/m).

Let e be an arbitrary destination link. Thus e receives some player, let it be player i. For every integer k = 0, . . . , m−1,
let Qk denote the probability that the destination link e receives k additional players other than i. Since the number of
candidate migrants (excluding player i) is m− 1,

Qk ≤
 

m− 1

k

!„
ϑ

m

«k„
1− ϑ

m

«m−k

≤ ϑk

k!

„
1− 1

m

«k„
1− ϑ

m

«m−k

≤ ϑk

k!
e−k/me−ϑ(m−k)/m

≤ ϑk

k!
e−ϑ (20)

The first inequality holds because the distribution of the number of additional migrants in e (other than player i) is dominated
by the binomial distribution B(m − 1, ϑ/m). For the second inequality, we use that

`
m−1

k

´ ≤ (m−1)k

k!
. For the third

inequality, we use that 1− x ≤ e−x twice. For the last inequality, we use that e−k(1−ϑ)/m ≤ 1, since ϑ ≤ 1.
Then the expected latency of the destination link e in the next round is bounded from above by:

IE[`e(fe(t + 1))] ≤
∞X

k=0

Qk `e(fe(t) + 1 + k)

≤ `e(fe(t) + 1)

∞X

k=0

Qk αk

≤ `e(fe(t) + 1)

∞X

k=0

(ϑα)k

k!
e−ϑ

= eϑ(α−1)`e(fe(t) + 1)

The second inequality follows from the α-bounded jump assumption and the third inequality follows from (20). Using
ϑ ≤ δ

α(α−1)
, we obtain that eϑ(α−1) ≤ 1 + δ/α, which concludes the proof of the lemma.

A.4 Proof of Corollary 1
IE[∆ci(t)| ci(t)] = IE[ci(t+1)]−`e(fe(t)). In Lemma 2 the migration probability ϑ is tuned such that ∀i ∈ A(t), IE[ci(t+
1)] ≤ `e′(fe′(t))(α + δθ). By the selfish criterion of Greedy in Section 2.2 it holds `e′(fe′(t))(α + δθ)− `e(fe(t)) < 0.

A.5 Proof of Lemma 3
Let t ≥ 0 be any fixed round and let e be any fixed link with `e(fe(t)) ≥ αν . We observe that

IE[fe(t + 1)] = fe(t) + IE[#players coming in e in t]− IE[#players leaving e in t] (21)

To establish the lemma, we show that if ν is sufficiently large, the expected number of players leaving e in t is no less than
the expected number of players joining e in t.

Since `e(fe(t)) ≥ αν , the α-bounded jump condition implies that e can receive players only from links in E≥ν+1(t) =
{j ∈ E : fj(t) ≥ ν + 1}. In particular, link e receives at most one player from each link in E≥ν+1(t) with probability
ϑ/m. Therefore,

IE[#players coming in e in t] ≤ ϑ|E≥ν+1(t)|/m

On the other hand, since `e(fe(t)) ≥ αν , the α-bounded jump condition implies that every link in E≤ν−2(t) = {j ∈
E : fj(t) ≤ ν − 2} satisfies the condition in step (3) of Greedy 9 Hence a player leaves e with probability at least
ϑ|E≤ν−2(t)|/m. Therefore,

IE[#players leaving e in t] ≥ ϑ|E≤ν−2(t)|/m

9 For simplicity, we assume that the factor of α + δϑ in step (3) of Greedy does not exceed α2. In general, we have to
use E≤ν−k−1(t) (instead of E≤ν−2(t)) and ν ≥d2n/me+k, where k =dlogα(1 + δϑ)e.
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By (21), it suffices to show that for every integer ν ≥d2n/me+1, |E≥ν+1(t)| − |E≤ν−2(t)| ≤ 0. Let E≥ν−1(t) =
{j ∈ E : fj(t) ≥ ν−1}. Then, |E≥ν+1(t)| ≤ |E≥ν−1(t)| and |E≤ν−2(t)| = m−|E≥ν−1(t)|. Moreover, |E≥ν−1(t)| ≤
n/(ν − 1) by Markov’s inequality. Therefore,

|E≥ν+1(t)| − |E≤ν−2(t)| ≤ 2 |E≥ν−1(t)| −m ≤ 0 ,

where we use that |E≥ν−1(t)| ≤ m/2 for all integers ν ≥d2n/me+1.

A.6 Cost decrease ≥ δ
2
α`(t)

In Lemma 2 set θ = ε
4

obtaining for the corresponding δθ that equals ε
4

= δθ
α(α−1)

⇒ δθ = εα(α−1)
4

. The initial

cost per user in O(t) is ≥ α`(t). Each such user in O(t) if it migrates to U(t), by Corollary 1 its expected cost will be ≤
(α + δθ) (1−δ)`(t), with δ = ε

2
(α−1), which is

“
α + εα(α−1)

4

”“
1− ε(α−1)

2

”
`(t) =

“
α + εα(α−1)

4
− εα(α−1)

2
− ε2α(α−1)2

8

”
`(t) <

α
`
1− ε

4
(α− 1)

´
`(t) =

`
1− δ

2

´
α`(t), inducing a cost decrease ≥ δ

2
α`(t).

