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Abstract. Following the work of Newman, we model complex networks with ran-
dom graphs of a given degree distribution. In particular we study the case where
all vertices have exactly the same degree (random regular graphs). We survey some
recent results on the problem of partitioning such a graph into the smallest possible
number of classes of mutually isolated vertices, known in graph theory as the col-
orability problem. We also describe the solution of an open problem about 5-regular
graphs.

1 Introduction

It is not an exaggeration to state that Random Graph Theory is undergoing a revolutionary
change. Graph theorists have definitely been expelled from the paradise that Erdés and
Rényi [6,7] had created for them. According to this classical theory, a random graph is
the product of repeated Bernoulli trials: for each pair of vertices, decide with a given
probability, if they will be connected by an edge or not. Classical random graphs however,
despite the deep and complicated mathematics devised for their study, are not of much
interest from the complex systems point of view. Local decisions that affect the global
picture, emergent properties, self-organization, robustness, resilience, to name only a few
issues of interest to complexity science, do not pertain to classical graph theory.

As is well known by now, this state of affairs radically changed just before the turn of
the century, when researchers tried to study from a graph-theoretical point of view existing
complex systems, live or artificial. The pioneering work of e.g., Watts and Strogatz [12, 13],
and Barabdsi and Albert [4] gave a new twist to classical graph theory. Random graphs
according to this new paradigm have properties, like power law distribution of the degrees,
or freedom from scale, that reflect the interaction patterns of many complex systems.
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One approach to such models was the one undertaken by Newman et al. [10]. In this
approach, instead of modelling a random graph with an edge generating process with
a specified attachment rule at each step (generative models), one assumes instead that
the graph is uniformly random conditional on its degree sequence. Certainly, this static
approach is more restricted in comparison to the generative approach. However, it is often
more suitable for the analysis of graph properties like clustering, distribution of component
sizes, resilience, thresholds etc.

In this paper, we restrict our study to an important subclass of random graphs with a
given degree sequence: that of random regular graphs, ie graphs where all vertices have the
same degree. A comprehensive account of the pioneering work on random regular graphs
can be found in the paper by Wormald [14]. The present paper concerns a much studied
graph parameter, that of the chromatic number of a graph. The chromatic number is
defined to be the smallest number of colors needed to color the vertices of a graph, given
that no two adjacent vertices get the same color. In network terminology, the chromatic
number is the smallest number of classes that one can partition the nodes of a network,
so that each class comprises only of mutually isolated nodes.

Molloy [9] proved that 6-regular graphs have chromatic number at least 4, asymptoti-
cally almost surely (a.a.s.) with respect to the number of their vertices n. Achlioptas and
Moore [1] proved that 4-regular graphs have chromatic number 3 with constant probabil-
ity. Subsequently, Achlioptas and Moore [2] showed that a.a.s., the chromatic number of
a d-regular graph (d > 3 ) is k or k4 1 or k + 2, where k is the smallest integer such that
d < 2klog k. Shi and Wormald [11] showed that a.a.s. the chromatic number of a 4-regular
graph is 3, that a.a.s. the chromatic number of a 6-regular graph is 4 and that a.a.s. the
chromatic number of a 5-regular graph is either 3 or 4. They also showed that a.a.s. the
chromatic number of a d-regular graph, for all other d up to 10, is restricted to a range of
two integers. Their proofs were algorithmic.

The above results leave open the question of whether the chromatic number of a 5-
regular graph can take the value 3 with constant probability (or perhaps even a.a.s.). The
difficulty of devising a rigorously analyzable algorithm that provides a 3-coloring for a
5-regular graph with constant probability was explained by research in physics. Krzakala
et al. [8] provided a non-rigorously analyzable algorithm that a.a.s. finds a 3-coloring for a
5-regular graph. However, they also showed that the space of assignments of three colors
to the vertices (legal or not, i.e. with no two adjacent vertices with the same color or
not) consists of clusters of legal color assignments inside which one can move from point
to point by steps of small Hamming distance. Additionally they showed that to go from
one cluster to another by such small steps, it is necessary to go through assignments of
colors that grossly violate the requirement of legality (high-energy color assignments).
Moreover, the number of clusters that contain points with energy that is a local, but not
global, minimum is exponentially large. As a result, local search algorithms are easily
trapped into such local minima (metastable states). Non-local search algorithms however
are usually not amenable to rigorous analysis.

The above considerations left as the only plausible alternative to try to prove that
5-regular graphs are 3-colorable with constant probability in an analytic way. A technique
that has been used towards similar ends is the Second Moment Method. The basic ingre-
dient of this method is the fact that if X is a non-negative random variable (r.v.) then the
probability that X is positive is bounded from below from the ratio of the square of its



Partitioning networks into classes of mutually isolated vertices 3

first moment to its second moment. We call this ratio the Moment Ratio. Symbolically:

(B[X])*

qu>mziﬂﬁ?

(1)

This technique was used [3] to solve the long-standing open problem of computing the
two possible values of a random graph. In this work the authors considered as X the r.v.
that gives the number of balanced 3-colorings of a graph (balanced are the colorings where
there is an equal number of vertices of each color). The same r.v. however proved not to
work for the case of 5-regular graphs.

In a recent work [5], the r.v. that counts stable balanced 3-colorings was considered.
These are balanced 3-colorings with the property that for no single vertex v can one change
its color without the appearance of an edge with the same color at its endpoints.

It turned out that for stable balanced 3-colorings the variance diminishes (as expected)
but the square of the expectation diminishes in a lesser degree and as a result the Moment
Ratio becomes asymptotically positive. Thus a non-empirical proof that 5-regular graphs
are 3-colorable with positive probability was obtained.
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