A.7 Cost decrease ≥ δ
4
`e(fe(t))

In Lemma 2 set θ = ε
4α

obtaining for the corresponding δθ that equals ε
4α

= δθ
α(α−1)

⇒ δθ = ε(α−1)
4

. The initial cost per

user on an edge e1 ∈ O(t) is ≥ (1 + δ) `(t) =
“
1 + ε(α−1)

2α

”
`(t), with δ = ε(α−1)

2α
. Therefore δθ = α

2
δ. Each such user

in e1 ∈ O(t) if it probes to e2 ∈ U(t), it holds:

`e1(t) ≥ (1 + δ)`(t) ≥ α(1 + δ)`e2(t)

where the 1st inequality holds from the definition of O(t) and 2nd from U(t). Therefore `e2(t) ≤ 1
α(1+δ)

`e1(t). Then, if

user migrates to e2 its expected latency will be ≤ α+δθ
α(1+δ)

`e1(t) =
α+ α

2 δ

α(1+δ)
`e1(t) =

1+ δ
2

1+δ
`e1(t). Its expected cost decrease

will be
“
1− 1+ δ

2
1+δ

”
`e1(t) = δ

2(1+δ)
`e1(t) ≥ δ

4
`e1(t), since constant δ < 1.

A.8 Proof of Fact 3

Let a sufficiently high constant L∗ defined in Corollary 2 and BL∗(t) the edges of latency ≥ L∗ defined in Lemma 4.
Observe that expected bound (5) for the overloaded edges in BL∗(t) with latency ≥ L∗ holds on every round of process
Greedy, irrespectively if the round corresponds to an almost-NE or not. This expected bound will serve to the second
summand in Expression (22) bellow as a bound to the contribution to the expected potential by the edges in BL∗(t).
Similarly, each underloaded edge in AL∗(t) = E \ BL∗(t) encounters latency < L∗ per round. Since the number of users
in edges inAL∗(t) is≤ n then the contribution to the potential by such edges is < nL∗ in the first summand in Expression
(22) below, irrespectively if the round is an almost-NE. All in all, by linearity of expectation and the corresponding bounds
nL∗ and (5) we get:

IE[Φ(t)] = IE

2
4 X

e∈AL∗ (t)

fe(t)X
i=1

`e(i) +
X

e∈BL∗ (t)

fe(t)X
i=1

`e(i)

3
5 ≤ IE

2
4 X

e∈AL∗ (t)

fe(t)X
i=1

`e(i) +
X

e∈BL∗ (t)

fe(t)`e(fe(t))

3
5

≤ nL∗ +
X

e∈BL∗ (t)

IE[fe(t)`e(fe(t))] =

0
@ n

m
L∗ +

1

m

X

e∈BL∗ (t)

IE[fe(t)`e(fe(t))]

1
Am

≤
“ n

m
L∗ + IE[`(t)]O(1)

”
m (22)

Set L∗ = (1 + yt)IE[`(t)] where yt = Θ(1) since L∗ = O(1) and by Expression (4) it holds IE[`(t)] = O(1), ∀t. Also,
set IE[`(t)]O(1) = (1 + xt)IE[`(t)], xt = Θ(1). Finally, let r = n/m = Θ(1) and (22) becomes:

IE[Φ(t)] ≤ (r(1 + yt) + 1 + xt) IE[`(t)]m ⇔ IE[`(t)]m ≥ IE[Φ(t)]

r(1 + yt) + 1 + xt
(23)
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A.9 Proof of Fact 4

For simplicity of notation, let h = |O(t)|, let l = |U(t)|, and let n = m − h − l be the number of links with latency in
[(1− δ)`(t), α`(t)]. Let us assume that h ≥ εm and that l < δm. Then, n > m−h− δm. Calculating the average latency,
we obtain a contradiction:

m`(t) =
P

e∈E `e(fe(t)) > h α`(t) + (m− h− δm) (1− δ)`(t)

≥ εm α`(t) + (1− ε− δ)m (1− δ)`(t)

= m`(t)(1 + ε(α− 1)− δ(1− ε)− δ(1− δ)) ≥ m`(t)

The second inequality holds because α`(t) (h− εm) ≥ (1− δ)`(t) (h− εm), since h ≥ εm, α > 1, and δ > 0. The last
inequality holds because for δ = ε

2
(α− 1), δ(1− ε) + δ(1− δ) ≤ ε(α− 1).

A.10 Proof of Fact 5

Working as in the proof of Fact 4, we obtain that

X

e∈O(t)

`e(fe(t)) > (1− ε/α− (1− ε)(1 + δ)) `(t)m = δ `(t)m

A.11 Potential Function for Linear Congestion Games with Coalitions

Theorem 7. ([17]) Every linear congestion game with coalitions admits an exact potential function.

Proof. We consider a game with a linear latency function `e(x) = aex + be, ae, be ≥ 0, associated with each resource
e ∈ E. Let {C1, . . . , Ck} be a set of coalitions, and let s = (sj)j∈[k] be a pure strategies profile. The potential of s is
Φ(s) = 1

2
[C(s) + W (s)], where

C(s) =
X
e∈E

fe(s)`e(fe(s)) =
X
e∈E

(aef
2
e (s) + befe(s)) , and

W (s) =
X
e∈E

kX
j=1

fe(sj)`e(fe(sj)) =
X
e∈E

kX
j=1

(aef
2
e (sj) + befe(sj))

Let j be a coalition changing its strategy from sj to s′j , and let s′ = (s−j , s
′
j) be resulting pure strategies profile. The

difference in the total delay of coalition j is10:

τj(s
′)− τj(s) =

X
e∈E

(fe(s
′
j)− fe(sj))[ae(fe(s−j) + fe(s

′
j) + fe(sj)) + be] (24)

The difference in the potential function components is:

C(s′)− C(s) =
X
e∈E

(fe(s
′
j)− fe(sj))[ae(2 fe(s−j) + fe(s

′
j) + fe(sj)) + be] (25)

and
W (s′)−W (s) =

X
e∈E

(fe(s
′
j)− fe(sj))[ae(fe(s

′
j) + fe(sj)) + be] (26)

Combing (25), (26), and (24), we obtain that Φ(s′) − Φ(s) = τj(s
′) − τj(s). Therefore, Φ is an exact potential for linear

congestion games with coalitions. ut

10 In the following, we repeatedly use that for every pure strategies profile s, coalition j, and resource e, fe(s) = fe(s−j)+
fe(sj).

e



A.12 Proof of Theorem 6

The outline of the proof is similar to that of [7, Theorem 3.4], which holds for symmetric congestion games only. However,
coalitions may be of different size, in which case the game is asymmetric. Hence, we have to extend the technique of [7]
and bound the effect of coalitions of different size. On the other hand, our result holds for a more restricted class of latency
functions compared to that in [7].

Let {C1, . . . , Ck} be a set of coalitions, and let s = (sj)j∈[k] be a pure strategies profile that is not an ε-Nash
equilibrium. We prove that every ε-move dictated by the largest improvement dynamics decreases the potential by at least
ε(1−ε)

kr(r+1)
Φ(s). This implies the theorem, since the potential is initially Φ(s0) and Φ is a non-negative integral function.

Since Φ(s) ≤ Pk
j=1 τj(s), there is some coalition of total delay at least Φ(s)/k. Let Ci be a coalition of maximum

total delay in s. Clearly, τi(s) ≥ Φ(s)/k. Let s′i be Ci’s best response to s−i. We distinguish between two cases depending
on whether (1− ε)τi(s) > τi(s−i, s

′
i), i.e. Ci has an ε-move available, or not.

If Ci has an ε-move available, the next move decreases the potential by at least εΦ(s)/k. More precisely, if Ci moves,
then

Φ(s)− Φ(s−i, s
′
i) = τi(s)− τi(s−i, s

′
i) > ετi(s) ≥ ε Φ(s)/k

The equality holds because Φ is an exact potential (see also the proof of Theorem 7). The first inequality follows from the
hypothesis that Ci makes an ε-move. The last inequality follows from the definition of Ci as a maximum cost coalition in
s. If instead of Ci, some other coalition Cj moves from sj to s′j , by the definition of the largest improvement dynamics,
τj(s)− τj(s−j , s

′
j) ≥ τi(s)− τi(s−i, s

′
i), and the potential decreases by at least ε Φ(s)/k.

If Ci does not have an ε-move available, let Cj be the coalition that moves from sj to s′j and hence decreases the
potential by ετj(s). We show that τj(s) ≥ (1−ε)

kr(r+1)
Φ(s). Therefore, the potential decreases by at least ε(1−ε)

kr(r+1)
Φ(s).

Let s̃j be the strategy of coalition Ci obtained by taking dni/nje copies of sj . More precisely, s̃j is obtained by
assigning at mostdni/nje players from Ci to each strategy sν

j , ν ∈ Cj , until all players in Ci are assigned to some strategy
in Σ. Then,

τi(s−i, s̃j) ≤
X
e∈E

fe(s̃j) `e(fe(s) + fe(s̃j))

≤
X
e∈E

dni/nje fe(sj) `e(fe(s−j) + (dni/nje+1)fe(sj))

≤dni/nje(dni/nje+1)
X
e∈E

fe(sj) `e(fe(s−j) + fe(sj))

≤ r(r + 1)τj(s)

The second inequality holds because by the definition of s̃j , fe(s̃j) ≤ dni/nje fe(sj) for every resource e. The third
inequality follows from the linearity of the latency functions. The last inequality holds becausedni/nje ≤ r.

Therefore, τj(s) ≥ τi(s−i,s̃j)

r(r+1)
. Since Ci does not have an ε-move available, (1− ε)τi(s) ≤ τi(s−i, s̃j), which implies

that τi(s−i, s̃j) ≥ (1− ε)Φ(s)/k and that τj(s) ≥ 1−ε
kr(r+1)

Φ(s). Thus, as soon as Cj switches from sj to s′j , the potential

decreases by at least ε(1−ε)
kr(r+1)

Φ(s).

f


